

Florida Public Hurricane Loss Model
FPHLM
(Release 5.0)

PRIMARY DOCUMENT BINDER

The Document

This binder contains a complete set of documents specifying the model structure, detailed software description, and functionality.

Project Supervisors
Dr. Shu-Ching Chen
Associate Professor,
School of Computing and Information Sciences
Florida International University
Dr. Mei-Ling Shyu
Associate Professor,
Department of Electrical and Computer Engineering
University of Miami

Team Members
(Sorted alphabetically)
Roberto Aleman
M.S. Student,
School of Computing and Information Sciences
Florida International University

[bookmark: _Toc294884865]Fausto Fleites
(Consultant)
Ph.D. Student,
School of Computing and Information Sciences
Florida International University

Raul Garcia
(Student Leader)
Undergraduate Computer Science Student,
School of Computing and Information Sciences
Florida International University

[bookmark: _Toc294884866]Anthony Gonzalez
Undergraduate Computer Science Student,
School of Computing and Information Sciences
Florida International University

HsinYu Ha
Ph.D. Student,
School of Computing and Information Sciences
Florida International University

Dianting Liu
Ph.D. Student,
Department of Electrical and Computer Engineering
University of Miami

Diana Machado
(Student Leader)
Undergraduate Computer Science Student,
School of Computing and Information Sciences
Florida International University

Alex Sarracino
Undergraduate Computer Science Student,
School of Computing and Information Sciences
Florida International University

[bookmark: _Toc294884870]Yimin Yang
Ph.D. Student,
School of Computing and Information Sciences
Florida International University

Table of Contents

Volume I. The Florida Public Hurricane Loss Model (FPHLM)	1
1.1.	General Description of FPHLM Model	2
1.2.	Computer Model and Implementation	3
1.2.1.	Use Case View of the System	3
1.2.2.	Network Diagram of the System	5
1.3.	System Architecture Design	6
1.3.1.	Detailed System Architecture Design	6
Volume III. Storm Forecast Module (Module I) / Wind Field Module (Module II)	1
3.1.	Storm Track Model Use Case III	2
3.1.1.	General Description of Storm Track Model	2
3.1.2.	Technical Description of the Storm Track Model	2
3.1.2.1.	Initial Conditions and Threat Area	2
3.1.2.2.	Storm Motion and Intensity Change	3
3.1.2.3.	Rmax model	5
3.1.2.4.	Pressure Decay	7
3.1.2.5.	The empirical probability distribution generator (GENPDF)	8
3.1.2.6.	The storm track generator (STORMGEN)	10
3.1.2.7.	Appendix A – Wind-Pressure Relation	11
3.1.2.8.	Appendix B – Relative Intensity Calculation	11
3.1.2.9.	Data Sources	12
3.1.3.	Computer Model Design & Implementation	13
3.1.3.1.	Use Case View of Storm Track Model	13
3.1.3.2.	Storm Track Model Implementation	14
3.1.3.3.	Program Flowchart for Storm Track Model	14
3.1.3.4.	Class Diagram and Description	15
3.1.3.5.	Data Flow Diagram	16
3.1.3.6.	Storm Track Output	17
3.1.3.7.	Glossary	18
3.1.4.	References	20
3.2.	Wind Field Model Use Case IV	20
3.2.1.	General Description of Wind Field Model	20
3.2.2.	General Requirements of Wind Field Model	20
3.2.3.	Technical Description of Wind Field Model	23
3.2.3.1.	Wind Model Parameters	25
3.2.3.2.	Definitions and Equations of the wind model	26
3.2.4.	Computer Model Design	31
3.2.4.1.	Use Case View of Wind Field Model	31
3.2.4.2.	Detailed Flowchart	32
3.2.4.3.	Class Diagram	33
3.2.4.4.	Data Flow Diagram	35
3.2.4.5.	Program Flowchart of Wind Field Model	36
3.2.4.6.	Glossary	44
3.2.5.	References	50
3.3.	Wind Speed Correction (WSC) Use Case V	52
3.3.1.	General Description of WSC	52
3.3.2.	WSC General Requirements & Technical Description	52
3.3.2.1.	Marine Drag Coefficient and Terrain Conversion	56
3.3.2.2.	Gust Factor Calculation	58
3.3.2.3.	Coastal Transition	60
3.3.3.	WSC Interface Design Requirements	63
3.3.4.	Computer Model Design	66
3.3.4.1.	Use Case View of WSC	66
3.3.4.2.	System Design	67
3.3.4.3.	Flowchart of WSC	68
3.3.4.4.	Class Diagram and Description	69
3.3.4.5.	Data Flow Diagram	71
3.3.4.6.	State Chart Diagram	72
3.3.4.7.	Glossary	73
3.3.5.	Implementation of WSC	81
3.3.5.1.	Login page:	81
3.3.5.2.	WSC Page:	82
3.3.5.3.	Exception handling	86
3.3.6.	Additional Programs	88
3.3.6.1.	FPHLM Roughness Classification	88
3.3.7.	References	94
Volume IV. Damage Estimation Module (Module III)	1
4.1.	Monte Carlo Simulation Model for Personal Residential Buildings (MCS) Use Case I	2
4.1.1.	General Description of MCS	2
4.1.2.	MCS Design Requirements	2
4.1.3.	Computer Model Design	11
4.1.3.1.	Use Case View of MCS	11
4.1.3.2.	System Design	11
4.1.3.2.1.	The MCS Driver	12
4.1.3.2.2.	MCS Damage Models	12
4.1.3.2.3.	MCS Common Files	12
4.1.3.3.	Implementation of Monte Carlo Simulation model	12
4.1.3.4.	Glossary	87
4.1.4.	References	120
4.2.	Monte Carlo Simulation Model for Commercial Residential Buildings (MCS-CRB) Use Case II	121
4.2.1.	General Description of MCS-CRB	121
4.2.2.	Technical Description	121
4.2.3.	MCS-CRB Design Requirements	129
4.2.4.	Computer Model Design	135
4.2.4.1.	Use Case View of MCS-CR	135
4.2.4.2.	System Design	135
4.2.4.3.	Implementation	138
4.2.4.4.	Data Flow	216
4.2.4.5.	Class Diagram	220
4.2.4.6.	Glossary	222
4.3.	Vulnerability and Fragility for Residential and Manufactured Homes (VFRMH) Use Case III	293
4.3.1.	General Description of VFRMH	293
4.3.2.	Technical Description	293
4.3.3.	VFRMH Design Requirements	305
4.3.4.	Computer Model Design	312
4.3.4.1.	Use Case View of VFRMH	312
4.3.4.2.	System Design	312
4.3.4.3.	Implementation of the Vulnerability and Fragility use case for Residential and Manufactured Home	316
4.3.4.4.	Class Diagram	357
4.3.4.5.	Data Flow Diagram	358
4.3.4.6.	Glossary	359
4.3.5.	References	372
4.4.	Vulnerability Model for Commercial Residential Buildings (VM-CRB) Use Case IV	373
4.4.1.	General Description of VM-CRB	373
4.4.2.	Technical Description	373
4.4.3.	VM-CRB Design Requirements	390
4.4.4.	Computer Model Design	395
4.4.4.1.	Use Case View of VM-CRB	395
4.4.4.2.	System Design	395
4.4.4.3.	Implementation of the Vulnerability Model for Commercial Residential Buildings	397
4.4.4.4.	Class Diagram	410
4.4.4.5.	Data Flow Diagram	411
4.4.4.6.	Glossary	413
Volume V. Insurance Loss Module (Module IV)	1
5.1.	Insurance Loss Module for Personal Residential Policies	2
5.1.1.	General Description of ILM-PR	2
5.1.2.	Detailed Design and Implementation of ILM-PR	2
5.1.3.	Computer Model Design	6
5.1.3.1.	Use Case View of Insurance Loss Model (ILM)	6
5.1.3.2.	System Design	6
5.1.3.3.	Class Diagram and Description	23
5.1.3.4.	Data Flow Diagram for ILM	26
5.1.3.5.	Glossary	27
5.1.4.	Additional Programs	34
5.1.4.1.	Generation of Combined Mobile Matrices	34
5.1.4.2.	Application of Demand Surge	37
5.1.4.3.	Matrices Checking Program	42
5.1.4.4.	MATLAB program for matrix checking	42
5.1.4.5.	JAVA program for matrix checking	47
5.1.5.	References	55
5.2.	Insurance Loss Module for Commercial Residential Policies	56
5.2.1.	General Description of ILM-CR	56
5.2.2.	Detailed Design and Implementation of ILM-CR	56
5.2.3.	Computer Model Design	68
5.2.3.1.	Use Case View of the Insurance Loss Model for CR buildings (ILM-CR)	68
5.2.3.2.	System Design	68
5.2.3.3.	Class Diagram for ILM-CR	82
5.2.3.4.	Data Flow Diagram for ILM-CR	90
5.2.3.5.	Glossary	92
Volume VI. Database Document	1
6.1.	Database for AHO use case	2
6.1.1.	Specification for the Project	2
6.1.2.	Data Modeling	2
6.1.3.	Description of the Objects and Tables	4
6.1.4.	Data Processing	13
6.1.4.1.	Original Data Processing	13
6.1.4.2.	New Data Processing	17
6.1.5.	Data Loading	18
6.1.5.1.	Original Data Loading	18
6.1.5.2.	New Data Loading	19
6.1.6.	Export and Import the Data	19
6.1.7.	Maintenance task for each hurricane season	21
6.1.8.	Data Checking	22
6.1.9.	Queries	23
6.1.9.1.	Change the Query Based on the New Schema	23
6.1.10.	Database Tuning	24
6.1.10.1.	Tuning SQL Statements	24
6.1.10.2.	The Goals of SQL Tuning	24
6.1.10.3.	Using the Timing Environments Parameter	25
6.1.10.4.	Using SQL Trace and TKPROF	26
Step 1: Set Initialization Parameters for Trace File Management	27
Step 2: Enable the SQL Trace Facility	28
Step 3: Format Trace Files with TKPROF	28
Step 4: Interpret TKPROF OutputTabular Statistics	28
6.2.	Database for 2007 Cat Fund Processing	33
6.2.1.	General Description	33
6.2.2.	Data Description	33
6.2.3.	Expert Instructions (Residential)	43
6.2.4.	Data Processing (Residential)	45
6.2.5.	Data Description (Commercial)	64
6.3.	Reimbursement Contract: Article VI – Exclusions	65
Frame	67
6.3.1.	Expert Instructions (Commercial)	75
6.3.2.	Data Processing (Commercial)	79
6.4.	Database for Wind Speed Correction Use Case	112
6.4.1.	General Description	112
6.4.2.	Database Schema	112
6.4.3.	Data Loading	116
6.4.4.	Data Description	117
Volume VII. FPHLM Quality Assurance	1
7.1.	Coding Guide Lines	2
7.1.1.	About the Coding Guidelines	2
7.1.2.	File Organization	2
7.1.2.1.	Source files	2
7.1.2.2.	Directory Layout	2
7.1.3.	Code Indentation	3
7.1.3.1.	Wrapping Lines	3
7.1.3.2.	White Spaces: Don't use spaces for indentation - use tabs!	4
7.1.4.	Comments	4
7.1.4.1.	Block Comments	4
7.1.4.2.	Single Line Comments	4
7.1.4.3.	In line File Documentation	5
7.1.4.4.	In line Function Documentation	5
7.1.5.	Variable Declarations	6
7.1.5.1.	Number of Declarations per Line	6
7.1.5.2.	Initialization	6
7.1.6.	Statements	6
7.1.6.1.	Simple Statements	6
7.1.6.2.	Return Statements	6
7.1.6.3.	If, if-else, if else-if else Statements	6
7.1.6.4.	For Statements	7
7.1.6.5.	While Statements	7
7.1.6.6.	Try-catch Statements	8
7.1.7.	White Space	8
7.1.7.1.	Blank Lines	8
7.1.7.2.	Inter-term spacing	8
7.1.8.	Naming Conventions	9
7.1.8.1.	Naming Guidelines	9
7.1.8.2.	Variable Names	9
7.1.8.3.	Method Names	9
7.1.8.4.	Model Names	10
7.1.9.	Reference	11
7.2.	Data Validation and Verification	12
7.2.1.	Introduction	12
7.2.1.1.	Data Verification	12
7.2.1.2.	Data Validation	12
7.2.2.	Procedures	12
7.2.3.	Data Security and Integrity	13
7.2.4.	References	13
7.3.	Model Maintenance and Revision	14
7.3.1.	Model Revision and Maintenance	14
7.3.2.	Model Revisions	16
7.4.	Procedure to Ensure Correspondance between Data and Implementation to Documentation	20
7.5.	FPHLM Testing Procedures	22
7.5.1.	Software Testing Procedures	22
7.6.	Code Count Tables	25
Volume VIII. Security	1
8.1.	Security Procedures	1
8.2.	FIU SCS Computer and Networking Security Procedures Manual	3
8.3.	FIU SCS Hurricane Preparation Procedures:	5
8.4.	Non-Disclosure Agreement	7
Volume IX. System Hardware and Software Configurations	1
9.1.	System Architecture	2
9.2.	Software List	3
9.3.	Hardware Configuration	4
9.4.	Safety and Backups	11
Volume X. Training Plan	1
10.1.	Introduction	2
10.2.	Technical Training Plan	2
10.3.	End User Training Plan	2
Volume XI. Human Resources	1
11.1.	Task Assignment and Backup Personnel	2
Volume XII. FPHLM Related Publications	1
Volume XIII. User Manual	1
Volume XIV. Test Report	1

[bookmark: _Toc195247785][bookmark: _Toc287792729]
8

[bookmark: _Toc346555694]Volume I. The Florida Public Hurricane Loss Model (FPHLM)

Revision History

	Last Updated
	Person
	Summary

	01/10/2007
	Min Chen
	Created the document

	06/01/2007
	Shermann Chan
	Deleted from Section 1.2.1 references to the AHO and SGT use cases and updated description of STG to reflect the use of random historical initial conditions.

	02/20/2009
	Fausto Fleites
	Added revision history

CHAPTER 1. [bookmark: _Toc346381797][bookmark: _Toc346382048][bookmark: _Toc346382300][bookmark: _Toc346382553][bookmark: _Toc346382810][bookmark: _Toc346383539][bookmark: _Toc346383888][bookmark: _Toc346384174][bookmark: _Toc346384462][bookmark: _Toc346384749][bookmark: _Toc346385036][bookmark: _Toc346385322][bookmark: _Toc346385609][bookmark: _Toc346399938][bookmark: _Toc346408396][bookmark: _Toc346555695]

[bookmark: _Toc346555696]General Description of FPHLM Model

The Florida Public Hurricane Loss Model (FPHLM) (release 5.0) is a probabilistic model designed to estimate damage and insured losses due to the occurrence of hurricanes in the Atlantic Basin. The FPHLM estimates the full probabilistic distribution of damage and loss for any significant storm event. The modeling methodology of it can be partitioned into four major components:

•	Storm Forecast Module
•	Wind Field Module
•	Damage Estimation Module
•	Loss Estimation Module

The high-level flowchart is shown in Figure 1.1

[bookmark: _Ref294691512]Figure 1.1: Model flowchart
[bookmark: _Toc346555697]Computer Model and Implementation

[bookmark: _Toc346555698]Use Case View of the System

Use case diagrams are UML diagrams used for modeling the dynamic aspects of a system and are central to modeling the behavior of a system, a subsystem, or a class. Figure 1.2 presents the use case diagram of our computer model for the FPHLM, and it shows a set of use cases and actors and their relationships.

A. Actors:

There are two actors in this system, the scientists and the statisticians, who can access and interact with the modules.

B. Use Cases:

Use Case III: Storm Track Generation
· Use Case III is used to generate the storm tracks for simulated storms based on random historical initial conditions (data obtained from HURDAT database) and stochastic algorithms.
Use Case IV: Wind Field Generation
· Use Case IV is used to generate wind fields for storms based on the data generated in Use Case III.
Use Case V: Wind Speed Correction
· Use Case V is used to refine open terrain wind speed produced by the hurricane wind model with respect to the actual terrain (based on land use – land cover).
Use Case VI: Damage and Vulnerabilities
· Use Case VI is used to generate the damage matrices for the different type of buildings modeled and the corresponding vulnerability matrices/curves.
Use Case VII: Insurance Loss Module
· Use Case VII is used to calculate the expected loss values.

C. Use Case Diagram:
[image: FPHLM_Overall_UseCaseDiagram]
[bookmark: _Ref294691526]Figure 1.2: Use case diagram of the system
[bookmark: _Toc346555699]Network Diagram of the System

Figure 1.3: Network diagram of the system
[bookmark: _Toc346555700]System Architecture Design

Figure 1.4 gives a high-level system architecture abstraction which follows the popular three-layer architecture.

[bookmark: _Ref294691539]Figure 1.4: The Three-layer System Architecture

A. User Interface:

User Interface is the first layer of the system and also the only layer visible to the user. Due to the popularity and convenience of the Internet, a web interface is preferred so that the users are able to access the system online.

B.	Application Logic:

The second layer is used to glue the user interface and the underlying database. OC4J is chosen to serve as the second layer.

D. Database:

The database layer adopts Oracle9i database due to its advanced features for extensibility, availability, high performance, and management.

[bookmark: _Toc346555701]Detailed System Architecture Design

Figure 1.5 is the general system organization. There are five major components: client, OC4J container, Java application, Oracle database, and math model.

Client Side

The users can gain access to the system through any commonly used commercial browser such as Internet Explorer, Netscape, etc. The user interface should be friendly and be able to offer the user-required functionalities as best as possible. JSP (Java Server Pages) technique is used to dynamically generate the content in the web page. The basic idea of JSP is to allow Java code to be mixed together with static HTML or XML templates. The Java logic handles the dynamic content generating while the markup language controls structuring and presentation of data.

OC4J

[bookmark: _Ref294691550]Figure 1.5: Detailed system architecture

OC4J is short for Oracle9iAS Containers for J2EE. It is a complete J2EE 1.2 container that includes a JSP Translator, a Java servlet engine, and an Enterprise JavaBeans (EJB) container. OC4J also supports the Java Messaging Service and several other Java specifications.
Advanced techniques such as JavaBeans and JNI are employed in the second layer. JavaBean is a Java class that defines properties and communicates with other Beans via events. Properties can be defined within the JavaBean class definition, or they can be inherited from other classes. JNI stands for Java Native Interface; it is part of the Java Developer Kit. The actual mathematical and statistical computations are implemented in C/C++ language for the sake of speed; JNI then serves as a bridge between java side and native side of an application.

JDBC

JDBC is a Java program that provides a way for the user to invoke SQL statements to access the database. JDBC API is used to build the communication between the Java program and the database server. Multiple database drivers for connecting to different databases are supported by JDBC.
Actually, JDBC technology allows users to access virtually any tabular data source from the Java programming language and provides cross-DBMS connectivity to a wide range of SQL databases.

Through JDBC API, developers can take advantage of the Java platform’s “Write Once, Run Anywhere” capabilities for industrial strength, cross-platform applications that require access to enterprise data. With a JDBC technology-enabled driver, a developer can easily connect all corporate data even in a heterogeneous environment.

JNI

Java is one of the most popular languages with strong support for web application, however the math model is implemented using C++ for the sake of speed and the stronger functionalities supported in the IMSL library C++ version. To bridge the gap between the Java application and the math model, the JNI is employed.
JNI stands for Java Native Interface. JNI is a standard programming interface for writing Java native methods and embedding the Java virtual machine into native applications. The primary goal is binary compatibility of native method libraries across all Java virtual machine implementations on a given platform. Native programs writen in languages other than java such as C/C++ can be integrated into Java applications with the assurance that these programs are completely portable across all platforms. By programming through the JNI, the client programmer can use native methods to create, inspect, and update Java objects (including arrays and strings), to all Java methods, to perform runtime type checking.

Vol.I-8

[bookmark: _Toc346555702]Volume III. Storm Forecast Module (Module I) / Wind Field Module (Module II)

Revision History

	Date
	Person
	Summary

	02/01/2007
	Min Chen
	Created the document

	04/25/2007
	Min Chen
	Added description of the Rmax model in Use Case III and Use Case IV

	06/01/2007
	 Shermann Chans
	-Deleted Use Case I (AHO) and Use Case II (SGT)
-Updated Use Case III (STG) to reflect the use of random historical initial conditions
-Updated constant to convert from m/s to mi/h in Use Case V (WSC)
-Added a sections for roughness classification and correction of roughness values to Use Case V (WSC)
-Updated figures and wind probability values of Use Case VI (WSP)
-Added glossary of variables, formulas, and equations of Use Case IV (WFM)

	02/22/2008
	Fausto Fleites
	-Added sections of threat area definition and pressure decay
-Added glossary of variables, formulas, and equations in Use Case III (STG), Use Case V (WSC), Roughness Program, and Use Case VI (WSP)

	05/18/2008
	Fausto Fleites
	Changed the threat area section into a more comprehensive description of Use Case III that fully explains the modifications to the initial conditions and threat area in V3.0 of the model.

	02/20/2009
	Fausto Fleites
	Added revision history

	10/23/2010
	Fausto Fleites
	Updated documentation for WSC

	10/23/2010
	HsinYu Ha
	Updated documentation for Wind Field Model

	01/13/2013
	Diana Machado
	-Updated Rmax model section
-Updated value of the marine PBL height

[bookmark: _Toc346382056][bookmark: _Toc346382308][bookmark: _Toc346382561][bookmark: _Toc346382818][bookmark: _Toc346383547][bookmark: _Toc346383896][bookmark: _Toc346384182][bookmark: _Toc346384470][bookmark: _Toc346384757][bookmark: _Toc346385044][bookmark: _Toc346385330][bookmark: _Toc346385617]

CHAPTER 2. [bookmark: _Toc346399946][bookmark: _Toc346408404][bookmark: _Toc346555703]
CHAPTER 3. [bookmark: _Toc346399947][bookmark: _Toc346408405][bookmark: _Toc346555704]
[bookmark: _Toc346555705]Storm Track Model Use Case III

[bookmark: _Toc346555706]General Description of Storm Track Model

The Storm Track model is aimed at generating the storm tracks for simulated storms based on random historical initial conditions and motions (data obtained from HURDAT database).

The storm track model consists of two main components: the empirical probability distribution generator (GENPDF) and the storm track generator (STORMGEN). Descriptions of these components are given in the following sections.

[bookmark: _Toc346555707]Technical Description of the Storm Track Model

[bookmark: _Ref294696887][bookmark: _Toc346555708]Initial Conditions and Threat Area

The storm track model generates storm tracks and intensities based on historical storm conditions and motions. The initial seeds for the storms are derived from the HURDAT database. For historical landfalling storms in Florida and neighboring states, the initial positions, intensities and motions are taken from the track fix 36 hours prior to first landfall. For historical storms that do not make landfall but come within 62 sm (100 km) of the coast, the initial conditions are taken from the track fix 36 hours prior to the point which the storm first comes within 62 sm of the coast (threat zone) and has a central pressure below 1005 mb. Small, uniform random error terms are added to the initial position, storm motion change, and to the storm intensity change. The initial conditions derived from HURDAT are recycled as necessary to generate thousands of years of stochastic tracks. After the storm is initiated, the subsequent motion and intensity changes are sampled from empirically derived probability distribution functions over the model domain (Figure 3.1.1).
[image:]
[bookmark: _Ref294688567]Figure 3.1.1: Florida Public Hurricane Loss Model domain. Circles represent the threat zone. Blue color indicates water depth exceeding 656 ft (200 m).
[bookmark: _Ref294691270][bookmark: _Toc346555709]Storm Motion and Intensity Change

The time evolution of the stochastic storm tracks and intensity are governed by the following equations

Where (x,y) are the longitude and latitude of the storm, (c,θ) are the storm speed and heading (in conventional mathematical sense), p is central pressure, w is the rate of change in p, and Δt is the time step. The time step of the model is currently one hour. The storm speed, direction (δc,δθ) are sampled at every 24 hour interval from a probability distribution function (PDF). The intensity change after the initial 24 hours of track evolution is sampled every 6 hours to capture the more detailed evolution over the continental shelf (shallow water). From the 24 hour change in speed and heading angle, we determine the speed and heading angle at each 1 hour time step by assuming the storm undergoes a constant acceleration that gives the 24 hour sampled change in velocity. For changes in pressure, we first sample from a PDF of relative intensity changes, δr, for the 6 hour period and then determine the corresponding rate of pressure change, w. The relative intensity is a function of the climatological sea surface temperatures and the upper tropospheric 100 mb temperatures. The PDFs of the changes (δc,δθ,δr) depend on spatial location, as well as the current storm motion and intensity. These PDFs are of the form

Where a is either c, θ, or r and are implemented as discrete bins that are represented by multi-dimensional matrices (arrays), A(l,m,i,j). The indices (i,j) are the storm location bins. The model domain is (100W to 70W, 15N to 40N) and is divided into 0.5 degree boxes. The index m represents the bin interval that a falls into. That is, the range of all possible values of a are divided into discrete bins, the number of which depends on the variable, and the index m represents the particular bin a is in at the current time step. As with a, the range of all possible values of the change in a are also discretely binned. Given a set of indices (m,i,j), which represent the current storm location and state, the quantity A(l,m,i,j) represents the probability that the change in a, δa, will fall into the l’th bin. When A is randomly sampled, one of the bins represented by the l index, say l’, is chosen. The change of a is then assigned the midpoint value of the bin associated with l’. A uniform random error term equal to the width of bin l’ is added to δa, so that δa may assume any value within the bin l’.

 The PDFs described above were generated by parsing the HURDAT database and computing for each track the storm motion and relative intensity changes at every 24 and 6 hour intervals, respectively, and then binning them. Once the counts are tallied, they are then normalized to obtain the distribution function. For intensity reports for which pressure is not available, a wind pressure relation developed by Landsea et al. (2004) is used. In cases where there is no pressure report for a track fix in the historical data but there are two pressure reports within a 24 hour period that includes the track fix, the pressures are derived by linear interpolation. Otherwise the pressure is derived by using the wind-pressure relation. Extra-tropical systems, lows, waves and depressions are excluded. Intensity changes over land are also excluded from the PDFs. To insure a sufficient density of counts to represent the PDFs for each grid box, counts from nearest neighbor boxes, ranging up to 2 to 5 grid units away (both north-south and east-west direction), are aggregated. Thus the effective size of the boxes may range from 1.5 to 5.5 degrees, but are generally a fixed size for a particular variable. The sizes of the bins were determined by finding a compromise between large bin sizes, which ensure a robust number of counts in each bin to define the PDF, and small bin sizes which can better represent the detail of the distribution of storm motion characteristics. Detailed examinations of the distributions as well as sensitivity tests were done. Bin sizes need not be of equal width, and a nonlinear mapping function is used to provide unequal-sized bins. For example, most storm motion tends to be persistent, with small changes in direction and speed. Thus, to capture this detail, the bins are more fine-grained at lower speed and direction changes.

For intensity change PDFs, boxes which are centered over shallow water (defined to be less than 656 ft deep, see Figure 3.1.1 are not aggregated with boxes over deeper waters. Deeper waters may have significantly higher ocean heat content which can lead to more rapid intensification (see, for example, Shay et al. (2000), DeMaria et al. (2005), Wada and Usui (2007)). The depth which defines deep and shallow waters is not too critical, as the continental shelf drops rather sharply. The 200 m (656 ft) bathymetric contour line appears to distinguish well estimates of regions with high and low tropical cyclone heat potential (see http://www.aoml.noaa.gov/phod/cyclone/data/). When gridded long-term analyses of tropical cyclone heat potential, or similar characterization of oceanic heat content, become available, we intend to use that data in lieu of bathymetry.

[bookmark: _Ref294691350][bookmark: _Toc346555710]Rmax model

We developed an Rmax model using the revised landfall Rmax database which includes more than 100 measurements for storms up to 2010. We have opted to model the Rmax at landfall rather than the entire basin for a variety of reasons. One is that the distribution of landfall Rmax may be different than that over open water. An analysis of the landfall Rmax database and the 1988-2007 DeMaria Extended Best Track data shows that there appears to be a difference in the dependence of Rmax on central pressure (Pmin) between the two data sets (Demuth et al., 2006). The landfall data set provides a larger set of independent measurements, more than 100 storms compared to about 31 storms affecting the Florida threat area region in the Best Track Data. Since landfall Rmax is most relevant for loss cost estimation, and has a larger independent sample size, we have chosen to model the landfall data set. Future studies will examine how the Extended Best Track Data can be used to supplement the landfall data set.

We model the distribution of Rmax using a gamma distribution. Using the maximum likelihood estimation method, we found the estimated parameters for the gamma distribution and. With these estimated values, we show a plot of the observed and expected distribution in Figure 3.1.2. The Rmax values are binned in 5 sm intervals, with the x-axis showing the end value of the interval.
[image:]
[bookmark: _Ref294688629]Figure 3.1.2: Observed and expected distribution for Rmax. The x-axis is the radius in statute miles, and the y-axis is the frequency of occurrence.

An examination of the Rmax database shows that intense storms, essentially Category 5 storms, have rather small radii. Thermodynamic considerations (Willoughby, 1998) also suggest that smaller radii are more likely for these storms. Thus, we model Category 5 (DelP>90 mb, where DelP=1013-Pmin and Pmin is the central pressure of the storm) storms using a gamma distribution, but with a smaller value of the θ parameter, which yields a smaller mean Rmax as well as smaller variance. We have found that for Category 1-4 (DelP<80) storms there is essentially no discernable dependence of Rmax on central pressure. This is further verified by looking at the mean and variance of Rmax in each 10 mb interval. Thus we model Category 1-4 storms with a single set of parameters. For a gamma distribution, the mean is given by kθ, and variance is kθ2. For Category 5 storms, we adjust θ such that the mean is equal to the mean of the three Category 5 storms in the database: 1935 No Name, 1969 Camille and 1992 Andrew. An intermediate zone between DelP=80 mb and DelP=90 mb is established where the mean of the distribution is linearly interpolated between the Category 1-4 value and the Category 5 value. As the θ value is reduced, the variance is likewise reduced. Since there are insufficient observations to determine what the variance should be for Category 5 storms, we rely on the assumption that variance is appropriately described by the re-scaled θ, via kθ2.

A simple method is used to generate the gamma-distributed values. A uniformly distributed variable, a product of the random number generator that is intrinsic to the FORTRAN compiler, is mapped onto the range of Rmax values via the inverse cumulative gamma distribution function. For computational efficiency, a lookup table is used for the inverse cumulative gamma distribution function, with interpolation between table values. Figure 3.1.3 shows a test using 100,000 samples of Rmax for Category 1-4 storms, binned in 1 sm intervals, and compared with the expected values.

[bookmark: _Ref294688671]Figure 3.1.3: Comparison of 100,000 Rmax values sampled from the Gamma distribution for Cat 1-4 storms to the expected values.
For Category 5 and intermediate Category 4-5 storms, we utilize the property that the gamma cumulative distribution function is a function of (k,x/θ). Thus, by re-scaling θ, we can use the same function (lookup table), but just rescale x (Rmax). The rescaled Rmax will then still have a gamma distribution, but with different mean and variance.

The storms in the stochastic model will undergo central pressure changes during the storm life-cycle. When a storm is generated, an appropriate Rmax is sampled for the storm. In order to assure the appropriate mean values of Rmax as pressure changes, the Rmax is rescaled every time step as necessary. As long as the storm has DelP < 80 mb, there is in effect no rescaling. In the stochastic storm generator, we limit the range of Rmax from 4 sm to 60 sm.

[bookmark: _Ref294691232][bookmark: _Toc346555711]Pressure Decay

Storm landfall and decay over land are determined by comparing the storm location (x,y) with a 0.6 sm resolution land-sea mask. This land mask is obtained from the U.S. Geological Survey (USGS) land use cover data, and inland bodies of water have been reclassified as land to avoid spurious landfalls. Landfall occurs every time the storm moves from an ocean point to a land point as determined by this land mask. During landfall, the central pressure is modeled by a filling model described in Vickery (2005) and is no longer sampled from the intensity change PDFs. The Vickery (2005) model basically uses an exponentially decaying, in time, function of the central pressure difference with the decay coefficients varying by region on the basis of historical data. The pressure filling model also takes into account the speed and size of the storm. When the storm exits to sea, the land-filling model is turned off and sampling of the intensity change PDFs begins again. A storm is dissipated when its central pressure exceeds 1011 mb.

Input Data:

P0: Central sea level pressure at landfall in mb
Pp: Peripheral pressure of 1013 mb
DelP0 = Pp – P0
c: Storm translation speed in m/s
Rmax: Radius of maximum surface wind speed in km
P(t): Seal level central minimum pressure in MB at time = t hours after landfall

Model:

DelP (t) is the pressure difference between the peripheral and central sea level minimum pressure of the storm in mb, t hours after landfall (t=0).

DelP (t) = Delp0 exp(-At)

A = the regional filling constant

A = a0 + a1 (DelP0 c / Rmax) + Epsilon

a0 = 0.0225

a1 = 0.00167

SigmaE = 0.0158 = standard deviation to use with random error term, Epsilon
The sampled error is constrained to lie within +/- 3 SigmaE, or +/- 3*0.0158 = +/- 0.047. The random term should be sampled only once per landfall for a given track.

Epsilon = Random error term = Sample from a Normal distribution with zero mean and standard deviation of 0.0158.

If Epsilon > 0.047, set Epsilon = 0.047. If Epsilon < -0.047, set Epsilon = -0.047.
If A < 0.015, set A = 0.015.

Pressure at any time after ladfall but before Seafall:
P(t) = 1013 – DelP(t)

Sample Calculation:

Input:
P0 = 922 mb, c= 10 m/s, Rmax=19 km, P peripheral = 1013

Output:
Epsilon -.0078, A = .10337, DelP0 = 101
At t=0
0h 	922.00
1h	931.92
2h	940.86
3h	948.93
4h	956.21
5h	962.77
6h	968.68
7h	974.02
8h	978.83
9h	983.17
10h	987.08

[bookmark: _Toc346555712]The empirical probability distribution generator (GENPDF)

This component derives the probability distribution functions (PDFs) from the historical record (HURDAT) that are subsequently used by the STORMGEN track generator. The PDFs are conditional probabilities, as they depend on location, time of season, and other parameters. The PDFs are empirical in that they are obtained by discrete binning. The following PDFs are derived:

Initial storm speed	
Initial storm direction
Initial storm intensity (pressure)
Change in storm speed
Change in storm angle
Change in storm intensity (relative intensity)

The bin size and location of these PDFs are defined in a header file “genpdf.h” which is used by both GENPDF and STORMGEN. The bins may be linearly or nonlinearly spaced. A mapping function is available which allows nonlinear mapping so that higher resolution (of a particular parameter) may be obtained. The PDFs for changes in storm motion and intensity are for a 24 hour interval.

Using random initial conditions, storm genesis is defined to occur when a storm first enters or appears within the threat area and has a minimum wind speed of 64 kt. The threat area is described in Section 3.1.2.1. Using specified initial conditions, storm genesis for historical landfalling storms are taken from the track position 36 hours prior to landfall. For non-landfalling storms, the initial condition is taken from the position when the storm first enters the threat area as a hurricane.

The HURDAT database contains a variety of storm report types:

•	“E” – extra tropical
•	“L” – low
•	“D” – depression
•	“S” – subtropical
•	“W” – wave
•	tropical – pressure reports
•	tropical – wind reports

All non-tropical storm reports (“E”,”L”,”D”,”W”,”S”) are excluded in the intensity PDFs. Pressure reports are used whenever available. If a pressure report is not available, then an attempt is made to interpolate from reports that are within a 24 hour period including the target report. Otherwise, pressure is obtained using an empirical wind-pressure relation (see Appendix A). Intensity changes are only computed for similar report types – observed pressure or wind-derived pressures. Mixing observed and wind-derived pressures was found to create spurious pressure changes. Pressures over land were excluded.

Due to the sparsity of data in some regions or parameter space, the PDFs may be coarsened (bins widened) so that a sufficient number of observations are available to create a robust PDF. This is done in the RESIZE function in GENPDF.

Pressure changes are converted to relative intensity changes. The relative intensity calculation is described in Appendix B. PDFs for pressure and relative intensity are created, though only one is used in STORMGEN. By default, the relative intensity PDF is used by STORMGEN.

Input Data

GENPDF requires the following input files:

· The HURDAT database
· Land Mask file – the land mask is based on USGS land use data.
· Outflow temperature for the relative intensity calculation (see Appendix B)
· Sea surface temperatures for the relative intensity calculation (see Appendix B)

Output Data

· Initial storm location, motion, and intensity of all selected storms
· Initial storm location, motion, and intensity PDFs
· Storm motion and intensity change PDFs
· Diagnostic output file

[bookmark: _Toc346555713]The storm track generator (STORMGEN)

STORMGEN generates the stochastic tracks based on the PDFs derived by GENPDF. The initial conditions may either be sampled from the initial storm location, motion and intensity PDFs or taken from observed initial conditions. The default configuration is to use random initial conditions. Both these input data are created by GENPDF.

The model uses a 1-hour time step, which requires interpolation of the 24-hour report changes used in the storm motion change and intensity PDFs. Storm motion is assumed to undergo constant acceleration during the 24-hour interval.

The basic flow of the model is as follows:

1	 Read in initial storm location, date, motion, and intensity. Add uniform random error terms to initial location, and change in motion and intensity. 	
2	Sample storm parameters Rmax and Beta.
3	Update storm position using current motion, assuming constant acceleration.
4	If at 24-hour interval, sample new motion and intensity change. Pressure and relative intensity tendency, obtained from sampled relative intensity tendency, is interpolated to one-hour tendency.
5	Determine if landfall or currently over land. If yes, decay the storm using the decay model described in Vickery (2005). Otherwise, update pressure.
6	Check if maximum relative intensity is exceeded, cap if necessary. If the pressure is greater than 1011 mb, dissipate storm.
7	Calculate new Rmax, Beta.
8	If the storm is outside the model domain, terminate. Otherwise go to step 3.
9	After storm track is generated, it is trimmed based on the distance criteria described in the Use Case for Zip Code Criterion.

Input Data

· Initial storm location, motion and intensity
· Initial storm location, motion and intensity PDFs from GENPDF
· Storm motion and intensity change PDFs from GENPDF
· Zip code locations (used for distance criteria described in Use Case for Zip Code Criterion)
· Land Mask file
· Outflow temperature file (see Appendix B)
· Sea surface temperature file (see Appendix B)

Output Data

· Track positions in special format for use in wind model.
· Landfall data for diagnostic purposes
· Diagnostic output file

[bookmark: _Ref294691304][bookmark: _Toc346555714]Appendix A – Wind-Pressure Relation

An empirical wind-pressure relation is used to convert HURDAT wind reports to pressure. The relation is dependent on region.

The relation is
If longitude is > 81.5W and latitude > 20N,

Else if latitude < 25 N,

Else if latitude < 35N,

Else,

Where P is central pressure in mb and W is wind speed in kt.

This relationship is described in the report: “The Atlantic Hurricane Database Re-analysis Project - Documentation for 1850-1910 Alterations and Additions to the HURDAT Database” by Christopher W. Landsea et al. (contributed as a Chapter for the RPI book (24 January 2002))

[bookmark: _Ref294691312][bookmark: _Toc346555715]Appendix B – Relative Intensity Calculation

The relative intensity calculation is based on Darling (1991). The calculation is as follows:

Then solve for x in and then finally the relative intensity is given by

[bookmark: _Toc346555716]Data Sources

This calculation requires the mean sea level pressure (Pmsl) as input, which in our case is the storm central pressure, the outflow (to) and sea surface temperatures (ts). The outflow temperature is taken to be the monthly mean 100 millibar temperature derived by the Climate Diagnostics Center (CDC) using National Center for Environmental Prediction Center (NCEP) Reanalysis II data. This data is available online at http://www.cdc.noaa.gov/ncep_reanalysis. The sea surface temperature data is monthly mean Reynolds Optimal Interpolation Version 2 (Oiv2) data (Reynolds et al., 2002).

[bookmark: _Toc346555717]Computer Model Design & Implementation

[bookmark: _Toc346555718]Use Case View of Storm Track Model

A. Actors:

The use case of the Storm Track model has only one actor: Scientist..

B. Use Case:

The Storm Track model is aimed at generating the storm tracks for simulated storms based on random historical initial conditions (data obtained from HURDAT database) and stochastic algorithms.

C. Use Case Diagram:
[image:]
Figure 3.1.4: Use case diagram for Storm Track Model.
[bookmark: _Toc346555719]Storm Track Model Implementation

This model is implemented using FORTRAN language in a UNIX console-based environment. This section includes the overall flowchart of Storm Track Model’s Implementation.

[bookmark: _Toc346555720]Program Flowchart for Storm Track Model

Figure 3.1.5: Flowchart for Storm Track Model.

[bookmark: _Toc346555721]Class Diagram and Description

A.	Class Diagram

Figure 3.1.6: Class diagram for Storm Track Model

B.	Class Description

genPDF: generates PDFs for storm track model
StormGen: generates the stochastic tracks based on the PDFs derived by genPDF

[bookmark: _Toc346555722]Data Flow Diagram

Figure 3.1.7: Data flow diagram for Storm Track Model.

[bookmark: _Toc346555723]Storm Track Output

12
storm00004 8/24/ 1992 01:00

4 1992 0824 05 00 25.4 79.3 937 19 1.4772400 0
4 1992 0824 06 00 25.4 79.3 937 19 1.4772400 0
4 1992 0824 07 00 25.4 79.6 939 18 1.4727061 0
4 1992 0824 08 00 25.4 80.0 942 18 1.4681721 0
4 1992 0824 09 00 25.5 80.4 945 18 1.4636379 0
4 1992 0824 09 05 25.5 80.3 922 19 1.5048399 1
4 1992 0824 10 00 25.5 80.8 948 18 1.4591039 3
4 1992 0824 11 00 25.6 81.2 951 17 1.4545699 3
4 1992 0824 12 00 25.6 81.2 951 17 1.4545699 2
4 1992 0824 13 00 25.6 81.5 950 18 1.4541880 0
4 1992 0824 14 00 25.6 81.9 949 19 1.4538059 0
4 1992 0824 15 00 25.7 82.3 948 20 1.4534241 0

[bookmark: _Toc346555724]Glossary

A. The following table maps variables in the code to the equations of Section 3.1.2.2:

	Variable/Value in Code
	Description
	Variable in Mathematical Equation

	xlon
	Represents the longitude of the storm. This variable is incremented according to Δx.
	X

	xlat
	Represents the latitude of the storm. This variable is incremented according to Δy.
	Y

	sdir
	Represents the heading of the storm.
	Θ

	sspeed
	Represents the storm’s speed.
	C

	deltat
	Represents the time step.
	Δt

	press
	This variable represents the storm’s central pressure.
	P

B. The following table maps variables in the code to the terms described in Section 3.1.2.4 (Pressure Decay):

	Variable/Value in Code
	Description
	Mathematical Equation/Term

	Adecay
	Filling constant
	A

	deltap0
	Central pressure deficit at landfall
	DelP0

	N/A
	Central pressure deficit
	DelP

	Spress
	Central pressure
	P

	0.0225/0.0414/0.0364
	Decay constants –zero intercept
	a0

	0.00161/0.00181/0.0016
	Decay constants – slope
	a1

	Sspeed
	Translation speed
	c

	rmax
	Radius of maximum winds
	Rmax

	eps_decay
	Random error for decay constant
	Epsilon

	std_decay
	Standard deviation for error term
	SigmaE

	1013
	Ambient pressure
	Pp

C. The following table maps variables in the code to the terms described in Section 3.1.2.7 (Wind-Pressure Relation)

	Variable in Code
	Description
	Mathematical Formula/Term

	windpress
	Central pressure (mb)
	P

	speed
	Maximum 1 minute sustained wind (kt)
	W

	rlat
	Latitude
	latitude

	rlon
	Longitude
	longitude

D. The following table maps variables in the code to the terms described in Section 3.1.2.8 (Relative Intensity Calculation)

	Variable in Code
	Description
	Mathematical Formula/Term

	rv
	Gas constant of water vapor
	rv

	rh
	Relative humidity of ambient air
	rh

	e
	Efficiency of heat engine
	e

	es
	Saturation vapor presure
	es

	pda
	Surface value of partial pressure of ambient air
	Pda

	lv
	Latent heat of vaporization
	Lv

	a,b,x
	Intermediate holding variables
	a,b,x

	pmsl
	Mean sea level pressure
	Pmsl

	ri
	Relative intensity
	RI

	to
	Outflow temperature
	to

	ts
	Sea surface temperature
	ts

[bookmark: _Toc346555725]References

Darling, R. W. R., 1991: Estimating probabilities of hurricane wind speeds using a large
scale empirical model, J. Climate, 4, 1035-1046.

DeMaria, M., M. Mainelli, L.K. Shay, J.A. Knaff and J. Kaplan, 2005: Further
improvements to the statistical hurricane intensity prediction scheme, Wea. Forecasting,
20, 531-543.

Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang, 2002: An
Improved In Situ and Satellite SST Analysis for Climate. J. Climate, 15, 1609-1625.
Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on
Hurricane Opal. Mon. Wea. Rev., 125(5), 1366-1383.

Vickery, P. J., 2005: Simple empirical models for estimating the increase in the central
pressure of tropical cyclones after landfall along the coastline of the United States, J.
Appl. Meteor., 44, 1807-1826.

Wada, A. and N. Usui, 2007: Importance of tropical cyclone intensity and intensification
in the Western North Pacific, J. Phys. Ocean., 63, 427-447.

Willoughby, H.E., 1998: Tropical cyclone eye thermodynamics, Mon. Wea. Rev., 126,
3053-3067.

[bookmark: _Toc346555726]Wind Field Model Use Case IV

[bookmark: _Toc346555727]General Description of Wind Field Model

The Wind Field Model estimates the peak wind speed, associated time, and direction for all zip codes within a certain distance from the storm circulation center.

[bookmark: _Toc346555728]General Requirements of Wind Field Model

Name: 	Wind Field Model

Description: The user enters Category (based on pressure-based Saffir-Simpson scale), Year, Date, Time, Latitude, Longitude, Center pressure, Rmax, Holland B, and lsflg for each of hourly fixes of the storm. The system generates the following:

1. Landfall or bypassing location (i.e. longitude/latitude) of storm
2. Maximum OT wind speed/time/direction anywhere in the storm
3. Maximum Marine Exposure at landfall or bypassing position
4. Maximum wind speed/time/direction at each zip code affected by the storm

 The end user enters the input file in the following format:

<number of fixes>
<storm Number><m/d/ yyyy > <hh: mm>
<storm category><year><mmdd><hh><minute><latitude><longitude><center pressure><Rmax><Holand> <lsflg>

Example:
4
storm1 8/24/ 1992 05:00
4 1992 0824 07 00 25.43 79.62 932.14 19.31 1.40 0
4 1992 0824 08 00 25.46 79.95 927.27 19.31 1.40 0
4 1992 0824 09 05 25.50 80.30 922.00 19.31 1.40 1

Based on the input data from step 1, the model generates two types of output files: output files and snapshot files. Output files are text files that contain the storm landfall/bypassing information, whereas snapshot files contain information about the storm’s radius of maximum winds, center location, and u,v components for 1-hour snapshots of the storm. Given below are partial output files.

A. Output File

Land falling storms

Storm1 8/24/92 5:00 UTC
landfall: longitude: -80.3000 deg latitude: 25.5000 deg
ter day hour min zonal meridional total m/s dir(deg)
 MA 1 9 5 -52.1610 -16.7574 54.7866 72
 OT 1 9 5 -41.1068 -26.5020 48.9094 57

Bypassing Storms

For a storm that does NOT make landfall but bypasses the state:

Storm2 9/03/79 06:00 UTC
bypass: longitude: -80.5000 deg latitude: 28.8000 deg
ter day hour min zonal meridional total m/s dir(deg)
 MA 2 4 0 -23.6102 34.6558 41.9340 145
 OT 2 4 0 -26.7334 23.0222 35.2802 130

B. Snapshot file

For every storm, the model will generate one output file called snapshot which contains the u component and v component, which are the respective radial and tangential wind components relative to the moving storm. See the first u component of one storm record listed as below:

storm0000009 10/07/ 2 20:00
 27.000 28.410 -88.080
 -0.12 -0.67 -1.34 -1.98 -2.48 -2.55 -1.66 0.46 3.21 5.57
 7.11 8.01 8.52 8.79 8.91 8.94 8.90 8.81 8.69 8.55
 8.39 8.22 8.05 7.88 7.71 7.53 7.36 7.19 7.02 6.86
 6.70 6.55 6.40 6.26 6.12 5.98 5.85 5.73 5.61 5.50
 5.39 5.28 5.18 5.08 4.99 4.90 4.82 4.74 4.67 4.59
 4.53 4.46 4.40 4.34 4.28 4.23 4.18 4.13 4.08 4.03
 3.99 3.95 3.91 3.87 3.83 3.79 3.76 3.73 3.69 3.66
 3.63 3.61 3.58 3.55 3.53 3.50 3.48 3.45 3.43 3.41
 3.39 3.37 3.35 3.33 3.32 3.30 3.28 3.26 3.25 3.23
 3.22 3.20 3.19 3.18 3.16 3.15 3.14 3.13 3.12 3.11
 3.09 3.08 3.07 3.06 3.05 3.05 3.04 3.03 3.02 3.01
 3.00 3.00 2.99 2.98 2.97 2.97 2.96 2.95 2.95 2.94
 2.94 2.93 2.92 2.92 2.91 2.91 2.90 2.90 2.89 2.89
 2.88 2.88 2.88 2.87 2.87 2.86 2.86 2.86 2.85 2.85
 2.85 2.84 2.84 2.84 2.83 2.83 2.83 2.83 2.82 2.82
 2.82

Note: The pressure-based Saffir-Simpson scale is as follows:

cat =0 for press > 990.0
cat =5 for press <= 920.0
cat =4 for press <= 944.0 and p >920
cat =3 for press <= 964.0 and p > 944
cat =2 for press <= 979.0 and p >964
cat =1 for press >979 and p <990.0

[bookmark: _Toc346555729]Technical Description of Wind Field Model

 (
Figure
3.2
.
1
:
Input and output of Wind Field Model
) (
Input: storm track
Centre pressure, R max, Longitude, Latitude, lsflg, Holland B, date & time for each of hourly fixes of the storm
Wind field Model
Output:
Land fall or by passing location (longitude/latitude) of storm
Maximum OT wind speed/time/direction anywhere in the storm
Maximum Marine Exposure anywhere in the storm
Radial and tangential wind components in the storm
)

Once a simulated hurricane moves within a distance threshold of Florida communities, the wind field model is turned on. Gradient balance represents a circular flow caused by the balance of forces on the flow whereby the inward directed pressure gradient force is balanced by outward Coriolis and centripetal accelerations. The coordinate system translates the hurricane vortex moving at velocity c. The vortex translation is assumed to equal the geostrophic flow associated with the large-scale pressure gradient. In cylindrical coordinates that translate with the moving vortex, equations for a slab hurricane boundary layer under a prescribed pressure gradient are:

[image:]		 (1)

[image:]			 (2)

where u and v are the respective radial and tangential wind components relative to the moving storm; p is the sea-level pressure which varies with radius (r); f is the Coriolis parameter which varies with latitude; is the azimuthal coordinate; K is the eddy diffusion coefficient; and F(c,u) and F(c,v) are frictional drag terms. All terms are assumed to be representative of means through the boundary layer. The motion of the vortex is determined by the modeled storm track.

The hurricane wind field model is based on a fully two dimensional, time-independent, scaled version of the tangential and radial momentum equations (1 and 2) for the mean boundary layer wind components. The model makes use of a polar coordinate representation grid (Figure 3.2.2) centered on the moving cyclone. The nested circles are separated from their inscribed and circumscribed neighbors by a radial separation of 0.1 in units of Rmax (Radius of maximum winds); the azimuthal interval is 10 degrees.
[image: test_pic]
[bookmark: _Ref294691474]Figure 3.2.2: Polar coordinate system for solving equations of motion.
Implementation proceeds according to the following steps: First, based on the input parameters, namely the radius of maximum winds, the central pressure and the Holland B parameter, radial profiles of the radial and tangential winds are calculated based on a stationary cyclone over open water to provide an “envelope” with which to set the size of the cyclone vortex. The wind field produced by these profiles is radically symmetric.

Azimuthal variation is introduced through the use of two form factors. The form factors multiply the radial and tangential profiles described above and provide a “factorized” ansatz for both the radial and tangential storm–relative wind components. Each form factor contains three constant coefficients which are variationally determined in such a way that the ansatz constructed satisfies (as far as its numerical degrees of freedom permit) the scaled momentum equations for the storm-relative polar wind components. The azimuthal variable () has its usual mathematical meaning such that increases from left to right with the rectangular X axis aligned (=180, 0) and the Y axis aligned (=270, 90) with Y increasing in the direction of storm translation.
The translational motion of the storm is vectorially added to the storm-relative wind components in order to obtain the earth-relative wind field. The translational motion of the storm is incorporated in the surface friction terms in the momentum equations which depend on and are specific for the direction of storm translation which is aligned with the Y axis. The wind field grid is then rotated so that the computational y axis coincides with the actual direction of motion of the cyclone center. The wind field thus far constructed (Figure 3.2.3) usually shows the location of peak winds to be to the right or forward edge of the right-rear quadrant of the cyclone.

[image: five]
[bookmark: _Ref294691485]Figure 3.2.3: Horizontal distribution of mean boundary layer wind speed (m s-1) relative to the earth for a Hurricane moving northward (top of page) at 5 m s-1. Horizontal coordinates are scaled by the radius of maximum wind.

[bookmark: _Toc346555730]Wind Model Parameters

Following are the input parameters to the wind field model

Central Pressure

When a storm is over open ocean and/or approaching land, the central pressure is modeled based on historical information in the same region using geographic PDFs. Once a storm makes landfall, the subsequent pressures over land decay due to lack of an oceanic heat source (See Section 3.1.2.3).

R max: Radius of Maximum Wind

The radius of maximum wind is determined from a distribution of values as a function of po and latitude. A log normal distribution is assumed for Rmax with a mean value determined as a function of Delta p (in mb) and Latitude (in decimal degrees). In developing the models for Rmax, we used the data from Ho et al., 1987 for storms from 1900-1983; NOAA-HRD archives of real-time surface wind analyses from 1995-2005; an archive of the National Hurricane Center that was maintained by Dr. Mark DeMaria (now with NOAA~Rs NESDIS at Colorado State University) for the years 1988-1999; and an HRD archive of aircraft observations for the years 1984-1987. To create a model to describe Rmax we considered U. S. Atlantic and Gulf of Mexico basin hurricane landfalls with latitudes as high as 34 degrees north in order to help fill a dearth of information on storms affecting the Northeast Florida coastline. The relationship between Rmax, Delta p, and latitude shows much scatter but a stepwise screening linear regression model for the natural log of Rmax (r2 = 0.15) provides a useful estimation:

lnRmax= 1.9433951 + 0.0193654*delp - 0.000196*delp**2 + 0.0008291 * lat**2 + epsilon 									(3)

Where epsilon is a normal random variable with a mean of zero and a variance of 0.048. This equation is for the natural log of Rmax in Nautical miles.

Pressure Profile & Holland B

The symmetric pressure field p(r) is specified as follows:

	 [image:]							(4)

Where po is the central minimum sea level pressure, B is the Holland pressure profile shape parameter, R is the radius of maximum wind speed (in nautical miles), and p is the pressure deficit.

The Holland parameter computed uses the following formula;
 B = 1.74425 -0.007915 Lat + 0.0000084 DelP^2 -0.005024 Rmax + Epsilon 	

					
Where Lat is the latitude, DelP and e is a random term from a zero mean normal distribution with a standard deviation of 0.286.

Land See Flag: lsfg

It gives the position of the wind at the storm fix.
	0 – Over Ocean
	1 – Land Fall
	2 – Sea Fall
	3 – Over Land

[bookmark: _Toc346555731]Definitions and Equations of the wind model

R = Radius of maximum surface wind speed, specified

ct = storm translation speed, specified

cdir = storm translation direction compass heading , specified

[image:] = Central pressure deficit, specified
[image:] = sea level pressure

B = 1.74425 -0.007915 Lat + 0.0000084 DelP^2 -0.005024 R, Holland parameter

 [image:] = Azimuthal coordinate, measured counterclockwise from east

[image:] Normalized radial coordinate

 = Gradient wind:

[image:] =Coriolis parameter

[image:] Latitude of storm center

 = normalized gradient wind (symmetric) = where Vg max is the maximum gradient wind in the radial profile

 = Normalized Coriolis parameter

[image:] Normalized storm-relative tangential wind component

 Normalized storm – relative radial wind component
Alpha=Cd *(Sigma/h)
h= mean boundary layer height
On water h=450m
On land (ie lsflg=3) h=1000m

 Cd = Drag Coefficient
 Cd on water is defined by (large and Pond 1981):
 Cd=(0.49+0.065*(0.8*Vg)*0.001 for winds greater than hurricane force
 We cap Cd at 2*10^-3 based on Powell et al 2003.
Cd on land (ie lsflg=3) is specified according to a mean value of roughness equivalent to 0.2m
 Cd=0.01

SigmaIs the percentage of the planetary boundary layer height to apply:
On water: Sigma=0.3
On land (ie lsflg=3): Sigma=0.9

 = normalized translation speed

 [image:]									 (A1)

 									 (A2)	

Where a “dot” represents a derivative with respect to s, and depend only on V0 and

[image:] Normalized departure from gradient balance

Scaling of the governing equations prior to implementation.

Substituting the terms from the above definitions and changing the radial coordinate from r to s, the steady-state form of the governing equations (1) and (2) become:

	 (A3)

	 	 (A4)

	 (A5)

Where is the total normalized earth-relative wind.

In the event that vanishes, so that the cyclone is stationary, these equations reduce to the ordinary differential equations:

	 		 				 (A6)

	 						 (A7)

	 	

For the radial profiles and . Here, “.” indicates differentiation with respect to s.

Equations A3 and A4 supplemented by A5, constitute two, coupled, time independent partial differential equations for the storm relative radial velocity u and the storm relative departure from gradient balance . The storm relative tangential wind is then given by .

Unfortunately, the direct numerical solution of A3 and A4 is time-consuming even though the equations are time-independent because the non-linear coupling of the terms necessitates an iterative numerical approach.

However, equations A6 and A7, can readily be numerically integrated to furnish a completely symmetric windfield fully described by the radial profiles u(s) and .

The functions u(s) and so obtained can serve as radial profiles for the construction of basis functions for a more realistic attack on A3 and A4.

Namely, we put forth the ansatz:

		 						(A8)

		 						(A9)	

 Where the azimuthal dependence is introduced through the form factors:

		 				(A10)

		 				(A11)

Now the six coefficients a0, a1, a2 and b0, b1, b2 can be variationally determined by substituting A8 and A9 into the left hand sides of A3 and A4, supplemented by A5 to form the "residuals" RA3 and RA4. We then form the functional:

		 (A12)

Where the sum is taken over every spatial point for which the profiles and trigonometric functions are known (polar grid) and NGRID is the total number of such grid points.

J then depends solely on the unknown coefficients a0, a1, a2 and b0, b1, b2. These coefficients are chosen to minimize J and so furnish us with an approximate solution for (s,) and (s,), from which we form the storm relative radial and tangential wind components ur and vt, namely:

ur(s,)= (s,) and vt(s,)= vg(s)+ (s,)					(A13)

By adding the translational velocity c (in polar coordinates) to ur and vt, we obtain the earth-relative components of the windfield uer and ver:

	uer(s,)=ur(s,)+csin		 	(A14)
	ver(s,)=vt(s,)+ccos		 	(A15)

Where c is the normalized translation speed c= /Vgmax.

Finally, since A3, A4 and A5 refer to a cyclone moving along the y-axis, the entire generated windfield grid must be rotated so that the y-axis of the calculation coincides with the actual compass direction of motion of the translating cyclone.

[bookmark: _Toc346555732]Computer Model Design

[bookmark: _Toc346555733]Use Case View of Wind Field Model

A.	Actors:

Wind Field Model has only one actor: Scientist.

1.	Use Case:

Wind Field Model is used to estimate terrain wind speed.

C.	Use Case Diagram:

[image:]
Figure 3.2.4: Use case diagram for Wind Field Model.
[bookmark: _Toc346555734]Detailed Flowchart

Figure 3.2.5: Detailed flowchart for Wind Field Model.

[bookmark: _Toc346555735]Class Diagram

Figure 3.2.6: Class diagram for Wind Field Model.

CLASS DESCRIPTION

Wind Field Model aims at estimating the terrain wind speed with respect to the actual terrain. It calculates the maximum wind speed and direction for each of the zip code affected by the storm. The following methods perform the required functions of the Wind Field Model.
· TRACK.PRO: This method reads the trackfiles into arrays and performs a number of operations on them like calculating storm translation speed, evaluating smoothed track positions etc.
· THINNER.PRO: This method reduces the number of fixes depending upon the storm intensity.
· SUV.PRO: This method computes the radial and tangential wind profiles u and v as well as the gradient wind profile and the functions g and d and their second derivatives.
· VGHGEN.PRO: This method calculates the gradient wind profile and its second derivative.
· USG.PRO: This method computes the radial and tangential wind profiles for a stationary storm with surface friction for exactly one fix.
· OBC.M: This method computes the outer boundary values for u and sg to start the inward numerical integration of u and sg.
· DUS.PRO: This method calculates the radial derivatives from momentum equations.
· FIXSHOTS15.PRO: This method calculates the field snapshots and their second time derivatives at each retained fix time on a polar grid.
· ONEFIX.PRO: This method constructs zonal and meridional windfield components for exactly one fix.
· GENSTREX.M: This method places the profile functions and the auxiliary functions g and d.
· SHIFT.M: This method simply shifts the polar coordinate system so that the origin of the coordinate system lies on the center of the storm.
· PKWINDS.PRO: This method produces two output files: output and snapshot files. The output file lists maximum peak marine and open terrain winds anywhere in the current storm. The snapshot files list the current storm’s Rmax and center location as well as the radial and tangential wind components for 1-hour snapshots for the current storm.
· REACH.pro: This function determines the influence radius.
· LLTOXY.PRO: This method converts east longitude and north longitude into zonal distance and meridional distance.
· ZMAR2ZOT.PRO: This module converts marine wind speeds into open terrain windspeeds.
· GEMF.M: This module is used to set the time step and the entire executable.
· UDVS.PRO: This module computes the radial and azimuthal derivatives of u.
· SGDVS.PRO: This module computes the radial and azimuthal derivatives of sigma.
· RSDU.PRO: This module estimates the u residual to be minimized.
· RSDSG.PRO: This module estimates the sigma residual to be minimized.
· MNRDU.PRO: This function evaluates the residual for u and is used in AMOEBA to minimize this residual.
· MNRDSG.PRO: This function evaluates the residual for sigma and is used in AMOEBA to minimize this residual.
· GEMFPLEX.PRO: This module reads g_trackfile and separates it into individual track files for processing.
· GEMF.PRO: This module processes each single track.

[bookmark: _Toc346555736]Data Flow Diagram

Figure 3.2.7: Data flow diagram for Wind Field Model.

Implementation of Wind Field Model

This model is implemented using Interactive Data Language (IDL) language in a UNIX console-based environment. This section includes appropriate diagrams and the overall flowchart of the Wind Field Model’s implementation.

[bookmark: _Toc346555737]Program Flowchart of Wind Field Model

Wind field Model has been implemented using Interactive Data Language (IDL). To be precise, it calculates wind speed time series for each of the zip code affected by the storm. The time series includes the date, landfall time of the storm. It also includes the zonal wind speed (m/s), surface wind speed (m/s), and the wind direction in degrees at regular time intervals.

General structure of the main IDL modules is given below.

 (
Figure
3.2
.
8
:
General structure or flow of the main IDL modules
) (
GEMFPLEX
GE
R
EMARKS
:
The
steps in scenario-based ILM are similar to the general ILM except that the wind speed for a certain portfolio is given.
SumL

is expected loss of the property for a given wind speed
,
SumAEL
aggregates all expected losses
for one company
.
Save information (zip code, county, region, construction type, 4
types of coverages
, property value,
company
) for
SumL
S
, SumL
APP
, SumL
ALE
.
§
Variance of
Sum
AE
L

can
be calculated for a company, for a Zipcode or for a construction type.
MF
Time series output
TRACK
SUV
FIXSHOTS15
PKWINDS
)

GEMFPLEX is analogous to a main or the entrant procedure in C/C++. It reads g_trackfile and separates it into individual track files for processing.
GEMF processes each single track.
Each of the procedures TRACK, SUV, FIXSHOTS15 and PKWINDS call other procedures.
TRACK reads the necessary input parameters from the storm track and thins out the fixes based on the storm category and saves track related quantities for future use.
SUV generates radial profiles from stationary cyclone equations.
FIXSHOTS15 generate field snapshots with azimuthal variation for each fix.
PKWINDS is responsible for picking the maximum wind for each zip code. If the storm happens to encompass or run through the entire state of the FL then this step would end up consuming a lot of resources.

Note: All the equations referenced in the following are from Wind field Model Technical description. Please see the document for the detailed information.

[image: WFM_Flowchart]
Figure 3.2.9: Program flowchart of Wind Field Model.

i. TRACK.PRO
1. Reads in the trackfile to arrays
1.1. ctg = storm category, zhour = fix hour, zmin=fix min, nlat=latitude, elon=longitude, cpr=centre pressure, rmx=0.9*Rmax, hdb=Holland B, lsflg=land sea flag.
2. Mark the fix of lowest central pressure unless it coincides with landfall. (lsflg is set to 4)
3. Thins out the storm fixes based on the adjusted fix frequency. THINNER.PRO is used to accomplish this task.
4. Calculate the time in minutes for each fix from the start of the storm rack. (ktime)
5. Samples the data at regular (1 hrs) intervals prior to the smoothing using cubic spline interpolation.
6. Calculate fbarx=Rmax . f where f= 0.14544* sin(nlat)
7. Sub-samples the smoothed input data to recover the original resolution (unequal intervals based on the storm category).
8. For the landfall fix get the landfall location and time.
9. Calculates the storm translation speed in m/s (spdmsx) and bearing (bearx) based on the fix data.
10. Smoothes translation speed and bearing (clock wise angle from north) on hourly grid.
11. Evaluates smoothed translation speed (spdms) and bearing (bear) at fix times using Cubic spline interpolation.
12. Evaluates smoothed track positions (elonk,nlatk) and Rmax (rmwk) minute by minute.
13. Finally, saves track related quantities for use by other procedures as trackc.idl.
13.1. bear=Bearing at each fix, 			cpr=center pressure at each fix,
13.2. day=day of each fix, 				elon=longitude of each fix,
13.3. elonk=longitude of storm at each minute, 	fbr=f bar at each fix,
13.4. hdb=Holland B at each fix, 	ktime=array from 0 to last minute of storm track (step=1),
13.5. lsflg=land sea flag of each fix, 		minz=min of each fix,
13.6. nlat=latitude of each fix, 			nlatk=latitude of storm at each minute, pdf=delta p of each fix, 			rmwk=R max at each minute,
13.7. rmx=Rmax of each fix, 			spdms=translation speed of the storm at each fix

ii. THINNER.PRO

1. This module selects fix resolution according to pressure based Saffir-Simpson intensity rating. The most intense storms are simulated at the highest storm motion resolution, the track of weaker storms are sampled at more coarse resolution equivalent to HURDAT in order to improve the computation performance of the model.

1.1. In trackfile locate fixes corresponding to landfall (-1hr, +1hr) and sea fall (-1hr,+1hr) and location of minimum pressure.
1.2. Select intermediate fixes at the following resolutions;
(1) Category 0:Select fixes in 8 hour separations
(2) Category 1:Select fixes in 6 hour separations
(3) Category 2:Select fixes in 4 hour separations
(4) Category 3:Select fixes in 3 hour separations
(5) Category 4:Select fixes in 2 hour separations
(6) Category 5:Select fixes in 1 hour separations

iii. SUV.PRO
1. This module computes the radial and tangential wind profiles u and v, as well as the gradient wind profile and the functions g and d and their second derivatives.
1.1. Restores variables saved in track.idl
1.2. Calculates radial(ur) and tangential(vt) wind profiles for each storm fix. Wind profiles are calculated at 201 points starting from 0(the storm center) to 20 in steps of 0.1 (in units of RMW)
1.3. Calculates the gradient wind profile for each fix using VGHGEN.PRO
1.4. Calculate g and d using equation (A1) and (A2).
(1) Peak wind should be at s=1. (i.e. if iw is 10 answer of alpha is correct)
1.5. Momentum equations are used to furnish tangential and radial profiles. USG.PRO
1.6. Collects radial and tangential profiles into a structure.
1.7. Saves the variables for use by the other procedures as suv.idl.
(1) uvstr= holds the wind profiles calculated for each fix.

iv. VGHGEN.PRO
1. This module calculates the gradient wind profile and its second derivative.

v. USG.PRO
1. This module computes the radial and tangential wind profiles for a stationary storm with surface friction for exactly one fix. Wind profiles are calculated from two directions, inward and outward from center. Then the results are combined to get the complete profile.
1.1. Form the inward boundary value at s=20 using obc.m
1.2. Numerically integrate momentum equations for stationary storm profiles LSODE.
1.3. Match solutions across the shock and obtain uz and sgz.
1.4. For 0 s1; 	uz = uout
(a) sgz = sgout
1.5. For 1s20;	uz = uinw
(a) sgz = sginw
1.6. Sub-grid smoothing process simulates turbulent diffusion.
1.7. Sub sample to recover original resolution.

vi. OBC.M
1. This module computes the outer boundary values for u and sg to start the inward numerical integration of u and sg using LSODE. (Refer to IDL manual for LSODE). Procedure DUS is used to calculate the derivatives of u and from (A6, A7).

vii. DUS.PRO
1. This module calculates radial derivatives from momentum equations. (A6)(A7)
1.1. vz = v0+sg 	dz=d+sg/s	gz=g+sg/s
1.2. du =first derivative of u
1.3. dsg=first derivative of sigma

viii. FIXSHOTS15.PRO
1. This module calculates the field snapshots and their second time derivatives at each retained fix time on a polar grid extending outward from the storm center to 15 RMW in steps of 0.1RMW and 100 angle. (This would give a matrix of 151 x 36 points. But three extra lines are added for the convenience of future calculations making the matrix dimension 151 x 39)

Figure 3.2.10: Polar grid
2. Restore suv.idl
3. Restore nrmrayse10_15.idl, which contain some trigonometric values corresponding to each of the grid point.
4. For each retained fix, construct the polar grid of earth relative marine surface winds. (onefix.m)
5. onefix.m gives the polar grid of earth relative marine surface winds for exactly one fix.
6. ‘reform’ converts this 151x39 matrix in to a raw matrix of 1x 5889.
7. zsnapi is a complex matrix which contains the snap shots of the retained fixes. [#retained fixes X 5889]
8. usnap contains the earth relative zonal winds and vsnap contains the earth relative meridional winds.
9. Compute second time derivative of fields for time interpolation. Time interpolation is done in order to find the details of the storm every minute.

ix. ONEFIX.M
1. This module constructs zonal and meridional windfield components for exactly one fix.
1.1. Load single fix profiles and corresponding data.
1.2. Calculate purely radial (no azimuthal dependence) functions on a polar grid. (GENSTREX.M)
1.3. Then introduce azimuthal dependencies and calculate storm relative-wind field. Equation (A11) through (A13)
1.4. Calculate the form factors (a0, a1, a2, b0, b1, b2 of equation A11 & A12)
(1) cfu=coefficients of u (a0, a1, a2)	cfsg=Coefficients of Sigma (b0, b1, b2)
(2) initial estimate=1,0,0		initial estimate=1,0,0
1.5. Keep changing the estimate to minimize J (equation A13) using AMOEBA, MNRDU and MNRDSG. (AMOEBA is a built in function in IDL)
1.6. MNRDU= Calculate a’s keeping b’s fixed.
1.7. MNRDSG=Calculate b’s keeping a’s fixed.
1.8. Form the earth relative wind field assuming that the storm moves northwards.
1.9.
Calculate u, , uer and ver using equations (A14) through (A16)
1.10. Storm rotates counter clockwise. Once the northward storm translation speed is induced storm center tend to move towards west. Shift.m takes this into account and shifts the polar origin to the storm center.
1.11. Advance phase
1.12. Orient the wind field to track direction. - Initially we assumed that the storm is moving northwards. In this step some interpolation is required since the actual direction of the storm unlikely to lie exactly on a radial of the grid.
1.13. Convert the radial and tangential wind fields to zonal and meridional components.
(1) vystre=holds the meridional component of the wind at each grid point.
(2) uxstre=holds the zonal component of the wind at each grid point.
(3) zxystre=Complex array containing the zonal and meridional wind components at each grid point.

x. GENSTREX.M
1. This module places the profile functions and the auxiliary functions g and d (which we calculated earlier) on the polar grid yielding fields with no azimuthal dependence for exactly one fix. sstre=array containing radial distance to each of the grid point from the centre.

xi. SHIFT.M
1. This module simply shifts the polar coordinate system, so that the origin of the coordinate system lies on the center of the storm. (Center of the storm is the point where wind speed is zero.)

xii. PKWINDS.PRO
1. This module produces an output file, which lists the peak marine and open terrain wind components experienced at each zip code for the current storm. If the storm makes landfall, then the peak marine and open terrain winds are listed at the tie and the site of the landfall. If the storm only bypasses the state then the peak marine and open terrain winds are listed for the fix exhibiting the lowest central pressure.
1.1. Restore zipcodes.idl. This contains the longitude and latitude of all zip codes.
1.2. Restore fixshots.idl. (We generated this in previous step)
1.3. Initialization of other variables.
(i) elonk=east longitude of the track every minute
(ii) nlatk=north latitude of the track every minute
(iii) kmax=maximum time(life time) of the storm in Minutes. Since the storm is moving it will affect one zip code for a variable time. But we initialize zuvzip for the worst case.
(iv) nzip=Number of zip codes
(v) werzipx=holds the maximum wind per each zip
1.4. Calculate all time series. (time k is incremented in steps of ‘kinc’ from zero to kmax)
(i) elc=longitude of the storm center at each time step.
(ii) nlc=latitude of the storm center at each time step.
(iii) rmw=radius of maximum wind at each time step.
1.5. Determine which zip codes will be affected by the storm.
(i) At time k the storm can affect several zip codes in its vicinity and the affected area depends on Rmax. MAP_2POINTS is used calculate the distance from the center of the storm to each of the zip codes. (This is done at each time step). Then REACH is used to calculate the reach of the storm at that particular time step. Storm ‘reach’ is calculated in terms of RMW. If the calculated ‘reach’ is less than 12.5 that calculated value is taken as the reach. Other wise 12.5 is considered as the storm reach.
1.6. If at least one of the zip codes is affected by the storm; generate relevant portion of gridded field for current time k.
(i) unow=value of u at this time at each grid point.
(ii) vnow=value of v at this time at each grid point.
1.7. Evaluate marine windfield components at admissible zip code centroids. First use LLTOXY, latitude & longitude information of the storm center and zip code centroid to calculate the (x,y) distance between storm center and the zip code centroid. Then using interpolation calculates the marine wind speed at the zip code centroid.
1.8. Use ZMAR2ZOT to convert above calculated marine windspeeds into Open Terrain windspeeds.
1.9. After the construction of the time series record maximum total OT windspeed at each zip code.
1.10. Obtain marine and OT peak winds at landfall or lowest pressure for bypassing storms. At the same time record the time and location of landfall or lowest pressure fix.
1.11. Write the output file if at least one zip code is affected by the storm.

xiii. REACH.M
1. This function determines the influence radius.
2. Influence radius = 12.3246 – 0.162*rmw
3. If the calculated value is less than 4, then set it to 4

xiv. LLTOXY. PRO
1. This module converts east longitude and north latitude into zonal distance (xmerc) and meridional distance (ymerc) in meters from the cyclone center (elo,gglo)
1.1. ymerc= mercator y coordinates from latitudes
1.2. xmerc= mercator x coordinates from longitudes

xv. ZMAR2ZOT.PRO
1. This module converts marine wind speeds (m/s) into Open Terrain windspeeds (m/s).

xvi. GEMF.M
1. This module is used to set the time step and call the executable.
1.1. set the time step for storm series calculations and load gemplex.exe
(1) kinc=15 : time step is set to 15 minutes
(2) flcnt= 0: start the output file numbering from 1. (output1.dat, output2.dat…)

xvii. UDVS.PRO:
1. This module computes the radial and azimuthal derivatives of u.
2. cfu: coefficients of u (a0,a1,a2)
3. udotstre: partial derivative of u with respect to s
4. uprstre : partial derivative of u with respect to azimuth

xviii. SGDVS.PRO:
1. This module computes the radial and azimuthal derivatives of sigma.
2. Csfg: coefficients of sigma (b0,b1,b2)
3. Sgdotstre: partial derivative of sigma with respect to s
4. Sgpstre: partial derivative of sigma with respect to azimuth

xix. RSDU.PRO:
1. This module estimates the u residual to be minimized.
2. Ufnl: functional for u.

xx. RSDSG.PRO:
1. This module estimates the sigma residual to be minimized.
2. Sgfnl: sigma functional.

xxi. MNRDU.PRO:
1. This function evaluates the residual for u and is used in AMOEBA to minimize this residual.

xxii. MNRDSG.PRO:
1. This function evaluates the residual for sigma and is used in AMOEBA to minimize this residual.

xxiii. GEMFPLEX.PRO:
1. This module reads g_trackfile and separates it into individual track files for processing.
2. It outputs a file called ‘trackfile’.

xxiv. GEMF.PRO:
1. This module processes each single track. It reads the input file called trackfile.

[bookmark: _Toc346555738]Glossary

	Variables
	Descriptions
	Mathematical equations

	AMOEBA
	 The AMOEBA function performs multidimensional minimization of a function Func(x), where x is an n-dimensional vector, using the downhill simplex method of Nelder and Mead, 1965, Computer Journal, Vol 7, pp 308-313. This function is used to estimate the coefficients of the form factors and also to minimize the two expressions RA3 and RA4 in A12
	

	LSODE
	 The LSODE function uses adaptive numerical methods to advance a solution to a system of ordinary differential equations one time-step H, given values for the variables Y and X. This function is used to solve the system A6 and A7.
	[image:]

	ffu
	 is the form factor (equation A10) also expressed as '1.+cfu(0)*csstre+cfu(1)*snstre' , where the coefficient cfu(0) represent the ratio a1/a0 , cfu(1) represent the ration a2/a0. The cosine and sine are csstre and snstre respectively.These coefficient will be estimated by the function AMOEBA to mimize RA3 (equation A12) (module udvs.pro)
	

	ffupr
	 derivative of the form factor ffu (module udvs.pro)
	N/A (this is a variable in the IDL code but is not explicit in the equation)

	ffsg
	 is the form factor (equation A11) also expressed as '1.+cfsg(0)*csstre+cfsg(1)*snstre', where the coefficient cfsg(0) represent the ratio b1/b0 , cfsg(1) represent the ratio b2/b0. The cosine and sine are csstre and snstre respectively. These coefficient will be estimated by the function AMOEBA to mimize RA4 (equation A12) (module sgdvs.pro)
	

	ffsgpr
	 derivative of the form factor ffsg. (module sgdvs.pro)
	N/A

	u0stre
	 is the radial velocity in polar coordinate which is solution of the coupled system A6 and A7. (module suv.pro,usg.pro,genstrex.m)
	[image:]
	

	vgstre
	 Is the gradient wind in polar coordinate (genstrex.m, vghgen.pro)
	N/A

	sg0stre
	 Is the tangential velocity in polar coordinate which is solution of the coupled system A6 and A7. (module suv.pro,usg.pro,genstrex.m)
	[image:]

	u0dotstre
	 derivative of u0stre in polar coordinate
	N/A

	sg0dotstre
	 derivative of sg0stre in polar coordinate
	N/A

	ustre
	 Is the product of the form factor ffu and u0stre (equation A8) (module udvs.pro)
	

	udotstre
	 product of the form factor ffu and u0dotstre. (module udvs.pro)
	N/A

	uprstre
	 partial derivative of ustre with respect to azimuth namely the product of ffupr and u0stre (module udvs.pro)
	N/A

	sgstre
	 Is the product of the form factor ffsg and sg0stre (equation A9) (module udvs.pro)
	

	sgdotstre
	 Is defined as the product of the form factor ffsg and sg0dotstre. (module sgdvs.pro)
	N/A

	sgprstre
	 Is defined as the partial derivative of sgstre with respect to azimuth namely the product ffsgpr and sg0stre. (module sgdvs.pro)
	N/A

	uudot
	 represents the product of ustre and udotstre, this represents the first term in equation A3 (module rsdu.pro)
	

	sggstar
	 is the the third term in equation A3 (module rsdu.pro)
	

	isvupr
	 is the second term in equation A3 (module rsdu.pro)
	

	uwterm
	 the product of the friction alfa with uwterm represent the last term of equation A3 (module rsdu.pro)
	

	resu
	 is the sum of uudot,sggstar,isvupr and alf*uwterm, this term is called RA3 in equation A12 will be minimized by AMOEBA (see module onefix.m,rsdu.pro)
	

	usgdot
	 is the product of ustre and sgdotstre and represents the first term in equation A4 (module rsdsg.pro)
	

	uddstar
	 is the third term in equation A4 (module rsdsg.pro)
	

	isvsgpr
	 is the second term in equation A4 (module rsdsg.pro)
	

	vwterm
	 the product of the friction alfa and vwterm represent the last term of equation A4 (module rsdsg.pro)
	

	ressg
	 is the sum of usgdot,uddstar,isvsgpr and alf*vwterm, this term called RA4 in equation A12 will be minimized by AMEOBA (see module onefix.m,rsdsg.pro)
	

	zsnapi
	 complex matrix which contains the snapshots.
	N/A

	usnap
	 contains the earth relative zonal winds.
	N/A

	vsnap
	 contains the earth relative meridional winds.
	N/A

	vystre
	 holds the meridional component of the wind at each grid point.
	N/A

	uxstre
	 holds the zonal component of the wind at each grid point.
	N/A

	zxystre
	 complex array containing the zonal and meridional wind components at each grid point.
	N/A

	uvstr
	 structure which holds the wind profiles calculated for each fix. (This holds the solution to equation A6 and A7)
	[image:]

	ggstre
	 gg in polar coordinate (genstrex.m)
	N/A

	ddstre
	 dd in polar coordinate (genstrex.m)
	N/A

	vg
	 gradient wind
	N/A

	du
	 first derivative of u.
	N/A

	dsg
	 first derivative of sigma.
	N/A

	uj
	 outer boundary for u (module obc.m)
	N/A

	sgj
	 outer boundary for sigma (module obc.m)
	N/A

	ctg
	 storm category
	N/A

	zhour
	 fix hour
	N/A

	zmin
	 fix min
	N/A

	nlat
	 latitude
	N/A

	elon
	 longitude
	N/A

	cpr
	 centre pressure
	N/A

	rmx
	 Rmax
	N/A

	hdb
	 Holland B
	N/A

	lsflg
	 land sea flag
	N/A

	bear
	 bearing at each fix
	N/A

	nlatk
	 latitude of storm at rmwk=R
	N/A

	day
	 day of each fix
	N/A

	minz
	 min of each fix
	N/A

	elonk
	 longitude of storm at each fix
	N/A

	hdb
	 Holland B at each fix
	N/A

	lsflg
	 land sea flag for each fix
	N/A

	nlat
	 latitude for each fix
	N/A

	pdf
	 delta p of each fix
	N/A

	rmx
	 Rmax of each fix
	N/A

	cpr
	 Center of pressure at each fix
	N/A

	elon
	 longitude at each fix
	N/A

	fbr
	 f bar at each fix
	N/A

	ktime
	 array from 0 to last minute
	N/A

	spdms
	 translation speed of the storm at each fix
	N/A

	infile
	 trackfile
	N/A

	kinc
	 time step
	N/A

	flcnt
	 File counter.
	N/A

	elo
	 longitude of the storm center
	N/A

	gglo
	 latitude of the storm center
	N/A

	glon
	 longitude
	N/A

	glat
	 latitude
	N/A

	xmerc
	 mercator y coordiantes from latitudes
	N/A

	ymerc
	 mercator x coordinates from longitudes
	N/A

	g_trackfile
	 input trackfile
	N/A

	zipcodes.idl
	 contains the lat,long for each zipcode. This file is used by pkwinds.pro.
	N/A

	suv.idl
	 contains the solutions to equations A6 and A7.
	[image:]

	fixshots.idl
	 contains the field snapshots. This is the outfile of fixshots15.pro it contains the solution of equation A3 and A4.
	N/A

	quince
	 influence radius. This value is computed in pkwinds.pro
	N/A

	s
	 normalized r
	N/A

	vg
	 gradient wind
	N/A

	d2vg
	 derivative of the gradient wind.
	N/A

	apha
	 friction coefficient, is the product of the drag coefficient and the ratio sigma/h where;a) h is 450 m on water and 1000 m on land. b) sigma is 0.3 on water and 0.9 on land c) the drag coefficient is 0.01 on land and the following expression on water; 0.49+0.065*(0.8*Vgradient)*0.001 (capped by 0.002 for winds greater than hurricane force). This is in equation A3 and A4.
	N/A

	iw
	 peak wind radial position
	N/A

	zuv
	 marine wind
	N/A

	zot
	 open terrain wind
	N/A

[bookmark: _Toc346555739]References

1. Vickery, P. J., and L. A. Twisdale, 1995: Wind field and filling models for hurricane wind speed predictions, Journal of Structural Engineering, 121, 1700-1709.

2. Ho, F. P., J. C. Su, K. L. Hanevich, R. J. Smith, and F. P. Richards, 1987: Hurricane climatology for the Atlantic and Gulf coasts of the United States. NOAA Tech Memo NWS 38, NWS Silver Spring, MD.

3. Kaplan, J. and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. App. Meteor., 34,

4. Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3-40.

5. Shapiro, L. 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 1984-1998.

6. Thompson, E. F., and V. J. Cardone, 1996: Practical modeling of hurricane surface wind fields, Journal of Waterways, Port, Coastal, and Ocean Engineering Division, ASCE, 122, 195-205.

7. Vickery, P. J., P. F. Skerjl, A. C. Steckley, and L. A. Twisdale, 2000a: A hurricane wind field model for use in simulations. Journal of Structural Engineering, 126, 1203-1222.

8. Vickery, P. J., P. F. Skerjl, , and L. A. Twisdale, 2000b: Simulation of hurricane risk in the United States using an empirical storm track modeling technique, Journal of Structural Engineering., 126, 1222-1237.

9. Kurihara, Y. M., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791-2801.

10. Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes, Mon. Wea. Rev., 108, 1212-1218.

11. Dunion, J. P. , C. W. Landsea, and S. H. Houston, 2003: A re-analysis of the surface winds for Hurricane Donna of 1960. Mon. Wea. Rev., 131, 1992-2011.

12. Willoughby, H. E. and E. Rahn, 2002: A new parametric model of hurricane wind profiles. 25th AMS Conference on Hurricanes and Tropical Meteorology, San Diego, 29 April - 3 May 2002.

13. Powell, M. D., P. J. Vickery, and T. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279-283.

14. Large, W. G. and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanography, 11, 324-336.

15. Moss, M. S. and S. L. Rosenthal, 1975: On the estimation of planetary boundary layer variables in mature hurricanes. Mon. Wea. Rev., 106, 841-849.

16. Powell, M.D., 1980: Evaluations of diagnostic marine boundary layer models applied to hurricanes. Mon.Wea. Rev., 108, 757-766.

17. ASTM 1996: Standard practice for characterizing surface wind using a wind vane and rotating anemometer. D 5741-96, Annual Book of ASTM Standards, Vol. 11.03.

18. Anctil, F. and M. Donelan, 1996: Air-water momentum flux observations over shoaling waves. J. Phys. Oceanogr., 26, 1344-1353.

19. Reinhold, T. and K. Gurley, 2003: Florida Coastal Monitoring Program. http://www.ce.ufl.edu/~fcmp.

[bookmark: _Toc346555740]Wind Speed Correction (WSC) Use Case V

[bookmark: _Toc346555741]General Description of WSC

WSC, short for Wind Speed Correction, is the fifth use case of the Florida Hurricane Loss Model. It aims at refining open terrain wind speed produced by the hurricane wind model with respect to the actual terrain (based on land use – land cover).

[bookmark: _Toc346555742]WSC General Requirements & Technical Description

Name: 	 Wind Speed Correction

Description: The inputs are storm information (radius of maximum winds and location of storm center), u and v components from 1-hour snapshots, roughness length for open terrain, and policy data information (policy ids and their latitude/longitude coordinates). The system can generate:

(1)	Winds from actual terrain (3-second gust winds and 1-minute peak winds)
(2)	Winds from open terrain (3-second gust winds and 1-minute peak winds)

The output winds can be generated for residential policies (i.e., 10m winds) or for commercial residential policies (between 1 and 15 levels, starting at 10m with 10m increments)

1.	Following are the input data for the Wind Seed Correction use case:

Wind Field Model:
Latitude: latitude of storm center
Longitude: longitude of storm center
u: snapshots’ u components
v: snapshots’ v components

Roughness Data:
Roughness grid and distance files

Policy Data:
Policy id: id’s of the policies for which winds are required
Latitude: latitude of the policies for which winds are required
Longitude: longitude of the policies for which winds are required

2.	Wind Interpolation Module: the system interpolates the wind model solutions from the polar grid at 1-hour snapshots to a fine-scale latitude-longitude grid and at fine temporal resolution, typically 1 or 10 minutes. The system reads in the snapshot file from the wind field model, which contains the storm radius of maximum winds (Rmax), storm center (TClat, TClon), and the wind components (u,v) on the polar grid dimensioned (Nrad, Nang) for each 1-hour snapshot of the storm. The radial resolution of the polar grid is 0.1*Rmax, and the azimuthal resolution is 10 degrees. The system interpolates the wind onto a file (subdomain) of the loss model grid. The tile resolution for the wind grid is 10 times that of the roughness grid, or approximately 1 km.

The system reads in the Rmax, TClat, and TClon from the snapshot file as well as the u and v for every snapshot.

The system converts the u,v components to a magnitude (squared) and direction (uvm, uvd):

Note that the wind direction is “reversed”, so that the direction represents the upstream fetch, for use in the roughness model.

The system interpolates the storm parameters and wind components in time using linear interpolation. The interpolation is defined as

where

and it is the target time index after interpolation, n0 is the prior wind model time step, n1 is the subsequent wind model time step, and Nstep is the number of output interpolation time steps per wind model time step. The model parameters, A, that are to be interpolated are Rmaxs, TClons, TClats, uvm, and uvd.

The system performs spatial interpolation: to define distances on a latitude-longitude grid, an accurate and efficient Pythagorean method is used with distance scale factors (km per degree) computed as per FCC 47 CFR 73.208:

 	

 	

Where rky, rkx are the scale factors in the north-south and east-west direction, respectively, and is the latitude of the center of the storm. The maximum extent of the storm is dis=Rmax*(Nrad-1)*0.1. Using the scale factors above with the maximum extent of the storm, dis, and the storm location (TClat, TClon) the system limits the spatial interpolation domain to the region affected by the storm only. The tile grid domain is defined with southernmost latitude slat, westernmost longitude wlon, and has resolution Δx, Δy in the east-west and north-south direction respectively. The indices of the subdomain that confine the region affected by the storms are thus

 	

Where degkmx, degkmy are the inverse of the scale factors (rkx, rky) above, respectively.

The system performs the spatial interpolation using a bilinear interpolation in the polar grid domain for the variables uvm and uvd. The polar grid domain is defined with origin at the center of the tropical cyclone. The polar coordinates of each grid point in the tile (lat-lon) domain is computed, and the corresponding indices of the surrounding four polar grid points of the wind model grid are determined in order to performed the interpolation. The interpolation is defined by

Where (i,j) are the lat-lon indices of the tile domain, and (irad, iang) are indices of the polar grid domain where the subscripts (0,1) represent the surrounding wind model points to be used for interpolation.

The weights are defined according to the distance, in polar coordinate units, of the target point (i,j) and the surrounding coordinates of the wind model grid defined by (irad0, iang0), (irad1, iang0), (irad0, iang1), and (irad1, iang1). To obtain the polar coordinates of the target point (i,j) the system computes the distances in the east-west and north-south direction (“dx”,“dy”) of the target point to the storm center:

Where Rlon, Rlat and the longitude and latitude of the point (i,j). We then compute the direction and angle relative to the storm center:

 	

The coordinates (dis,dir) are the polar coordinates of the point (i,j). The weights are then computed as follows:

Where θ(iang0) is the angle of the wind polar grid associated with azimuthal index iang0, and Δθ is the azimuthal resolution of the wind model, which is currently 10 degrees.

The interpolated values are used to compute a “swath”, which represents the maximum wind that occurs at each gridpoint (i,j). To account for frictional effects on the lower level convergence of the storm, the inflow angle of the storm is increased by 15 degrees.

3.	Output of the Interpolation Module: there are two types of output files, which are named swath.xxxyyy.dat and swath.xxxyyy.info, where xxxyyy denotes the tile number. The interpolated wind swath (“spdmax”, “dirmax”) are written in binary stream (4-byte real) format to the .dat files. The variables “spdmax” and “dirmax” are of dimension (tsizex=121, tsizey=121), and are ordered by longitude first, then by latitude. The variables “spmax” and “dirmax” are written in that order for each storm. In other words, there are two records written for each storm, each of which has length 4*tsizex*tsizey bytes (the ”4” indicates the conversion of 4 bytes per real floating point word). The .info files are simple text files with 3 columns: an 80 character header that is copied from the input wind snapshot file, the maximum wind speed in the tile for the storm, and the storm number

4.	The Wind Speed Correction (WSC) Module: the system converts the marine winds that have been interpolated by the Wind Field Module to desired gust periods and exposure conditions. The WSC has five key components: interpolation (nearest neighbor) of marine winds to the fine resolution roughness grid (approximately 90 meters), calculation of marine drag coefficient, conversion of wind from marine exposure to target exposure (usually actual or open terrain), calculation of gust factor, and incorporating the effect of sea-land transition in coastal regions. Details are provided below:

Interpolation. The model interpolates the winds from the wind interpolation code using a nearest neighbor method. The input wind field is on a coarser latitude-longitude grid that has 10 times coarser resolution than the roughness grid. The parameter of the roughness grid is defined in a parameter file. Calculations are split amongst 1 degree lat-lon tiles consistent with the wind interpolation code. The wind on the target grid is simply set to the value of the input wind that is closest to the target grid location.

Marine drag coefficient and terrain conversion. The marine drag coefficient is based on Powell et al (2003). The terrain conversion methodology is based on Vickery et al (2009). Details of this calculation are given in the in subsequent sections. The target exposure can include actual terrain (as computed from the roughness model), open terrain, uniform nominal residential roughness, and a few other hypothetical specifications.

Gust factor calculation. The input winds are assumed to be 10 minute averages. Gust factors for 1 minute or 3 seconds are computed. Details of the method are described in subsequent section.

Coastal Transition. To model the effect of a growing boundary layer for sea to land transition, a coastal transition function has been developed which indicates the degree to which the winds have transition from marine exposure to actual terrain exposure. The description of this function is given in a later section.

5.	Input of Wind Speed Correction Module: The module requires the 10 minute marine swaths computed by the Wind Interpolation Code. These files are named swath.xxxyyy.dat and swath.xxxyyy.info and should be in a directory called swaths. Note that here xxxyyy denotes a tile number, which is 6 digit number composed of the tile indices (xxx and yyy), zero-filled. The .info files contain metadata corresponding to the .dat files. If conversion to actual terrain roughness is desired, then the model needs to read in the roughness grid files and the distance files. The roughness data are split into tiles, each tile in a separate file in a directory called rough_tiles, and are dimensioned (tsizex, tsizey,8), where the last dimension represents the number of upstream wind sectors. The files are designated as effr.xxxyyy.dat. The distance files are of the same dimensions and have the same name, but are kept in a separate directory, distance_tiles. The remaining input file is the policy file, policy.dat, which contains the policy id, longitude and latitude.

6.	Output of the Wind Speed Correction Module: output files are simple comma-separated text files that include policy id (first column), and wind speed (second column) for at least the 10 m height level and up to 15 levels in 10 m increments (subsequent columns) if requested. The output files are separated by storm and by tile. The file names are wsc.xxxyyy.nnnnnn.dat, where xxxyyy is the tile number and nnnnnn is the storm number (zero filled). The files are placed in subdirectories, grouped by tile: wscoutxxxyyy.

[bookmark: _Toc346555743]Marine Drag Coefficient and Terrain Conversion

The marine drag coefficient is based on Powell et al (2003). The terrain conversion methodology is based on Vickery et al (2009). Details of this calculation are given below. The target exposure can include actual terrain (as computed from the roughness model), open terrain, uniform nominal residential roughness, and a few other hypothetical specifications.

1.	The input are mean wind at 10 meters (m/s), i.e., WS, from Wind Field Model

2.	Compute the marine drag coefficient CD_Shallow_Deep

If(WS<=33) then
Else if (WS>33 and WS<=41) then CD_Shallow_Deep=0.00208

Else if(WS>41 and WS<=61) then
Else CD_Shallow_Deep=0.0007

3.	Compute marine roughness (ZoPowell(m)) from CD_Shallow_Deep

4.	Compute marine friction velocity (U*Marine_Powell)

5.	Compute wind at top of boundary layer (Uh_marine_h=450m) based on Vickery et at., 2009 eqn. 5

Vickery et al. claim that the constants in the above formula are alpha=0.4, and n=2 (p. 387 bottom) and the height of the PBL is 1.12H* (page 388 top left paragraph). Therefore, the second term in the brackets of the formula becomes:

-.4(1.12H*/H*)2 which is -0.5

Therefore,

Uh_marine_h=450m=(U*Marine_Powell/.4)[ln(z/zo)-0.5]

6.	Assume Wind at top of PBL (0.5 -3 km deep over land) is same over land and water (450 m deep over water). The boundary layer height (h) over land varies with roughness, from 450 m on the coast to 1000 m for Zo= 0.3 m (Based on Hurricane Katrina VAD profiles at Slidell LA by Peter Dodge of NOAA-HRD), and 1500 m for Zo= .5 m, and 3000 m for Zo = 1m (the latter are estimated based on judgement).

Uh_land=Uh_marine_h=1000m

h_land(m)=364.8434+2535.8614*Zo

if h_land < 450m then h_land=450m

7.	For open terrain wind for Form M2a and Form S6:

Compute open terrain friction velocity (U*open) assuming 1km deep boundary layer
U*open=(Uh_land_h=1km*0.4)/[ln(1000/0.03)-.5]
Compute 10m open terrain mean wind (WSopen(m/s))
WSopen=(U*open/0.4)*Log(10/0.03)
Apply max 1 min gust factor to compute max 1 min sustained wind for open terrain as defined earlier assuming that the mean wind represents a 10 min (600s) averaging time.

[bookmark: _Toc346555744]Gust Factor Calculation

The input winds are assumed to be 10 minute averages. Gust factors for 1 minute or 3 seconds are computed. Details of the method are described as follows:

Given
Vo: surface wind speed for open terrain produced by the wind model (m/s)
z: height
Zoa(z): roughness at height z
Zoo: roughness for open terrain (0.03m)

1.	Compute open terrain friction velocity Uo (m/s)

Uo = Vo * 0.4/[Ln(z/0.03)]

2.	Compute actual terrain friction velocity Ua (Unit: m/s, using equation 3 of Powell et
al., 1996)

Ua = Uo / ([Zoo / Zoa(z)] ^ 0.0706)

3.	Compute actual terrain wind speed Va at z

Va = (Ua / 0.4) (Ln (z / Zoa(z)))

4.	Compute friction velocity (u)

5.	Compute Height scaling parameter based on a height of z.

Where is the Coriolis parameter.

6.	Compute the standard deviation of the wind speed.

	
7.	Compute the standard deviation of the low-pass filtered wind speed considering a filter with a cut-off frequency of 1 cycle per 3 seconds (for the peak 3s gust) and 1 cycle per 60 seconds (for the maximum 1 min sustained wind speed calculation:

Where 60 represents 1 min or 60 seconds and the integral scale time parameter is,

In which Z is height at which we need wind speed is used.

Where 3 represents 3 seconds

8.	Compute the wind fluctuation cycling rates:

9.	Compute the Peak factors for the max 1 min (60 sec) and max 3 second winds

10.	Compute the longitudinal turbulent intensity

11.	Compute the gust factors:

[bookmark: _Toc346555745]Coastal Transition

The Coastal Transition Function (CTF) is based on the concept of a growing internal boundary layer that develops when wind transitions from being in equilibrium with a relatively smooth surface roughness to being in equilibrium with coarse roughness as typically happens near coastal regions for on-shore flow.

The height of the internal boundary layer (IBL) is based on Arya (1988), which is given by

where hi is the height of the IBL, zoa is the coarse effective roughness over land and x is the distance from shore. Winds above this height are assumed to be in equilibrium with the upstream smooth (marine) surface conditions. We also define an equilibrium layer, he, where winds are in equilibrium with the local effective surface roughness (zoa). The height of this layer is generally taken to be one-tenth of the height of the IBL: he=0.1 * hi.

The height of the internal boundary layer increases as the distance from coast, x, increases but must ultimately not exceed the planetary boundary layer (PBL) depth. Thus we define the ratio of the IBL to the PBL as

where h=hpbl is the height of the PBL over land. We ensure that the PBL over land is always above the marine PBL:

where Rhimax=hi(xmax), xmax is the largest possible distance ("maximum fetch") from the coast for which the CTF is computed, currently set as 20 km, and ho is the marine PBL, set as 450 meters.

We define conversion factors (CFe, CFt, CFi) which specify the vertical variation of wind speed that occurs through three layer depths: the equilibrium layer below which the wind is assumed to be in equilibrium with the local effective roughness, the transition zone where the wind is transitioning between being in equilibrium with marine roughness and the local effective roughness, and the layer above the IBL which is assumed to be in equilibrium with the marine roughness. The conversion factors CFe and CFi are determined using the (modified) log-wind profile as follows:

where zs is the sensor height (reference height), zoo is the roughness for the upstream marine fetch. For the transition zone, we assume that the wind is in step-wise vertically varying changes in upstream roughness. We divide the transition layer depth into sufficient number of discrete sub-layers, whereby in each sub-layer we apply the log-wind relationship. The roughness for each sub-layer is a linearly decaying value starting with the local effective roughness near the equilibrium layer height (he) and terminating with a marine roughness value near the IBL height (hi). The number of sub-layers, M, is determined iteratively such that the conversion factor, CFt, converges to within 0.001. We may write this as

where M is the number of sub-layers, hn is the height of the nth sub-layer, and zn is the linearly interpolated roughness that the sublayer n is assumed to be in equilibrium with. The linear interpolation of roughness is defined as

where ze is the roughness of the lower bound (maximum of he and zs) and zi is the roughness above the IBL, assumed to be zoo. The calculation of CFt is handled in subroutine "trancf". Once CFt is determined, we compute the total conversion factor for the wind via

where CFm is the conversion of marine PBL wind to the marine surface height, given by the modified log wind profile

where zsm is the marine surface wind height, assumed to be 10 meters.

The reduction factor ("red2") is then just the inverse of Ctot.

[bookmark: _Toc346555746]WSC Interface Design Requirements

This section presents the graphic user interface design for the Wind Speed Correction (WSC).

1.	The user logs in the system

Figure 3.3.1 shows the Login Interface. The user needs to enter his user id and password to enter the system. The system verifies the user’s information with the login data extracted from the database. If the verification matches, the user logs into the system successfully; otherwise, the system displays the “wrong user name/password” error and requests the user to login again.

[bookmark: _Ref294690223]Figure 3.3.1: Login Interface
2.	The user selects the use case from the service selection page

Figure 3.3.2 is the service selection page interface. The system presents a list of available use cases to the user, and the user selects “Wind Speed Correction V4.0” use case and clicks “Go” to submit.
Please choose an online service:

[bookmark: _Ref294690290]Figure 3.3.2: Service selection interface
3.	The user provides interpolation information

Figure 3.3.3 and Figure 3.3.4 depict the interpolation selection interface. The user can select an existing interpolation run, Figure 3.3.3, or provide the information, i.e., IDL run, name for the new interpolation, and number of years of simulation, as shown in Figure 3.3.4.

[image: wsc_interp]
[bookmark: _Ref294690334]Figure 3.3.3: Existing interpolation interface
[image: wsc_interp2]
[bookmark: _Ref294690347]Figure 3.3.4: New interpolation interface
4.	The user provides the roughness information

Figure 3.3.5 depicts the roughness selection interface. The user can select existing roughness in the system or provide just constant roughness (open terrain = 0.03 and residential roughness = 0.35).

[image: wsc_rough]
[bookmark: _Ref294690506]Figure 3.3.5: Roughness selection interface

5.	The use provides the policy information

Figure 3.3.6 depicts the policy information selection interface. The user must select an existing policy data set in the system.

[image: wsc_policy]
[bookmark: _Ref294690549]Figure 3.3.6: Policy selection interface
6.	The user provides remaining options

Figure 3.3.7 depicts the interface for selecting the height levels (residential or commercial), the gust factor (3sec gusts or peak 1 minute winds), and the name for the WSC run.

[image: wsc_other]
[bookmark: _Ref294690584]Figure 3.3.7: Height, gust, and naming interface

[bookmark: _Toc346555747]Computer Model Design

[bookmark: _Toc346555748]Use Case View of WSC

A.	Actors:

WSC has only one actor: Scientist.

B.	Use Case:

WSC is used to convert open terrain winds produced by the hurricane wind model to winds more representative of the actual terrain (based on land use- land cover).

C.	Use Case Diagram:

[image:]
Figure 3.3.8: Use Case Diagram for WSC

[bookmark: _Toc346555749]System Design

This section includes the appropriate diagrams to describe the system classes, components, activities, and the overall flowchart of WSC.

The design of the Wind Speed Correction use case follows a three-tier design.
The interface layer consists of a web interface that allows the user to select all the required parameters to run WSC. The user can
· Select an existing interpolation run
· Provide the information to run the interpolation before running WSC
· Select roughness data set from the system
· Select policy data from the system
· Select other options, such as height levels (residential is 1 level, 10m, whereas commercial is 15 levels, starting at 10m and with increments of 10m), gust option (3sec gust winds, or peak 1 minute), and name for the WSC run
The server layer consist of two modules: the web interface backend and the WSC multi-server system.
· Web Interface Backend: this module (a) loads the interface layer with the information stored in the database which the user needs for specifying the parameters for WSC, (b) checks the information provided by the user, and (c) makes sure there are enough servers available to run WSC.
· WSC Multi-server System: this module receives the WSC information from the web interface backend and schedules the WSC run and/or interpolation run on multiple servers. In addition, the multi-server system monitors the WSC and/or interpolation runs for errors (from the single-threaded programs for Wind Interpolation Module and Wind Speed Correction Module), and notifies the user by email if the runs terminated successfully or there was an error. Once the WSC run and/or Interpolation runs finish, this module updates the database correspondingly.
Database layer: this layer is implemented in the Oracle database and provides the mechanism for storing the available IDL runs, interpolation runs, policy data sets, WSC runs, server occupancy, and current task running. Note that the database metadata information and the paths in the server to the aforementioned information.

The interface layer is implemented in javascript and JSP. The Web Interface Backend module is implemented in JSP. The WSC Multi-server system is implemented in bash/cshell and Java.

[bookmark: _Toc346555750]Flowchart of WSC

Figure 3.3.9: Flowchart for WSC
[bookmark: _Toc346555751]Class Diagram and Description

A.	Class Diagram

Figure 3.3.10: Class diagram for WSC

B.	Class Descriptions

The following is a brief introduction of the functions in the class we used.

Interpolation

This class runs the Wind Interpolation Module

WSC

This class runs the Wind Speed Correction Module

DPProxy

This class is a communication proxy to the database. It is used by the WSCMultiServer to update the information in the database, for example, to delete current task from the database, or insert a successful interpolation and/or wsc run.

WSCMultiServer

This class executes the Wind Interpolation Module (Interpolation class) and Wind Speed Correction Module (WSC class) in a multi-server environment and monitors the completion of these processes so as to notify the user of an error of the successful completion of the tasks.

[bookmark: _Toc346555752]Data Flow Diagram

Figure 3.3.11: Data flow diagram for WSC

[bookmark: _Toc346555753]State Chart Diagram

Figure 3.3.12 depicts the state chart diagram for Use Case Five. This diagram illustrates states that the use case goes through from beginning to end.

[bookmark: _Ref294690707]Figure 3.3.12: State chart diagram for WSC

[bookmark: _Toc346555754]Glossary

The following table maps variables in the code to the formulas of the wind speed correction use case.

	Variables/Terms
	Description
	Mathematical Equation/Algorithm

	rmaxs
	Storm radius of max winds
	Rmax

	tclats
tclons
	Storm center location
	(TClat, TClon)

	u,v
	wind components (u,v) on the polar grid, which are provided for each 1-hour snapshot of the from (Wind Field Module)
	u,v

	nrad, nang
	polar grid dimension
	Nard, Nang

	nstep
	number of output interpolation time steps per wind model time step
	Nstep

	n0
	prior wind model time step
	n0

	n1
	subsequent wind model time step
	n1

	uvm,uvd
	Squared values of u,v
	

	it
	target time index after interpolation
	it

	wt0,wt1
	weights
	

	tclats(it), tclons(it), rmaxs (it), uvm(i,j,it), uvd(i,j,it)
	A(it)
	

	rky,rkx,phi
	rky and rkx are the scale factors in the north-south and east-west direction respectively, and phi is the latitude of the center of the storm.

	

	dis
	maximum extent of the storm
	dis=Rmax*(Nrad-1)*0.1

	slat_tile
	southern most latitude of the tile grid domain
	slat

	wlon_tile
	westernmost longitude of the tile grid domain
	wlon

	deltax,deltay
	resolution of the tile grid domain in the east-west and north-south direction
	Δx,Δy

	tsizex,tsizey
	dimensions of the tiles
	tsizex,tsizey

	nystart,nyend,nxstart,nxend
	indices of the subdomain that confine the region affected by the storm
	

	degkmy,degkmx
	inverse of the scale factors (rkx,rky)
	

	wrt1,wrt0,wta1,wta0
	weights
	

	irad0,irang0
	surrounding coordinates of the wind model grid
	

	dx,dy
	East-west and north-south direction (“dx”,”dy”) of the target point to the storm center
	

	rlat,tclat
	Latitude and longitude of the point (i,j)
	

	dis,dir
	the coordinates (dis,dir) are the polar coordinates of the point (i,j)
	

	wrt0,wrt1
	
	

	deltari,deltar
	0.1*Rmax
	

	dir
	
	

	deltangi, deltang
	Δθ: azimuthal resolution of the wind model
	

	angle(iang0)
	θ(isng0): angle of the polar grid associated with the azimuthal index iang0
	

	 spdmax,dirmax
	Interpolated swath values of uvm and uvd. Th term dirmax is the direction of the wind associated with the instance of maximum wind speed affecting a given grid point.
	N/A

	spd,psdmax2
	Temporary holding values of the interpolated squared of the wind speed, and the maximum square of the wind speed at a given grid point, respectively
	N/A

	dirconv
	Inflow angle of the storm (dirconv) is increased by 15 degrees to account for the frictional effects on the lower level convergence of the storm
	N/A

	cd
	Marine drag coefficient
	CD_Shallow_Deep

	vo
	Marine Velocity (m/s)
	WS_Marine

	zoo
	Marine roughness
	ZoPowell

	uo
	Marine friction velocity
	U*Marine_Powell

	h
	PBL height over land
	Uh_land_h

	wsh
	Wind at top of marine boundary layer
	U

	pblm
	Marine planetary boundary layer height
	Uh_marine_h

	ua
	Terrain friction velocity (open or actual)
	U*open

	va
	10 meter wind (open or actual terrain exposure)
	WSopen

	zoa
	Terrain roughness
	0.03

	zs
	Sensor height.
	10

	rit
	Integral scale time parameter
	It

	s3
	St. Dev. low-pass filter (3s)
	

	s60
	St. Dev. low-pass filter (60s)
	

	cr3
	Wind fluctuating cycling rate (3s)
	Cr(3)

	cr60
	Wind fluctuating cycle rate (60s)
	Cr(60)

	p3
	Peak factors (3s)
	Pf(3)

	p60
	Peak factors (60s)
	Pf(60)

	f
	Coriolis parameter
	

	rlat
	Latitude
	Lat

	eta
	Height scaling parameter
	

	su
	St. dev. of wind speed
	

	t
	Longitudinal turbulent intensity
	Til

	gf3
	Gust factor
	G10min,3

	cd, vo
	
	
If(WS<=33) then
Else if (WS>33 and WS<=41) then CD_Shallow_Deep=0.00208

Else if(WS>41 and WS<=61) then
Else CD_Shallow_Deep=0.0007

	zoo,cd
	
	

	uo,vo,zoo
	
	

	zs,wsh
	
	

	450.0
	
	Uh_marine_h=450m=(U*Marine_Powell/.4)[ln(z/zo)-0.5]

	ua,h
	
	U*open=(Uh_land_h=1km*0.4)/[ln(1000/0.03)-.5]

	va,ua
	
	WSopen=(U*open/0.4)*Log(10/0.03)

	ua,va,zoa,zs
	
	

	eta,f,rlat,zs
	
	

	eta,zoa,ua,f,su,zs
	
	

	rit,su,zs
	
	

	cr3,cr60,rit
	
	

	p3,p60,su,cr3,cr60,s3,s60
	
	

	t,su,zs
	
	

	gf3,gf60, p3,p60	
	
	

	gfac
	lookup table for terrain conversion and gust factor
	N/A

	gfac2
	lookup table for coastal transition effect
	N/A

	himax
	the height of the internal boundary layer (IBL)
	

	rhimax
	the ratio of the IBL to the PBL
	

	hpbl
	the height of the PBL over land
	

	cfe, cfi
	conversion factors for the equilibrium layer below which the wind is assumed to be in equilibrium with the local effective roughness and conversion factor for the local effective roughness
	

	cfi, trancf
	conversion factor for the local effective roughness
	

	dh, hi, he
dz, zi, ze
zn
	ze is the roughness of the lower bound (maximum of he and zs) and zi is the roughness above the IBL, assumed to be zoo
	

	ctot
	total conversion factor
	

	cfm
	the conversion of marine PBL wind to the marine surface height
	

[bookmark: _Toc346555755]Implementation of WSC

Currently, the implementation for Use Case five (WSC) has been finished. The demo is reachable at http://irene.cs.fiu.edu:8888/FDOI.

[bookmark: _Toc346555756]Login page:

Users need username/password to access the Florida Hurricane Loss Model. Following is a snapshot of the login web page.

[image:]
Figure 3.3.13: Login webpage for FPHLM

If the username/password is wrong, an error message will be displayed, and the user will be required to input the username and password again to enter.

[image:]
Figure 3.3.14: Login webpage shows the inputted user ID or password is wrong

[bookmark: _Toc346555757]WSC Page:

If the login is successful, the user can see the web page named “Service Selection Page” (as shown in Figure 3.3.15). To view the WSC use case page, select “Wind Speed Correction V4.0” and click “Go” button from the drop-down list.

[image:]
[bookmark: _Ref294690774]Figure 3.3.15: Service selection page for WSC

Several steps need to be followed to accomplish the task of Wind Speed Correction,

Step 1: Select interpolation

The user has to options: use an existing interpolation run or request the system to run the interpolation code before running the WSC code.

To use an existing interpolation run, the user must not click “Run interpolation code?” and must select one interpolation run from the drop-down list. See figure below.

[image: interp1]
Figure 3.3.16: Select existing interpolation run
To run the interpolation code, the user must click the check box “Run interpolation code?”, select a name from the drop-down list “IDL runs at server”, provide a name for the interpolation run (name must be unique), and provide the number of years of simulation for the interpolation run. See figure below.

[image: interp2]
Figure 3.3.17: Run interpolation code

Step 2: Provide roughness information

For the roughness information, the user has three options: (1) select an existing roughness set from the database, (2) use open terrain roughness (constant roughness), or (3) use residential roughness (constant value).

For using an existing roughness set (which is the default option), the user must click the radio button “Read in roughness” and select a roughness set from the drop-down list “Roughness sets at server:”. See figure below.

[image: rough1]
Figure 3.3.18: Selecting existing roughness set
For using open terrain roughness, the user must click on the radio button “Open terrain (z0=0.03)”. See figure below.

[image: rough2]
Figure 3.3.19: Selecting open terrain roughness
For using residential roughness, the user must click on the radio button “Residential roughness (z0=0.35)”. See figure below.

[image: rough3]
Figure 3.3.20: Selecting residential roughness

Step 3: Select policy data information

To provide the policy data for which WSC must be run, the user must select an existing data from the database. See figure below.

[image: policydata]
Figure 3.3.21: Selecting policy data information

Step 4: Other options

The remaining parameters the user must provide are (1) number of height levels, (2) gust factors, and (3) name for the WSC run.

For the number of height levels, the user must select between residential (1 height level at 10m) or commercial (15 levels, starting at 10m with 10m increments). See figure below.

[image: other1]
Figure 3.3.22: Selecting height level
For the gust factors, the user must select between 3-sec gust winds and 1-min peak winds. See figure below.

[image: other2]
Figure 3.3.23: Selecting gust factor option
Lastly, the user must provide a unique name for the WSC run. See figure below.

[image: other3]
Figure 3.3.24: Naming the WSC run
Step 5: Submitting WSC run

Once all parameters have been selected, the user must click the submit button. See figure below.

[image: submit]
Figure 3.3.25: Submitting the results

[bookmark: _Toc346555758]Exception handling

If the user fails to select some parameters, for example not selecting a valid value from a drop down list or not providing a required scalar value, the web interface will notify the user by popping a message next to each field that has a problem. See figures below.

[image: error1]
Figure 3.3.26: User fails to select values from drop-down lists

[image:]
Figure 3.3.27: User fails to select values from drop-down lists and provide number of years of simulation for the interpolation run

[bookmark: _Toc346555759]Additional Programs

[bookmark: _Toc346555760]FPHLM Roughness Classification

The roughness database is derived from the Multi-Resolution Land Cover (MRLC) National Land Classification Database (NLCD) of 2001 (Homer et al., 2004). This data set provides land cover classifications on a very high resolution (30 m or 98 ft) grid over the entire U.S. The NLCD is developed from Landsat 7 imagery Multi-Resolution Land Characteristics Consortium (MRLC) http://www.mrlc.gov/

The classification codes are listed at (http://www.mrlc.gov/nlcd_definitions.asp).
For codes whose descriptions are identical to the roughness classification table listed in the 2003 Hazus Technical Users manual, we leave the values unchanged. For new classifications, we use example images from NOAA’s Coastal Services Center to estimate roughness based on field experience evaluating roughness from weather station site visits and aerial/satellite imagery for post-storm hurricane wind field reconstruction (see references). The code for determining roughness from NLCD data was written and implemented by Steve Cocke and is described in Axe 2003.

An effective roughness model (Axe 2004) based on the Source Area Model of Schmidt and Oke (1990) is used to determine an upstream fetch dependent roughness value at all Florida zip codes. The effective roughness model essentially uses a weighting function that decays exponentially as a function of the distance of each roughness element from the zip code centroid. The effective roughness is computed for 8 possible incoming wind direction intervals for each zip code centroid. The effective roughness is the weighted average of all roughness elements for each octant.

A.	Land Cover - Roughness Classification

The links below (highlighted) have the respective representative photos and revised roughness values in meters;

Format: Z0(NLCD Classification ID) = Z0 value in m ! Comments
 Z0(11) = 0.001 open water
 z0(21) = 0.1 ! developed/open space
 http://www.csc.noaa.gov/crs/lca/class_groups/osd.html
 z0(22) = 0.350 ! developed/low intensity
 z0(23) = 0.475 ! developed/med intensity
 http://www.csc.noaa.gov/crs/lca/class_groups/mid.html
 z0(24) = 0.600 ! developed/high intensity
 z0(31) = 0.200 ! Barren Land
 z0(32) = 0.100 ! Unconsolidated Shore
 http://www.csc.noaa.gov/crs/lca/class_groups/us.html
 z0(41) = 1.0 ! deciduous forest
 z0(42) = 1.0 ! evergreen forest
 z0(43) = 1.0 ! mixed forest
 z0(52) = 0.06 ! shrub
 z0(71) = 0.150 ! grassland/herbaceous
 z0(81) = 0.100 ! pasture/hay
 z0(82) = 0.100 ! cultivated crops
 http://www.csc.noaa.gov/crs/lca/class_groups/cl.html
 z0(90) = 0.300 ! woody wetlands
 z0(91) = 0.400 ! woody wetlands - Palustrine forested
 http://www.csc.noaa.gov/crs/lca/class_groups/pfw.html
 z0(92) = 0.100 ! woody wetlands - palustrine scrub
 http://www.csc.noaa.gov/crs/lca/class_groups/pssw.html
 z0(93) = 0.300 ! woody wetlands - estuarine forested
 http://www.csc.noaa.gov/crs/lca/class_groups/efw.html
 z0(94) = 0.100 ! woody wetlands - estuarine scrub
 http://www.csc.noaa.gov/crs/lca/class_groups/essw.html

 z0(95) = 0.030 ! emergent herbaceous wetlands
 z0(96) = 0.030 ! emergent herbaceous wetlands - palustrine emergent
 http://www.csc.noaa.gov/crs/lca/class_groups/pew.html
 z0(97) = 0.030 ! emergent herbaceous wetlands - estuarine emergent
 http://www.csc.noaa.gov/crs/lca/class_groups/eew.html
 z0(98) = 0.030 ! emergent herbaceous wetlands - palustrine aquatic bed
 http://www.csc.noaa.gov/crs/lca/class_groups/pab.html
 z0(99) = 0.030 ! emergent herbaceous wetlands - estuarine aquatic bed
 http://www.csc.noaa.gov/crs/lca/class_groups/eab.html

B.	Corrections to FPHLM Roughness Values

Inland Locations
The roughness values for population weighted zip code centroids over land are adjusted so that the roughness is at least that of a low density residential area (0.350) all land points within 500 m of the centroid. This adjustment is not done for locations over bodies of water. If the centroid is over water, then a minimum low density residential neighborhood is assumed for all points within 500 m of the centroid. For the 2006 zip code data set, only one zip code, 00087, was found to have a centroid over water.

Coastal Locations

Since coastal locations have rapidly varying effective roughness as a function of distance from the shore line, we compute an averaged effective roughness to give a more representative roughness for the coastal area. The basic approach is as follows. If we define r as the distance from the centroid to a point intermediate to the centroid and the shore, and if we define R as the distance from the centroid to the shore, then based on the work of Axe (2004) we may approximate the effective roughness as follows
[image:]
Where z(r) is the roughness at point r. We have assumed that the contribution to the roughness over water is negligible, which is reasonable due to z=0.001 over water and the exponentially decaying weight function. The factor C is a normalization constant and the decay constant, a, can be found from Axe (2004),
[image:]
Where s and e5 are defined in Axe (2004). We can now define the average effective roughness as

[image:]

A first order approximation to this integral can be found by replacing z(r) by the average of z(r) within the roughness sector, za. The integral is easily solved to get

[image:]
The normalization factor was found by noting that the average effective roughness must equal the average roughness when R tends to infinity. As R tends to zero, the average effective roughness approaches zero, and should be set to at least the value appropriate for water (0.001). The computation for average effective roughness also applies to large bodies of inland water, such as Lake Okeechobee, and is only computed when R is less than 8 km. Coastal zip code areas are defined as those sectors which have greater than 50% coverage of water in the 45 degree sector extending to 20 km radius.

C.	Program Flowchart

Figure 3.3.28: Program flowchart

D.	Class Diagram

Figure 3.3.29: Class Diagram

E. The following table maps the variables in the code to the final equation of part

	Variable in Code
	Description
	Equation

	inputr
	Corresponds to Zeff (effective roughness).
	[image:]

	z0
	Corresponds to za (average roughness for sector).
	

	s
	Corresponds to s (parameter in weight function).
	

	e5
	Corresponds to e5. Isopleth dimension for 0.5 (see Axe (2004)).
	

	rmax
	Corresponds to R (distance from zip code to shore).
	

[bookmark: _Toc346555761]References

Coastal NLCD Classification Scheme
http://www.csc.noaa.gov/crs/lca/tech_cls.html - 17

NLCD Land Cover Classification definitions
http://www.mrlc.gov/nlcd_definitions.asp

Axe, L. 2003: Hurricane surface wind model for risk management. Masters thesis, Department of Meteorology, Florida State University, 68 pp.

Homer, C. C. Huang, L. Yang, B. Wylie and M. Coan. 2004. Development of a 2001 National Landcover Database for the United States. Photogrammetric Engineering and Remote Sensing, Vol. 70, No. 7, July 2004, pp. 829-840.

Powell, M.D., D. Bowman, D. Gilhousen, S. Murillo, N. Carrasco, and R. St. Fleur, 2004: Tropical Cyclone Winds at Landfall: The ASOS-CMAN Wind Exposure Documentation Project. Bull. Amer. Met. Soc., 85, 845-851.

Powell, M. D., S. H. Houston, L. R. Amat, and N Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J.Wind Engineer. and Indust. Aerodyn. 77&78, 53-64.

Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew's Landfall in South Florida. Part I: Standardizing measurements for documentation of surface wind fields. Weather Forecast., 11, 304-328.

Vol.III-94

[bookmark: _Toc346555762][bookmark: _Toc295824609]Volume IV. Damage Estimation Module (Module III)

Revision History
	Last Updated
	Person
	Summary

	02/01/2007
	Min Chen
	Created the document

	06/01/2007
	Shermann Chans
	Updated table of weights for age-weighted vulnerability matrix generation

	02/22/2008
	Fausto Fleites
	Added to MCS and VFRMH use cases tables that map variables, equations, and formulas of the documentation to corresponding source code terms and variables.

	05/18/2008
	Fausto Fleites
	- Updated table that lists the implementation files of VFRMH use case because of the new file ‘Age_Weighted_Program_061807’
- Updated table of weights for age-weighted vulnerability matrix generation

	02/20/2009
	Fausto Fleites
	- Added revision history
- Updated in VFRMH model (1) description of the files Vulnerability_Prog_011209 and Manufac_Homes_Prog_0113091due to the slight modification of the leak model (i.e., kii variable) and (2) flowcharts of these two files as well as the VFRHM class diagram
- Updated glossary table of the VFRMH due to the slight modification of the leak model

	10/25/2010
	Fausto Fleites
	- Updated documentation for VFRMH model due to new site-built component.
- Added documentation for MCS model for mid-high rise building models.
- Added documentation for commercial-residential vulnerability component.

	04/15/2011
	Fausto Fleites
	- Updated documentation of vulnerability model due to the update of the rain model

	01/15/2013
	Raul Garcia
	- Updated functions descriptions and glossaries of the Monte Carlo Simulation Model for Personal Residential Buildings.
- Updated Technical Description of Site-Built Home Models and Model’s Distribution in Time.
- Updated technical description of VM-CRB.
- Updated flowcharts and descriptions of the CR LR model.

CHAPTER 4. [bookmark: _Toc346382369][bookmark: _Toc346382622][bookmark: _Toc346382879][bookmark: _Toc346383608][bookmark: _Toc346383957][bookmark: _Toc346384243][bookmark: _Toc346384531][bookmark: _Toc346384818][bookmark: _Toc346385105][bookmark: _Toc346385391][bookmark: _Toc346385678][bookmark: _Toc346400006][bookmark: _Toc346408464][bookmark: _Toc346555763]
[bookmark: _Toc346555764]Monte Carlo Simulation Model for Personal Residential Buildings (MCS) Use Case I

[bookmark: _Toc346555765]General Description of MCS

The MCS model, short for Monte Carlo Simulation Model, aims at linking wind speed to structural damage. The MCS model is capable of generating structural damage results using up to 16 different damage models. Each of the models simulates the structural damage of a building based on the winds it is exposed to, region the structure is located in, type of walls, and the type of roof the structure has. Many features of these models may be altered to reflect the use of various mitigation measures as well as the building code in force at the time of construction. Any given run of one of the simulation models applies a series of different wind gust speeds and wind directions. A single simulation consists of a random assignment of capacities to various components of the building model, an assignment of a particular wind speed and direction, a conversion of wind speed to pressure loading over the surface of the structure, and a series of checks to evaluate which components fail, and how failures reload the structure and load sharing. The structural damage results generated by the MCS are used by the Engineering Code Module to generate vulnerability matrices, which will be used by the last module to generate the annual prediction of wind-induced loss.

[bookmark: _Ref294692327][bookmark: _Toc346555766]MCS Design Requirements

Name: 	Monte Carlo Simulation Model

Description: The user enters the simulation’s dates and indicates the location of the input file. The input file indicates the following:
(1)	Number of damage models to execute
(2)	Number of winds to use during the simulation
(3)	Number of simulations desired per model, per wind speed, and per wind direction
(4)	Damage models to use (vector)
(5)	Wind speeds (vector)

1.	The user enters the input file which follows the following format:

<input file description>
<num of FileTypes (damage models)>
<num of winds>
<num of simulations>
<FileType vector>
<wind speeds vector>

Example:

by row: # of FileTypes, # of winds, # sims, FileType vector, wind vector
1
31
50
1
100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

This file tells the program that the user is interested in running 1 damage model using 31 different wind gust speeds, 50 simulations per wind speed and direction. The damage model to be used is model number 1 (this is a concrete block, gable roof house built in the central region of Florida). The wind speeds to be used are from 100 to 250 mph (using 5 unit increments).

1.
2. Based on the input file provided by the user, the system will assign indicators to select the appropriate construction parameters and then simulate the structural damage results using the following steps.

Detailed steps are as follows:
2.1. System will begin the angles loop. The MCS performs the simulations using different wind direction angles from 0 to 315 degrees at 45 degree increments. These wind directions are not adjustable by the user.

2.1.1. The system will begin the wind speed loop. This loop will generate as many wind speeds as dictated in the input file
2.1.1.1. The system will begin the simulations loop. This loop will perform as many simulations as dictated in the input file. This is done at each speed and each direction. For the example input file on the previous page, 50 simulations will be performed for each of the 31 wind speeds and eight directions at each speed.
2.1.1.1.1. Randomize Wind Speed and pressure coefficient (Cp) values.
2.1.1.1.1.1. Establish the structural layout of the roof system by calling the rooflayout6044.m function
2.1.1.1.1.2. Calculate roof panel areas: total roof area, gable end wall area, number of sheathing panels needed for different walls. During this calculation the number of sheathing panels on front is reduced if garage is present.
2.1.1.1.1.3. Assign roof pressure coefficient (Cp_roof) depending on angle of wind.
2.1.1.1.1.4. Define wall and roof zone pressure coefficients by assigning pressure coefficients for the Main Wind Force Resisting System (MWFRS) according to ACSE design code and randomize them with COV of 0.1
2.1.1.1.1.5. Assign wall pressure coefficient (Cp_wall) depending on angle of wind.
2.1.1.1.2. Calculate initial loads
2.1.1.1.2.1. Calculate velocity pressure and internal pressure
2.1.1.1.2.2. Calculate roof and wall pressure using the pressures.m function
2.1.1.1.2.3. Assign Front & back door, window, and garage door pressures as a function of wind direction and speed. In this step garage_pressure is assigned to be the same as front_door_pressure.
2.1.1.1.2.4. Assign roof sheathing capacity by using the function capacity_sheating.m
2.1.1.1.2.5. Assign roof cover capacity by using the function capacity_roofcover.m
2.1.1.1.2.6. Assign wall capacity by using the function capacity_wall.m
2.1.1.1.2.7. Assign the probabilistic capacity of failure for the wall sheathing panels using the capacity_wall_sheathing.m function (gable roof models only)
2.1.1.1.2.8. Calculate the initial Gable_End and Roof-to-Wall connection capacity using the capacity_r2w.m function
2.1.1.1.2.9. Calculate the load on roof-to-Wall connections using the r2w_conn_uplift.m function.
2.1.1.1.2.10. Calculate the opening capacities by using the capacity_opening.m function
2.1.1.1.3. Initial failure check
2.1.1.1.3.1. Identify failed roof sheathing panels, assign capacity of failed panels to zero, and create perct_failed_sheathing.
2.1.1.1.3.2. Identify failed roof cover, and create perct_failed_roofcover
2.1.1.1.3.3. Calculate the percentage of failed wall sheathing.
2.1.1.1.3.4. Calculate wall loading failure using the wall_loading.m function.
2.1.1.1.3.5. Perform checks to evaluate whether walls fail
2.1.1.1.3.6. Assign impact_windows as those windows on the side(s) of the house that wind is approaching. This is wind direction dependent.
2.1.1.1.3.7. Identify the broken openings using the missile_impact.m function.
2.1.1.1.3.8. Window_pressure_check function is called in order to count the number of windows that were broken due to wind pressure, and to re-assign internal pressure
2.1.1.1.3.9. Evaluate doors that fail. Re-calculate internal pressure from impacted doors.
2.1.1.1.3.10. Recalculate internal pressure from impacted garage. Internal pressure is being reassigned based on several possible combinations of failed windows and doors, with failed garage.
2.1.1.1.3.11. Check internal pressure. If internal pressure have changed after the initial failure test, internal pressure variable should be assigned t reflect new changes.
2.1.1.1.3.12. Calculate the new roof and wall pressure values using the pressures.m function for the second time.
2.1.1.1.3.13. If internal pressure was adjusted, opening pressure values are being reassigned here.
2.1.1.1.4. Failure Check after loads have been adjusted to account for internal pressure changes
2.1.1.1.4.1. Identify windows that failed under the new overall wind pressure by calling the window_pressure_check.m function for the second time.
2.1.1.1.4.2. Re-check the back, front and garage failure.
2.1.1.1.4.3. Identify the new failed sheathing area.
2.1.1.1.4.4. Reduce the uplift pressure on damaged sheathing panels by a factor of 2.5.
2.1.1.1.4.5. Reduce capacity of roof cover (shingles) attached to failed sheathing panels to zero, and re-identify failed shingles.
2.1.1.1.4.6. Repeat failure checks for wall sheathing.
2.1.1.1.4.7. End Internal pressure check
2.1.1.1.5. Final failure check.
2.1.1.1.5.1. Calculate the roof-to-wall connection uplift forces by calling the r2w_conn_uplift.m function.
2.1.1.1.5.2. Calculate roof-to-wall connection failure along the long sides of the house (gable models only)
2.1.1.1.5.3. Redistribute uplift pressure on trusses not failed.
2.1.1.1.5.4. Continue checking for additional r2w failures along the long sides, and redistribute the loads if more fail.
2.1.1.1.5.5. Check for roof-to-wall connections failure from toppling over rather then from uplift.
2.1.1.1.5.6. Check for gable-end connection failure
2.1.1.1.5.7. Calculate failed roof-to-wall connection failure (create the perct_failed_r2w output variable)
2.1.1.1.5.8. New check for wall loading failure by calling the wall_loading function again.
2.1.1.1.5.9. Calculation of the gable-end pressure and identification of the failed gable-end wall sheathing panel.
2.1.1.1.5.10. Repeat the checking for wall loading failure
2.1.1.1.5.11. Determine if house has been breached
2.1.1.1.5.12. Append damage matrix with results of this simulation
2.1.1.1.6. End simulation count loop
2.1.1.1.7. Save the output file for all the simulation at a given wind speed and direction
2.1.1.2. End wind speed loop
2.1.2. End Angle loop

3.	The system will repeat the mentioned-above steps for each damage model the user has indicated in the input file. For example, if the user requested to run 4 models, the system will repeat the above-mentioned steps 4 complete times.

4.	The output of the simulation will be in the form of a matrix. Each row represents one simulation. Each column represents a damage value observed during the simulation. The columns describe the damage value in the following manner.

1: perct_failed_sheathing =	percentage of roof sheathing failed
2: perct_failed_roofcover =	percentage of roof cover lost
3: perct_failed_r2w =	percentage of roof to wall connections failed
4: failed_wall	=	# of failed walls (0-4)
5: failed_window =	# of failed windows (0-15)
6: failed_door	 =	# of failed door (0-2)
7: failed_garage =	# of failed garage (0-1)
8: breach = breach (0-1) (1 if window, door or garage damaged)
9: sum(impact_broken) = total number of windows broken by impact, not pressure
10: perct_failed_gable_end_panels =	 percentage of gable end panels failed (zero if hip roof building)
11: internal_pressure = calculated internal pressure
12: perct_failed_wall_panels	= percentage of wall sheathing panels failed (front)
13: perct_failed_wall_panels	= percentage of wall sheathing panels failed (back)
14: perct_failed_wall_panels	= percentage of wall sheathing panels failed (side)
15: perct_failed_wall_panels	= percentage of wall sheathing panels failed (side)

Note:

(1) The output files generated by damage models for concrete block walls include only 12 damage elements (1-12) since there are no wall sheathing panels to evaluate. A complete list of the models and the number of elements generated in their respective output files is presented in Table 4.1.1

[bookmark: _Ref294692523]Table 4.1.1: Number of output elements per each damage model file
	Output files with 15 elements (1-15)
	Output Files with 12 (1-12) elements

	Damage_Model_C_W_G
	Damage_Model_C_CB_G

	Damage_Model_N_W_G
	Damage_Model_N_CB_G

	Damage_Model_C_W_H
	Damage_Model_C_CB_H

	Damage_Model_N_W_H
	Damage_Model_N_CB_H

	Damage_Model_S_W_G
	Damage_Model_S_CB_G

	Damage_Model_S_W_H
	Damage_Model_S_CB_H

(2) The number of rows in each file is controlled by the input variable ‘count’ read by the system from the input file. Thus if the count (number of simulations) in the input file is 5000, each file will have a damage matrix with 5000 rows. The number of output files is determined by the number of speeds, number of directions, and number of models to be simulates. For example, if the user runs 4 damage models using 31 different wind speeds, there will be a total of 4 * 31 * 8 = 992 different output files.

1.
2.
3.
4.
5. In order to simulate structural damages caused by winds to manufactured homes, 4 more damage models were needed. The input used by these models is the same input file used by the previously mentioned models. The model follows the same general structure described in 2.1 with some differences. For the sake of completeness, the steps followed to generate the structural damage for manufactured homes are described here.
1.
2.
3.
4.
5.
5.1. The System will begin the angles loop. The MCS perform the simulations using different wind direction angles from 0 to 315 degrees at 45 degree increments. These wind directions are not adjustable by the user.
5.1.1. The system will begin the wind speed loop, using as many speeds as the input file dictates.
5.1.1.1. The system will begin the simulations loop. This loop will perform as many simulations as dictated in the input file. This is done at each speed and each direction. For the case of the input file on the previous page, 50 simulations will be performed for each of the 31 wind speeds and eight directions at each speed.
5.1.1.1.1. Wind speed and roof, wall, and internal pressure coefficients (Cp values) are randomized using COV of 0.1 (Gaussian randomization)
5.1.1.1.1.1. Define wall and roof zone pressure coefficients by assigning pressure coefficients for the Main Wind Force Resisting System (MWFRS) according to ACSE design code and randomize them with COV of 0.1
5.1.1.1.1.2. Assign roof pressure coefficient depending on wind direction (angle)
5.1.1.1.2. Calculate initial loads
5.1.1.1.2.1. Calculate velocity pressure, internal pressure, and wall pressure
5.1.1.1.2.2. Calculate door and window pressure. Assign wall pressure dependent on wind direction (angle)
5.1.1.1.2.3. Calculate the sliding_load matrix (load on exterior siding) using the window pressure calculated in previous step.
5.1.1.1.2.4. Calculate the overall horizontal loads on the exterior of the house, by calculating the final total sliding load, and overturning moment of the structure.
5.1.1.1.2.5. Calculate the opening capacities by using the capacity_opening.m function garage information is not used for manufactured homes. Assigned capacity values are being adjusted for large, medium, and small windows. (See Table 4.1.2)
5.1.1.1.2.6. Assign mean sheathing capacity and COV, and then randomly assign capacity values to individual sheathing components. Random capacities that are not within 2 standard deviations of the mean value are adjusted using a loop. The mean values for the sheathing capacity can be viewed in Table 4.1.3
5.1.1.1.2.7. Assign mean shingle capacity and adjust random capacities that are not within 2 standard deviation of the mean capacity. This is done similarly to previous step. Mean capacity values for the shingle capacity can be viewed in Table 4.1.4
5.1.1.1.2.8. Randomly assign values to the weight of the home, capacity of wall siding, capacity of roof to wall connection and ground anchor capacity by using the capacity_manuf_housing.m function.
5.1.1.1.2.9. Calculate overturning and sliding capacity.
5.1.1.2. Initial failure check
5.1.1.2.1.1. Check window failure from missile impact by sending the impact_windows and results of previous call to debris_model_input to the missile_impact.m function.
5.1.1.2.1.2. Check for number of failed windows from wind pressure by sending the window capacities, the pressure to the window and the internal pressure to the window_pressure_check.m function.
5.1.1.2.1.3. Check for door failure. This is done by initializing the number of failed doors, and changing internal pressure to 0. If any front or back door fails, the failed doors counter is incremented, and the internal door pressure is adjusted.
5.1.1.2.1.4. Adjust final internal pressure based on both window and door failures.
5.1.1.2.1.5. Check roof sheathing failure by identifying the wall sheathing panels that fail from wind pressure, and calculate the percentage of sheathing that has failed.
5.1.1.2.1.6. Check wall sheathing failure by identifying the wall sheathing panels that failed from wind pressure and calculate the percentage of wall sheathing panels that have failed.
5.1.1.2.1.7. Check roof to wall connection failure by reducing the roof uplift for each roof sheathing panel, calculating the total uplift in each connection, identify the failed connection, redistribute the total uplift load for all the r2w connection that did not fail by using the redist_uplift.m function, and check for any additional failed connections. This process stops when no more r2w connection fail with the current load distribution.
5.1.1.3. Calculate internal pressure and recalculate structural loads Check for change in internal pressure due to windows or door failure. If a change is detected, wall and roof pressure must be recalculated, new pressures to doors ad windows as a function of the location in the structure is assigned, and the load on the exterior siding is recalculated.
5.1.1.4. Final Failure check.
5.1.1.4.1. Re-check windows for pressure failure to see if any more broke under the new load by using the window_pressure_check.m function
5.1.1.4.2. Check front and back door for pressure failure
5.1.1.4.3. Re-check roof sheathing failure. Here system will identify those roof sheathing panels that failed from wind pressure, and recalculate the percentage of roof sheathing failure. This is cumulative from the first roof sheathing failure calculations.
5.1.1.4.4. Roof cover (shingle) failure. This is the first and only check for this damage type. System calculates roof cover damage percentage in this step.
5.1.1.4.5. Check for additional wall sheathing that fail under new loads, and update percentage calculated in earlier step if necessary.
5.1.1.4.6. Repeat step 5.1.1.3.1.7 to recheck for roof to wall connection failure.
5.1.1.4.7. Check for sliding failure. Sliding by default is 0. If F_slide (sliding fource) > anchor capacity + 0.2 * home_weight then slide indicator is set to 1 which represents minor sliding. If F_slide (sliding fource) > 1.2 * anchor capacity + 0.2 * home_weight then slide indicator is set to 2 which represents major sliding.
5.1.1.4.8. Check for overturning. If M_over (overturning moment) > cap_overturn (overturn capacity) the overturn is set to 1 to signify structure overturn, otherwise it stays 0 which signifies no overturn.
5.1.1.4.9. Append damage results to file
5.1.2. End simulations loop
5.1.3. Save all simulations for a given wind speed and angle.
5.2. End Wind Speed Loop
5.3. End Wind Angle loop

[bookmark: _Ref294693082]Table 4.1.2: Assigned opening capacities adjustments per window size
	Model
	Lg. Window
	Med. Window
	S. Window

	Damage_Model_MH_1_pre_NTD
	32
	45
	57

	Damage_Model_MH_1_pre_TD
	32
	45
	57

	Damage_Model_MH_HUD_II
	57
	57
	57

	Damage_Model_MH_HUD_III
	72
	72
	72

[bookmark: _Ref294692965]Table 4.1.3: Mean sheathing capacity values per model
	Damage_Model_MH_1_pre_NTD
	45

	Damage_Model_MH_1_pre_TD
	45

	Damage_Model_MH_HUD_II
	90

	Damage_Model_MH_HUD_III
	90

[bookmark: _Ref294692973]Table 4.1.4: Mean shingle capacity values per model
	Damage_Model_MH_1_pre_NTD
	51

	Damage_Model_MH_1_pre_TD
	51

	Damage_Model_MH_HUD_II
	70

	Damage_Model_MH_HUD_III
	70

6.	The system will repeat the mentioned above steps for each damage model that the user has indicated in the input file. For example if the user requested to run 4 models, the system will repeat the mentioned above steps 4 complete times.
7.	The output of the simulation for the manufactured home will be in the form of a matrix. Each row represents one simulation. Each column represents a damage value observed during the simulation. The columns describe the damage values in the following manner:

1:	failed_window	 = # of failed windows by impact and pressure (out of 8)
2:	sum(impact_broken) = total number of windows broken by impact, not pressure
3:	failed_door = # of failed door (0-2)
4:	perct_failed_sheathing = percentage of roof sheathing lost
5:	perct_failed_roofcover = percentage of roof cover lost
6:	perct_failed_wall_sheathing = percentage of wall sheathing lost
7:	failed_r2w = number of roof to wall connections failed (out of 58)
8:	slide =	0 (no sliding), 1 (minor sliding), or 2 (major sliding)
9.	overturn = 0 (not overturned) or 1 (overturned)

Note:

Similarly to the previous damage models, number of rows in each output file is controlled by the input variable ‘count’ read by the system from the input file. So if the count (number of simulations) in the input file is 5000, each file will have a damage matrix with 5000 rows. The number of files is determined by the number of speeds, number of directions, and number of models to be simulated. For example, if we want to run 4 damage models using 31 different wind speeds, there are going to be a total of 4 * 31 * 8 = 992 different output files, each containing 5000 rows.

[bookmark: _Toc346555767]Computer Model Design

[bookmark: _Toc346555768]Use Case View of MCS

A.	Actors:

There is one actor (scientists) in MCS. Scientists use this use case to find a statistic model with satisfying goodness of fit, to conduct the simulation, and to observe the simulation results.

B.	Use Case:

Use case Monte Carlo Simulation Model is used to estimate the structural damages inflicted on different type of structures due to the exposure to different wind speeds and angles. The estimated damage data generated by the Monte Carlo simulator is used by later modules and use cases to generate vulnerability matrices for different structures and the annual prediction of wind-induced loss.

C.	Use Case Diagram:

Figure 4.1.1 shows the use case diagram for AHO.

 (
Figure
4.1
.
1
:
Use Case Diagram for MCS
) (
MonteCarloSimulation
Scientist
)

[bookmark: _Toc346555769]System Design

This part describes the system design. Appropriate diagrams are provided to describe the system functions, activities, and the overall flowchart of MCS.

The MCS model system consists of 3 main components: the MCS Driver, the MCS Damage Models, and the MCS Common Files. As described in Figure 4.1.2, the main driver is responsible for receiving the input from the user and determining which models will be used for the simulation. The driver will call each of the appropriate models to be executed. The models will generate the structural damage data using the steps mentioned in section 4.1.2. The different damage models will use different functions included in the common files unit to generate the desired results. Finally each model will generate the structural damage data, and when the last damage model completes its execution, the driver will end the simulation.

 (
Figure
4.1
.
2
:
Main components of the MCS model.
) (
MCS Driver
User’s Input
File
MCS Damage Models
MCS Common Files
Output Damage Files
)

[bookmark: _Toc346555770]The MCS Driver

The MCS driver can be viewed as the operational management unit of the Monte Carlo Simulation system. It is responsible of interpreting the inputs provided by the user and activates the proper units needed to generate the desired structural damage data. In addition, the MCS driver informs the models how many simulations are needed, how many wind speeds will be used, and what theses wind speed values are. When all the models finish generating the desired data, the MCS driver ends the systems activity.

[bookmark: _Toc346555771]MCS Damage Models

This unit is responsible for generating the actual structural damage data requested by the MCS driver. This unit uses the input provided by the driver unit and generates the output files using the steps mentioned in section 4.1.2. To compute the different values needed, the damage model unit calls functions that exist in the MCS Common Files unit. The Damage Models unit sends necessary data to the Common Files unit and receives the necessary results in returns.

[bookmark: _Toc346555772]MCS Common Files

The MCS Common Files unit is a repository of functions that are used by the MCS Damage Models unit. These functions perform various calculations for the different damage models. Due to the fact that different damage models need similar calculations, the function repository was created to avoid code repetition. In the next section we provide a detailed description of how the proposed system design has been implemented.

[bookmark: _Ref294696661][bookmark: _Toc346555773]Implementation of Monte Carlo Simulation model

The Monte Carlo Simulator and all of its components were implemented in the Matlab (by Mathworks) environment. Many calculations that are done to simulate the desired structural damage involve vector and matrix manipulation. This made Matlab the best-fit environment for the implementation of the MCS model.

As can be seen from Figure 4.1.2, the design requires 3 major units. The MCS Driver unit was implemented using a short code that opens the input file provided by the user. The driver reads the different values from the file, and according to these values, calls the appropriate damage model simulation codes one by one, giving each code directions of how many simulations to run, how many wind speeds to use, and what wind speed values to use as well. The driver waits for the last called model code to terminate, before it terminates the entire system execution.

Currently the MCS Damage Model unit is capable of simulating 16 different damage models. These models and their name interpretation can be viewed in Table 4.1.5. Each model is implemented using a different .m file that includes several function calls from the Common Files unit. This implementation allows efficient functionality sharing by the different models and at the same time provides the flexibility to initialize different values that are needed by different damage model implementations, or modify specific code units to fulfill some different needs that different models have. The damage model simulation is the heart of the MCS model system. All of the models follow the general flow that can be seen in Figure 4.1.3 taken from [1]. As mentioned in the general requirement of this module, the loop for angle is se to 0 to 315 degrees, in increments of 45 degrees. The loop for wind speed will depend on information that the driver unit will send to the damage model unit; it will run once for each wind speed value. Similarly the loop for building will run as many times as the number of damage models requested to run by the driver. The building loop is explored in more details in section 4.1.2 subsections 2 and 5.

[bookmark: _Ref294692981]Table 4.1.5: MCS damage models names and meanings
	Damage Model Name
	Name Interpretation

	Damage_Model_C_W_G
	Central region, Wood Walls, Gable end roof

	Damage_Model_C_W_H
	Central region, Wood Walls, Hip end roof

	Damage_Model_C_CB_G
	Central region, Concrete Block Walls, Gable end roof

	Damage_Model_C_CB_H
	Central region, Concrete Block Walls, Hip end roof

	Damage_Model_N_W_G
	North region, Wood Walls, Gable end roof

	Damage_Model_N_W_H
	North region, Wood Walls, Hip end roof

	Damage_Model_N_CB_G
	North region, Concrete Block Walls, Gable end roof

	Damage_Model_N_CB_H
	North region, Concrete Block Walls, Hip end roof

	Damage_Model_S_W_G
	South region, Wood Walls, Gable end roof

	Damage_Model_S_W_H
	South region, Wood Walls, Hip end roof

	Damage_Model_S_CB_G
	South region, Concrete Block Walls, Gable end roof

	Damage_Model_S_CB_H
	South region, Concrete Block Walls, Hip end roof

	Damage_Model_MH_1_pre_NTD
	pre HUD regulations (pre 1994), single wide, no tie down

	Damage_Model_MH_1_pre_TD
	pre HUD regulations (pre 1994), single wide, with tie down

	Damage_Model_MH_HUD_II
	post HUD regulations (post 1994), single wide, HUD zone II

	Damage_Model_MH_HUD_III
	post HUD regulations (post 1994), single wide, HUD zone III

[image: Picture 2]
[bookmark: _Ref294695233]Figure 4.1.3: Monte Carlo Damage Model Simulation flow. (Taken from [1])
Finally the main calculation of the system is implemented in the MCS Common Files unit. These functions are available to all other components of the MCS model system. The following is a list of these functions and a brief description of each one:

Main_driver.m
Purpose of function:
This is the program executed by the user to produce Monte Carlo simulation results. It is the only program that is ever explicitly run by the user, all other functions are called by this program or its subprograms. When executed, a user created ascii input file is accessed. The input file contains the user defined attributes for a given execution, such as which model or models to use, which wind speeds to use, and the number of simulations per wind direction.

Frequency of function call:
One execution can call the execution of any or all of the simulation models

Input variables:
The variables that are read from the input file are:

Ind_compile		A binary scalar designed to remind the user to re-run the compilation if needed
Input_file	The name of the user created input file to be opened (currently hardwired as input_2)
Date			This scalar is added to the name of all output files produced by the execution
			of the models. It makes the label for a set of runs unique and identifiable
Num_FileTypes	The number of simulation models to be executed
Num_winds		The number of wind speeds to be executed per model and per direction
Count			The number of simulations to be executed per wind direction per model
FileTypes		A vector of length Num_FileTypes containing integer values in any combination
			from 1 through 19, where each integer represents a different model type
winds			a vector of length Num_winds containing the specific wind speeds to be used
			for the simulations

Output variables:
This main_driver code does not explicitly save any output files or produce any variables. The damage_model_*** function(s) that are called produce the output files
	
Program Architecture:

Ask user whether re-compiling is necessary (if any changes made to any code since last execution, recompiling should be done).

If user indicates re-compile is necessary, program exits
		If not necessary, program continues

Prompt user for name of the ascii input file to open (currently bypassed to use hardwired ‘input_2’)

Prompt user for date string they desire to be added to the names of all output files from this execution
	(for example: 0808051 meaning August 8th, 2005, 1st execution for the day)

Read the input file
	Skip the header row (read into ‘s’)
	Read all numeric input into a variable ‘d’

Assign the following variables based on contents of ‘d’
Num_FileTypes
Num_winds
Count
FileTypes
winds
	
	display FileTypes and winds to user as a check for correctness

FOR 1 : Num_FileTypes
	
Use IF / ELSEIF structure to call one damage_model_*** execution
	Consult the chart below for model names and associated FileType number

	Zip and Move the output files generated by that model to an output directory

End of FOR loop and program

List of user defined functions called from within this function
Any or all of the following functions are called, as determined by the integer in the FileTypes vector
	FileType #
	

	1
	damage_model_N_W_G

	2
	damage_model_N_W_H

	3
	damage_model_S_CB_G

	4
	damage_model_S_CB_H

	13
	damage_model_MH_1

	14
	damage_model_MH_1_pre

	15
	damage_model_MH_2

	16
	damage_model_MH_1_HUD_II

	17
	damage_model_MH_1_HUD_III

Example: This example will run one model (damage_model_N_W_G) using 10 simulations, 41 wind speeds (50:5:250), and 8 wind directions. This will produce 328 (41*8) output damage matrices. These will contain the results of the Monte Carlo simulation of physical exterior damage, and thus the results will be different every time this test code is executed. Be sure that input_2.txt is in the same directory as main_driver.m

Code to be executed from the Matlab command line:
>> main_driver
Prompt: >> should you recompile before running? 0 - no 1 - yes
Response: >> 0
Prompt: >> Enter the date MMDD:
Response: >> 11520131			(this means Jan. 15, 2013, execution #1)

Contents of input_2.txt should be as shown below

by row: # of FileTypes, # of winds, # sims, FileType vector, wind vector
1
41
10
1
50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250

Main_driver_input.m
Purpose of function:
This is the program is called by the damage_model_*** function to define the strength category of the various component capacities.

Frequency of function call:
One execution at the start of any damage_model_***

Input variables:
none

Output variables:

User selected:
Story				the number of stories for the model (1 story or 2 stories)
Shutter				type of window protection
metal_roof_indicator		0 = no metal roof	1 = metal roof
HVHZ_indicator 		0 if inland or WBDR, 1 if HVHZ (only used for M10, W10)
Mitigated			scalar 0 to 10 to define the desired strength combination
				Options are described at the end of this document

Assigned based on the above five selections
cover_type 	1 unrated shingles, 2 110 mph rated in 1980; 3 HVHZ 4 new metal roof
sheathing_type 	1 6d nail data 12" oc, 2 8d 6/12", 3 8d 6/6 or RS 6/12, 4 RS 6/6
connection_type	1 toe nial, 2 clips, 3 straps, 4 HVHZ
gable_conn_type 	1 toe nial, 2 clips, 3 straps, 4 HVHZ
window_type 	1 typical window, no laminate or impact, 2 laminated, 3 impact resistance
door_protection 	1 no shutter protection, 2 shutter protection
reinforcing 	0 no reinforcing in CB walls, 1 reinforcing in CB walls
gable_brace 	1 is no gable brace, 2 gable brace
garage_type 	1 is unbraced garage door, 2 is braced door
stud2sill 	1 toe nial, 2 clips, 3 straps, 4 HVHZ
win_ind 	0 weak or medium houses, 1 strong house, higher pressure capacity

Program Architecture:

User selects the first five output variables:
story, shutter, metal_roof_indicator, HVHZ_indicator, Mitigated
	
	An if-elseif structure then assigns the remaining eleven variables based upon the first five

List of user defined functions called from within this function
none

Description of options for ‘Mitigated’ variable

0 = non-mitigated as defined by commission standards
1 = mitigated as defined by commission standards
2 = special case for S-5 form, page 142 of 2004 standards
unmitigated = no shutters, 1980 construction, 55 mph shingles, 6-d sheathing nails, toe nails / no straps
mitigated = shutters, 1980 construction, 110 mph shingles, 8-d sheathing nails, hurricane straps
3 = strong inland
4 = strong HVHZ (stronger sheathing, shingles, and r2w)
5 = medium case (8d sheathing 6x12, weak garage, clips)
6 = weak case (6d 6x12 sheathing, weak garage, toe nail r2w)
7 = W10 - strong decking (represents plank decking, use one of the stronger values [3 or 4])
8 = W01 - strong decking and rated shingles (represents reroof, two versions, standard S and HVHZ)
9 = M10 - weak deck (represents staples)
10 = M01 -strong decking and rated shingles (represents reroof, two versions, standard S and HVHZ)

Example: User selects a 2 story house, no shutters, metal roof, strong HVHZ

Contents of the supplied code: main_driver_input_test_code.m

clear all

% main_driver_input has no input, user directly enters desired values for:
% story, shutter, metal_roof_indicator, HVHZ_indicator, mitigated

main_driver_input

disp('User entered variables')
disp(' ')
disp(['story = ', num2str(story)])
disp(['shutter = ', num2str(shutter)])
disp(['metal_roof_indicator = ', num2str(metal_roof_indicator)])
disp(['HVHZ_indicator = ', num2str(HVHZ_indicator)])
disp(['mitigated = ', num2str(mitigated)])
disp(' ')
disp(' ')
disp('code output variables')
disp(' ')
disp(['cover_type = ', num2str(cover_type)])
disp(['sheathing_type = ', num2str(sheathing_type)])
disp(['connection_type = ', num2str(connection_type)])
disp(['gable_conn_type = ', num2str(gable_conn_type)])
disp(['window_type = ', num2str(window_type)])
disp(['door_protection = ', num2str(door_protection)])
disp(['reinforcing = ', num2str(reinforcing)])
disp(['gable_brace = ', num2str(gable_brace)])
disp(['garage_type = ', num2str(garage_type)])
disp(['stud2sill = ', num2str(stud2sill)])
disp(['win_ind = ', num2str(win_ind)])

Output:

User entered variables

story = 2
shutter = 1
metal_roof_indicator = 1
HVHZ_indicator = 0
mitigated = 4

code output variables

cover_type = 4
sheathing_type = 4
connection_type = 4
gable_conn_type = 4
window_type = 1
door_protection = 1
reinforcing = 1
gable_brace = 2
garage_type = 2
stud2sill = 3
win_ind = 1

Damage_Model_S_CB_G.m
Purpose of function:
This function is used by main_driver to perform simulations of damage. The model is for the south region with concrete block walls and gable end roof.

Frequency of function call:
This function is called once from the main_driver program per execution of main_driver.m.

Input variables:
count			The number of simulations to be executed per wind direction per model
winds			a vector containing the specific wind speeds to be used for the simulations
date	This scalar is added to the name of all output files produced by the function. It makes the label for a set of runs unique and identifiable

Note: while wind speeds can be controlled by the user (‘winds’), wind direction is not adjustable. Simulations are performed at wind direction angles from 0 to 315 degrees at 45-degree increments, with 0 degrees representing the wind perpendicular to the front elevation of the model house. A number of simulations equal to ‘count’ are performed for each direction and wind speed.

Output variables:
The results from the simulation are archived into MAT-files saved into the local work directory. These output files are produced and saved for post-processing.

A separate output file is produced for each combination of wind speed and direction, with each row of the output file presenting the results of a single simulation, and each column representing a different building component or load information.

If the input variable ‘count’ has the value 5000, then each output file would have 5000 rows.
There are 12 columns in each output file.

The name of the output file has the following structure:

	Region_date&rooftype_walltype&windspeed&winddirection.mat

Example:

	south_211052g_woodV100at135.mat
	
Interpretation:
South 		= South region
211052	= Model run Feb. 11, 2005, 2nd run that day
g		= gable roof type
wood		= wood walls
V100 		= 100 m.p.h. 3 sec gust
at135 		= wind coming from 135 degrees relative to front of house

	The contents of the output file are as follows:

1:	perct_failed_sheathing	=	percentage of roof sheathing failed
2:	perct_failed_roofcover	=	percentage of roof cover lost
3:	perct_failed_r2w		=	percentage of roof to wall connections failed
4:	failed_wall			=	# of failed walls (0-4)
5:	failed_window			=	# of failed windows (0-15)
6:	failed_door			=	# of failed door (0-2)
7:	failed_garage			=	# of failed garage (0-1)
8:	breach				=	breach (0-1) (1 if window, door or garage damaged)
9:	sum(impact_broken)		=	total number of windows broken by impact, not pressure
10:	perct_failed_gable_end_panels	=	percentage of gable end panels failed (zero if
hip roof building)
11:	internal_pressure		=	calculated internal pressure
12:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed

Note: A value of zero indicates no damage.

Program Architecture:

	Lines of code
	Purpose of section

	41-61
	Initialization:
Set up parameters that describe this model type (wall type, roof type, etc.)

	63
	Mitigation Switch Statement:
Execute the code main_driver_input to input the desired strength definitions (weak, medium, strong, mitigated, metal roof, etc.)

	65-67
	Opening Parameter Definition:
The front and back door types are defined here. Also, the ‘windows’ matrix is defined here. Documentation for the ‘windows’ matrix may be located in the function capacity_opening.m

	84-86
	Wind Load Parameter Definition:
This section defines the Cp reduction factor, the terrain exposure coefficient @ mean roof height, and the topography escarpment factor.

	92
	Debris Impact Model:
Call to debris_model_input.m to establish the probability of windows being broken as a function of wind speed (see documentation for this function)

	
110-582
	Triple Loop Simulation Structure:
The triple loop structure to complete the simulations and create/store the output files:
	Outside loop controls the current wind angle relative to the front door
		Middle loop controls the current wind speed
			Inner loop controls the current simulation for that speed and angle

	110-121
	Loop for Angles:
This section sets the current angle from ‘angles’ vector, and establishes the status of the font and back location of the model house relative to the wind. A value of ‘w’ represents the ‘windward’ side, ‘l’ represents the ‘leeward’ side, ‘s’ represents the side, and ‘corner(l/w)’ represents the leeward or windward corner.

	124-133
	Loop for Windspeeds:
Assign current wind speed to be used, provide screen feedback to user on angle and speed
Create P-row - a scalar used as an index into the vector P_shgl to create Prob_shingle_impact. At the minimum wind speed (50), P-row takes the value of 1. The first row in P_shgl corresponds to a probability of window damage from a 50 m.p.h. wind (see documentation for debris_model_input.m and missile_impact.m)
Create Prob_shingle_impact - a 1x4 vector that contains the probability of a missile breaking a large, skinny, medium or small window, respectively. The portion of the 201x12 matrix P_shgl that is relevant for the current wind speed and wind direction is placed into Prob_shingle_impact

	140-145
	Randomize Cp Values:
The assigned wind speed V is randomized with a COV of 0.1
Roof, wall, and internal pressure coefficients (Cp_R, Cp_wall, Cpi) are assigned and randomized with a COV of 0.1 (Gaussian randomization for all)

	149
	Roof Layout Function Call:
Call function rooflayout5644.m to establish the structural layout of the roof system. The function determines number and placement of sheathing panels, number of trusses, number of roof to wall connections, the pressure coefficients aggregated over each sheathing panel (function of wind direction), and the roof area.

	151-154
	Calculation of Roof Panel Areas:
	Total roof area
gable end wall area
	number of sheathing panels (4’x8’) needed for
		gable end walls
		long side vertical walls
		short side vertical walls
	reduce # of sheathing panels on front if garage is persent

	156-161
	Cp Roof Matrix Assignment:
Assign roof pressure coefficients (Cp_roof) depending upon angle of wind

	165-183
	Wall and Roof Zone Pressure Coefficient Definition:
Assign pressure coefficients for the Main Wind Force Resisting System (MWFRS) according to ASCE design code and randomize them with COV of 0.1 These are used in the next step in various wind direction dependent combinations to establish the wall pressure coefficients

	185-195
	Wall Pressure Coefficient Assignment:
Assign wall pressure coefficients Cp_w dependent upon wind direction

	
197-198
	Calculation of Velocity Pressure and Internal Pressure:
Calculate velocity pressure ‘qh’ with equation from ASCE-98
Calculate internal pressure as internal pressure coefficient times velocity pressure

	199
	Calculation of Roof and Wall Pressures:
Call the function pressures.m
This function is used to assign the overall wind pressure to the walls, roof cover, and roof sheathing, and is dependent upon the current wind speed and direction, external and internal pressures.

	200-229
	Assignment of Front & Back Door, Window, and Garage Door Pressures:
Assign values for front_door_pressure, back_door_pressure, & window_pressure as a function of wind direction and speed
Assign garage_pressure to the same as front_door_pressure

	231-241
	Calculation of Sheathing, Roofcover & Wall Capacities:
Call the functions capacity_sheathing.m and capacity_roofcover.m to assign the probabilistic capacity of failure for the sheathing panels and roof-cover, respectively, on the roof of the house.
Call the function capacity_wall.m to assign the probabilistic capacity of failure for the structural portion of the walls (i.e. cracks in masonry or failure of studs in wood walls).

	242-244
	Assignment of Gable Panels Capacity (for Gable roofs only):
IF the model has a gable roof, call the function capacity_wall_sheathing.m to assign the probabilistic capacity of failure for the sheathing panels on the gable walls of the house.

	246-255
	Calculation of Initial Gable-End and Roof-to-Wall Connection Capacity:
Call the function capacity_r2w to assign two vectors of random roof to wall connection capacities (r2winitial is for long sides of house, gableinitial is for short sides with gable roofs). Then assign output from above function call to r2w_cap and gable_cap vectors

	257
	Calculation of Load on Roof-to-Wall Connections:
Call the function r2w_conn_uplift.m to calculate the loads on the roof to wall connections (whose capacities were just assigned)

	259-266
	Archiving of Uplift Loads and Capacities:
Create several vectors starting with saved_***
These are used for code development / diagnostics only, allowing developer to view the r2w uplift and capacities. These variables are NOT used in any further calculations

	270
	Calculation of Opening Capacities:
Call the function capacity_opening.m to assign wind pressure capacities to doors and windows

	
At this stage the loads and capacities have been assigned. The next section is the INITIAL failure check, -where INITIAL refers to the first iteration before load redistributions take place due to failures

	279-288
	Initialization of Failed Sheathing Area:
Identify failed roof sheathing panels, assign capacity of failed panels to zero, and create perct_failed_sheathing

	291-295
	Initialization of Failed Roof-Cover Area:
Identify failed roof shingles, and create perct_failed_roofcover.

	303
	Calculation of Failed Wall Sheathing:
This section identifies the number of failed wall sheathing panels on the front, back, and sides of the model house. Then, the information is vectorized, and a percentage of failure is calculated.

	
306-336
	Calculation of Wall Loading Failure:
Call function wall_loading.m to check for structural wall failure. Output includes ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘V_locn’ to indicate which direction the wind is approaching the house, and ‘fvmax’ is the maximum shear load for checking shear failure.
Then, the program assigns the 1st column of failedwall 4x2 vector, where 0 is non-failure, 1 is failure. This first column is a check for uplift/bending wall failure.
Assign 2nd column of failedwall 4x2 vector, depending upon wind direction, where 2nd column is for shear wall failure.
Create failed_wall_summary, a 4x1 vector that is >0 for a failed wall, 0 for intact wall.

	338-346
	Obtain the Windward Side of Window for Impact Calculation:
Assign impact_windows as those windows on the side(s) of the house that wind is approaching, wind direction dependent

	349
	Identify the Broken Openings:
Call the function missile_impact.m to identify windows broken due to debris impact, set capacity of those broken to zero

	351
	Re-Calculate the Internal Pressure from Impacted Windows:
Call the function window_pressure_check to count # of windows broken due to wind pressure, and reassign internal pressure due to broken windows due to either impact or pressure

	353-369
	Re-Calculate the Internal Pressure from Impacted Doors:
Check for failure of back and front doors, reassign internal pressure if failure occurs

	371-382
	Re-Calculate the Internal Pressure from Impacted Garage:
Check for garage door failure and re-assign internal pressure based on several possible combinations of failed doors and windows in combination with failed garage

	384-454
	Routine to Update Values for New Internal Pressure:
The IF structure between these lines is executed if internal pressure has changed due to INITIAL failures, in which case loads are re-calculated and components re-checked under the new loading

	385-386
	Internal Pressure Check:
Check if the current internal pressure after initial failure checks is different from the originally assigned internal pressure prior to any failure checks. If there is a difference, assign the internal pressure variable ‘internal’ to the current value as adjusted previously.

	389
	New Roof & Wall Pressures Calculation:
Call the function pressures.m (1st call was on line 199) to reassign overall pressure values on the walls and roof. (overall pressure combines external and internal pressures)

	391-418
	Re-Assign Opening Pressures:
Repeat calculations from lines 200 to 229 to assign values for front_door_pressure, back_door_pressure, & window_pressure as a function of wind direction and speed
Assign garage_pressure to the same as front_door_pressure.Values may have changed if internal pressure was adjusted due to window/door failures.

	
The next section is the NEXT failure check after loads have been adjusted to account for internal pressure changes

	425
	New Window Pressure Check:
Call the function window_pressure_check.m (1st called on line 351) to identify windows that failed under new overall wind pressures.

	
427-431
	New Back & Front Door Failure Check:
Re-check back, front and garage failure (first checked in lines 353-369)
Create perct_failed_opening output variable now that checks to openings has been completed

	433-438
	New Failed Sheathing Area Calculation:
Identify failed roof sheathing
Create perct_failed_sheathing output variable

	442
	Adjustment of Pressure on Failed Sheathing Panels:
The uplift pressure on damaged sheathing panels is reduced by a factor of 2.5

	445-452
	New Calculation of Failed Roof-Cover:
For roof cover (shingles) attached to failed sheathing panels, reduce their capacity to zero and re-identify failed shingles
Create perct_failed_roofcover output variable

	454
	End Internal Pressure Check:
End IF structure that re-assesses failure if internal pressures had changed in INTIIAL failure check

	The next section is the ADDITIONAL failure checks. Regardless of whether internal pressure had changed, there are several iterative checks that are conducted for load re-distribution and additional failure

	462-468
	Calculate the Roof-to-Wall Connection Uplift Forces:
Call the function r2w_conn_uplift.m to calculate the uplift in each of the roof to wall (r2w) connections. This includes the r2w connections along the long sides of the house, and the gable end connections along the short sides of the house
The first call generates ‘up’and ‘up_gable’, which are used on line 306.
The second call is used in the redistribution WHILE loops.

	473
	Redistribute Uplift Pressure on Trusses not Failed:
Call the function redist_uplift.m to transfer the loads previously carried by r2w connections that have failed. The failed r2w connections cannot carry any load, so the load is redistributed to the neighboring connections that are still intact with this function. Once the redistribution is finished, the remaining r2w connections are tested for failure under the new loads. If used by a damage_model_*** with a hip roof, this function is used for all r2w connections. If used by a gable roof model, this function is used for the r2w connections along the long sides of the building, and redist_gable.m is used for the r2w connections along the gable end

	478-481
	Continue Redistribution of Uplift Pressure to Convergence:
WHILE loop to check for additional r2w failures along the long sides, and again redistribute the loads if more fail. Repeated until no further connections fail

	486-494
	Check for Roof-to-Wall Connection Failure from Toppling Over:
Check for r2w failures due to toppling rather than uplift. The comments in the code explain the calculations

	496-510
	Check for Gable-End Connection Failure:
Repeat the algorithm used previously, now applying to gable-end r2w connections to find initial failure, and redistribute and recheck failures in a WHILE loop

	512
	Calculate Failed Roof-to-Wall Connection Failure:
Create perct_failed_r2w output variable.

	515
	New Check for Wall Loading Failure:
Call the function wall_loading (1st called on line 333) to check for wall failure (structural). Output includes ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘V_locn’ to indicate which direction the wind is approaching the house, and ‘fvmax’ is the maximum shear load for checking shear failure.

	520-525
	Calculation of Gable-End Connection & Wall Sheathing Failure:
Calculate the gable-end pressure (same as windows) and identify the failed gable-end wall sheathing panels.
Create perct_failed_gable_end_panels output variable.

	527-552
	New Check for Wall Loading Failure:
Repeat procedure used in lines 340-361 to identify wall failures
Create failed_wall output variable

	554-558
	Breach Check:
Determine if house has been breached

	559
	Append Damage Matrix:
Create next row in damage output matrix, which will be 15 x ‘count’ when simulations complete

	570
	First Loop End:
End inner loop (135-570) that controls the simulation count

	572-576
	MAT-File Preparation:
Set up strings for title of output file

	580
	Create the MAT-File for Wind Direction & Speed:
Save the damage matrix for all simulations at a given wind speed and direction

	582
	End middle (124-582) loop that controls wind speed

	583
	End outer loop (110-583) that controls wind angle

Return to calling program

Below is list of user-defined functions called from within this function (in order of appearance)

92	debris_model_input
149	rooflayout6044
199	pressures
234	capacity_sheathing
238	capacity_roofcover
241	capacity_wall
243	capacity_wall_sheathing
248	capacity_r2w
257	r2w_conn_uplift
270	capacity_opening
306	wall_loading
349	missile_impact
351	window_pressure_check
389	pressures
425	window_pressure_check
463, 464	r2w_conn_uplift
473, 480	redist_uplift
502, 507	redist_gable
515	wall_loading

Damage_Model_S_CB_H.m
Purpose of function:
This function is used by main_driver to perform simulations of damage. The model is for the south region with concrete block walls and hip end roof.

Frequency of function call:
This function is called once from the main_driver program per execution of main_driver.m.

Input variables:
count			The number of simulations to be executed per wind direction per model
winds			a vector containing the specific wind speeds to be used for the simulations
date	This scalar is added to the name of all output files produced by the function. It makes the label for a set of runs unique and identifiable

Note: while wind speeds can be controlled by the user (‘winds’), wind direction is not adjustable. Simulations are performed at wind direction angles from 0 to 315 degrees at 45-degree increments, with 0 degrees representing the wind perpendicular to the front elevation of the model house. A number of simulations equal to ‘count’ are performed for each direction and wind speed.

Output variables:
The results from the simulation are archived into MAT-files saved into the local work directory. These output files are produced and saved for post-processing.

A separate output file is produced for each combination of wind speed and direction, with each row of the output file presenting the results of a single simulation, and each column representing a different building component or load information.

If the input variable ‘count’ has the value 5000, then each output file would have 5000 rows.
There are 12 columns in each output file.

The name of the output file has the following structure:

	Region_date&rooftype_walltype&windspeed&winddirection.mat

Example:

	south_211052g_woodV100at135.mat
	
Interpretation:
South 		= South region
211052	= Model run Feb. 11, 2005, 2nd run that day
g		= gable roof type
wood		= wood walls
V100 		= 100 m.p.h. 3 sec gust
at135 		= wind coming from 135 degrees relative to front of house

	The contents of the output file are as follows:

1:	perct_failed_sheathing	=	percentage of roof sheathing failed
2:	perct_failed_roofcover	=	percentage of roof cover lost
3:	perct_failed_r2w		=	percentage of roof to wall connections failed
4:	failed_wall			=	# of failed walls (0-4)
5:	failed_window			=	# of failed windows (0-15)
6:	failed_door			=	# of failed door (0-2)
7:	failed_garage			=	# of failed garage (0-1)
8:	breach				=	breach (0-1) (1 if window, door or garage damaged)
9:	sum(impact_broken)		=	total number of windows broken by impact, not pressure
10:	perct_failed_gable_end_panels	=	percentage of gable end panels failed (zero if
hip roof building)
11:	internal_pressure		=	calculated internal pressure
12:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed

Note: A value of zero indicates no damage.

Program Architecture:

	Lines of code
	Purpose of section

	42-62
	Initialization:
Set up parameters that describe this model type (wall type, roof type, etc.)

	64
	Mitigation Switch Statement:
Execute the code main_driver_input to input the desired strength definitions (weak, medium, strong, mitigated, metal roof, etc.)

	67-69
	Opening Parameter Definition:
The front and back door types are defined here. Also, the ‘windows’ matrix is defined here. Documentation for the ‘windows’ matrix may be located in the function capacity_opening.m

	87-89
	Wind Load Parameter Definition:
This section defines the Cp reduction factor, the terrain exposure coefficient @ mean roof height, and the topography escarpment factor.

	93
	Debris Impact Model:
Call to debris_model_input.m to establish the probability of windows being broken as a function of wind speed (see documentation for this function)

	111-550
	Triple Loop Simulation Structure:
The triple loop structure to complete the simulations and create/store the output files:
	Outside loop controls the current wind angle relative to the front door
		Middle loop controls the current wind speed
			Inner loop controls the current simulation for that speed and angle

	
111-122
	Loop for Angles:
This section sets the current angle from ‘angles’ vector, and establishes the status of the font and back location of the model house relative to the wind. A value of ‘w’ represents the ‘windward’ side, ‘l’ represents the ‘leeward’ side, ‘s’ represents the side, and ‘corner(l/w)’ represents the leeward or windward corner.

	125-132
	Loop for Windspeeds:
Assign current wind speed to be used, provide screen feedback to user on angle and speed
Create P-row - a scalar used as an index into the vector P_shgl to create Prob_shingle_impact. At the minimum wind speed (50), P-row takes the value of 1. The first row in P_shgl corresponds to a probability of window damage from a 50 m.p.h. wind (see documentation for debris_model_input.m and missile_impact.m)
Create Prob_shingle_impact - a 1x4 vector that contains the probability of a missile breaking a large, skinny, medium or small window, respectively. The portion of the 201x12 matrix P_shgl that is relevant for the current wind speed and wind direction is placed into Prob_shingle_impact

	241-246
	Randomize Cp Values:
The assigned wind speed V is randomized with a COV of 0.1
Roof, wall, and internal pressure coefficients (Cp_R, Cp_wall, Cpi) are assigned and randomized with a COV of 0.1 (Gaussian randomization for all)

	149
	Roof Layout Function Call:
Call function rooflayout5644.m to establish the structural layout of the roof system. The function determines number and placement of sheathing panels, number of trusses, number of roof to wall connections, the pressure coefficients aggregated over each sheathing panel (function of wind direction), and the roof area.

	152-153
	Calculation of Roof Panel Areas:
	Total roof area
gable end wall area
	number of sheathing panels (4’x8’) needed for
		long side vertical walls
		short side vertical walls
	reduce # of sheathing panels on front if garage is persent

	155-160
	Cp Roof Matrix Assignment:
Assign roof pressure coefficients (Cp_roof) depending upon angle of wind

	164-182
	Wall and Roof Zone Pressure Coefficient Definition:
Assign pressure coefficients for the Main Wind Force Resisting System (MWFRS) according to ASCE design code and randomize them with COV of 0.1 These are used in the next step in various wind direction dependent combinations to establish the wall pressure coefficients

	184-194
	Wall Pressure Coefficient Assignment:
Assign wall pressure coefficients Cp_w dependent upon wind direction

	196-197
	Calculation of Velocity Pressure and Internal Pressure:
Calculate velocity pressure ‘qh’ with equation from ASCE-98
Calculate internal pressure as internal pressure coefficient times velocity pressure

	198
	Calculation of Roof and Wall Pressures:
Call the function pressures.m
This function is used to assign the overall wind pressure to the walls, roof cover, and roof sheathing, and is dependent upon the current wind speed and direction, external and internal pressures.

	
200-229
	Assignment of Front & Back Door, Window, and Garage Door Pressures:
Assign values for front_door_pressure, back_door_pressure, & window_pressure as a function of wind direction and speed
Assign garage_pressure to the same as front_door_pressure

	231-241
	Calculation of Sheathing, Roofcover & Wall Capacities:
Call the functions capacity_sheathing.m and capacity_roofcover.m to assign the probabilistic capacity of failure for the sheathing panels and roof-cover, respectively, on the roof of the house.
Call the function capacity_wall.m to assign the probabilistic capacity of failure for the structural portion of the walls (i.e. cracks in masonry or failure oif studs in wood walls).

	242-244
	Assignment of Gable Panels Capacity (for Gable roofs only):
IF the model has a gable roof, call the function capacity_wall_sheathing.m to assign the probabilistic capacity of failure for the sheathing panels on the gable walls of the house.

	240-244
	Calculation of Initial Gable-End and Roof-to-Wall Connection Capacity:
Call the function capacity_r2w to assign two vectors of random roof to wall connection capacities (r2winitial is for long sides of house, gableinitial is for short sides with gable roofs). Then assign output from above function call to r2w_cap and gable_cap vectors

	248-258
	Calculation of Load on Roof-to-Wall Connections:
Call the function r2w_conn_uplift_hip6044.m to calculate the loads on the roof to wall connections (whose capacities were just assigned)

	263-266
	Archiving of Uplift Loads and Capacities:
Create several vectors starting with saved_***
These are used for code development / diagnostics only, allowing developer to view the r2w uplift and capacities. These variables are NOT used in any further calculations

	271
	Calculation of Opening Capacities:
Call the function capacity_opening.m to assign wind pressure capacities to doors and windows

	
At this stage the loads and capacities have been assigned. The next section is the INITIAL failure check, -where INITIAL refers to the first iteration before load redistributions take place due to failures

	280-289
	Initialization of Failed Sheathing Area:
Identify failed roof sheathing panels, assign capacity of failed panels to zero, and create perct_failed_sheathing

	291-295
	Initialization of Failed Roof-Cover Area:
Identify failed roof shingles, and create perct_failed_roofcover

	304
	Calculation of Failed Wall Sheathing:
This section identifies the number of failed wall sheathing panels on the front, back, and sides of the model house. Then, the information is vectorized, and a percentage of failure is calculated.

	306-337
	Calculation of Wall Loading Failure:
Call function wall_loading.m to check for structural wall failure. Output includes ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘V_locn’ to indicate which direction the wind is approaching the house, and ‘fvmax’ is the maximum shear load for checking shear failure.
Then, the program assigns the 1st column of failedwall 4x2 vector, where 0 is non-failure, 1 is failure. This first column is a check for uplift/bending wall failure.
Assign 2nd column of failedwall 4x2 vector, depending upon wind direction, where 2nd column is for shear wall failure.
Create failed_wall_summary, a 4x1 vector that is >0 for a wailed wall, 0 for intact wall.

	
339-347
	Obtain the Windward Side of Window for Impact Calculation:
Assign impact_windows as those windows on the side(s) of the house that wind is approaching, wind direction dependent

	350
	Identify the Broken Openings:
Call the function missile_impact.m to identify windows broken due to debris impact, set capacity of those broken to zero

	352
	Re-Calculate the Internal Pressure from Impacted Windows:
Call the function window_pressure_check to count # of windows broken due to wind pressure, and reassign internal pressure due to broken windows due to either impact or pressure

	354-370
	Re-Calculate the Internal Pressure from Impacted Doors:
Check for failure of back and front doors, reassign internal pressure if failure occurs

	372-383
	Re-Calculate the Internal Pressure from Impacted Garage:
Check for garage door failure and re-assign internal pressure based on several possible combinations of failed doors and windows in combination with failed garage

	386-456
	Routine to Update Values for New Internal Pressure:
The IF structure between these lines is executed if internal pressure has changed due to INITIAL failures, in which case loads are re-calculated and components re-checked under the new loading

	387-388
	Internal Pressure Check:
Check if the current internal pressure after initial failure checks is different from the originally assigned internal pressure prior to any failure checks. If there is a difference, assign the internal pressure variable ‘internal’ to the current value as adjusted from lines 350 to 383.

	391
	New Roof & Wall Pressures Calculation:
Call the function pressures.m (1st call was on line 198) to reassign overall pressure values on the walls and roof. (overall pressure combines external and internal pressures)

	393-420
	Re-Assign Opening Pressures:
Repeat calculations from lines 200 to 229 to assign values for front_door_pressure, back_door_pressure, & window_pressure as a function of wind direction and speed
Assign garage_pressure to the same as front_door_pressure.Values may have changed if internal pressure was adjusted due to window/door failures.

	
The next section is the NEXT failure check after loads have been adjusted to account for internal pressure changes

	427
	New Window Pressure Check:
Call the function window_pressure_check.m (1st called on line 352) to identify windows that failed under new overall wind pressures.

	429-433
	New Back & Front Door Check:
Re-check back, front and garage failure
Create perct_failed_opening output variable now that checks to openings has been completed

	435-440
	New Failed Sheathing Area Calculation:
Identify failed roof sheathing
Create perct_failed_sheathing output variable

	444
	Adjustment of Pressure on Failed Sheathing Panels:
The uplift pressure on damaged sheathing panels is reduced by a factor of 2.5

	447-454
	New Calculation of Failed Roof-Cover:
For roof cover (shingles) attached to failed sheathing panels, reduce their capacity to zero and re-identify failed shingles
Create perct_failed_roofcover output variable

	456
	End Internal Pressure Check:
End IF structure that re-assesses failure if internal pressures had changed in INTIIAL failure check

	The next section is the ADDITIONAL failure checks. Regardless of whether internal pressure had changed, there are several iterative checks that are conducted for load re-distribution and additional failure

	465-471
	Check for Roof-to-Wall Connection Failure:
Identify initial r2w failures along the long sides of the house

	473-475
	Redistribute Uplift Pressure on Trusses not Failed:
Call the function redist_uplift.m to transfer the loads previously carried by r2w connections that have failed. The failed r2w connections cannot carry any load, so the load is redistributed to the neighboring connections that are still intact with this function. Once the redistribution is finished, the remaining r2w connections are tested for failure under the new loads. If used by a damage_model_*** with a hip roof, this function is used for all r2w connections. If used by a gable roof model, this function is used for the r2w connections along the long sides of the building, and redist_gable.m is used for the r2w connections along the gable end

	476-487
	Continue Redistribution of Uplift Pressure to Convergence:
WHILE loop to check for additional r2w failures along the long sides, and again redistribute the loads if more fail. Repeated until no further connections fail

	489-522
	New Check for Wall Loading Failure:
Call the function wall_loading (1st called on line 307) to check for wall failure (structural). Output includes ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘V_locn’ to indicate which direction the wind is approaching the house, and ‘fvmax’ is the maximum shear load for checking shear failure.

	525-528
	Breach Check:
Determine if house has been breached

	529
	Append Damage Matrix:
Create next row in damage output matrix, which will be 15 x ‘count’ when simulations complete

	539
	First Loop End:
End inner loop (134-539) that controls the simulation count

	641-645
	MAT-File Preparation:
Set up strings for title of output file

	647
	Create the MAT-File for Wind Direction & Speed:
Save the damage matrix for all simulations at a given wind speed and direction

	550
	End middle (125-550) loop that controls wind speed

	551
	End outer loop (111-551) that controls wind angle

Return to calling program

Below is list of user-defined functions called from within this function (in order of appearance)

93	debris_model_input
149	rooflayout6044
198	pressures
234	capacity_sheathing
238	capacity_roofcover
241	capacity_wall
243	capacity_wall_sheathing
248	capacity_r2w
258	r2w_conn_uplift_hip6044
271	capacity_opening
307	wall_loading
350	missile_impact
352	window_pressure_check
391	pressures
427	window_pressure_check
465	r2w_conn_uplift_hip6044
474, 475	redist_uplift
490	wall_load

Damage_Model_N_W_G.m
Purpose of function:
This function is used by main_driver to perform simulations of damage. The model is for the northern region with wood walls and gable end roof.

Frequency of function call:
This function is called once from the main_driver program per execution of main_driver.m.

Input variables:
	
count			The number of simulations to be executed per wind direction per model
winds			a vector containing the specific wind speeds to be used for the simulations
date	This scalar is added to the name of all output files produced by the function. It makes the label for a set of runs unique and identifiable

Note: while wind speeds can be controlled by the user (‘winds’), wind direction is not adjustable. Simulations are performed at wind direction angles from 0 to 315 degrees at 45-degree increments, with 0 degrees representing the wind perpendicular to the front elevation of the model house. A number of simulations equal to ‘count’ are performed for each direction and wind speed.

Output variables:
The results from the simulation are archived into MAT-files saved into the local work directory. These output files are produced and saved for post-processing.

A separate output file is produced for each combination of wind speed and direction, with each row of the output file presenting the results of a single simulation, and each column representing a different building component or load information.

If the input variable ‘count’ has the value 2000, then each output file would have 2000 rows.
There are 15 columns in each output file.

The name of the output file has the following structure:

	Region_date&rooftype_walltype&windspeed&winddirection.mat

Example:

	south_211052g_woodV100at135.mat
	
Interpretation:
South 		= South region
211052	= Model run Feb. 11, 2005, 2nd run that day
g		= gable roof type
wood		= wood walls
V100 		= 100 m.p.h. 3 sec gust
at135 		= wind coming from 135 degrees relative to front of house

	The contents of the output file are as follows:

1:	perct_failed_sheathing	=	percentage of roof sheathing failed
2:	perct_failed_roofcover	=	percentage of roof cover lost
3:	perct_failed_r2w		=	percentage of roof to wall connections failed
4:	failed_wall			=	# of failed walls (0-4)
5:	failed_window			=	# of failed windows (0-15)
6:	failed_door			=	# of failed door (0-2)
7:	failed_garage			=	# of failed garage (0-1)
8:	breach				=	breach (0-1) (1 if window, door or garage damaged)
9:	sum(impact_broken)		=	total number of windows broken by impact, not pressure
10:	perct_failed_gable_end_panels	=	percentage of gable end panels failed (zero if
hip roof building)
11:	internal_pressure		=	calculated internal pressure
12:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed (front)
13:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed (back)
14:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed (side)
15:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed (side)

Note: A value of zero indicates no damage.

Program Architecture:

	Lines of code
	Purpose of section

	48-62
	Initialization:
Set up parameters that describe this model type (wall type, roof type, etc.)

	64
	Mitigation Switch Statement:
Execute the code main_driver_input to input the desired strength definitions (weak, medium, strong, mitigated, metal roof, etc.)

	66-68
	Opening Parameter Definition:
The front and back door types are defined here. Also, the ‘windows’ matrix is defined here. Documentation for the ‘windows’ matrix may be located in the function capacity_opening.m

	87-89
	Wind Load Parameter Definition:
This section defines the Cp reduction factor, the terrain exposure coefficient @ mean roof height, and the topography escarpment factor.

	92
	Debris Impact Model:
Call to debris_model_input.m to establish the probability of windows being broken as a function of wind speed (see documentation for this function)

	
110-618
	Triple Loop Simulation Structure:
The triple loop structure to complete the simulations and create/store the output files:
	Outside loop controls the current wind angle relative to the front door
		Middle loop controls the current wind speed
			Inner loop controls the current simulation for that speed and angle

	110-119
	Loop for Angles:
This section sets the current angle from ‘angles’ vector, and establishes the status of the font and back location of the model house relative to the wind. A value of ‘w’ represents the ‘windward’ side, ‘l’ represents the ‘leeward’ side, ‘s’ represents the side, and ‘corner(l/w)’ represents the leeward or windward corner.

	123-133
	Loop for Windspeeds:
Assign current wind speed to be used, provide screen feedback to user on angle and speed
Create P-row - a scalar used as an index into the vector P_shgl to create Prob_shingle_impact. At the minimum wind speed (50), P-row takes the value of 1. The first row in P_shgl corresponds to a probability of window damage from a 50 m.p.h. wind (see documentation for debris_model_input.m and missile_impact.m)
Create Prob_shingle_impact - a 1x4 vector that contains the probability of a missile breaking a large, skinny, medium or small window, respectively. The portion of the 201x12 matrix P_shgl that is relevant for the current wind speed and wind direction is placed into Prob_shingle_impact

	138-143
	Randomize Cp Values:
The assigned wind speed V is randomized with a COV of 0.1
Roof, wall, and internal pressure coefficients (Cp_R, Cp_wall, Cpi) are assigned and randomized with a COV of 0.1 (Gaussian randomization for all)

	146
	Roof Layout Function Call:
Call function rooflayout6038.m to establish the structural layout of the roof system. The function determines number and placement of sheathing panels, number of trusses, number of roof to wall connections, the pressure coefficients aggregated over each sheathing panel (function of wind direction), and the roof area.

	149-158
	Calculation of Roof Panel Areas:
	Total roof area
gable end wall area
	number of sheathing panels (4’x8’) needed for
		gable end walls
		long side vertical walls
		short side vertical walls
	reduce # of sheathing panels on front if garage is persent

	161-165
	Cp Roof Matrix Assignment:
Assign roof pressure coefficients (Cp_roof) depending upon angle of wind

	170-187
	Wall and Roof Zone Pressure Coefficient Definition:
Assign pressure coefficients for the Main Wind Force Resisting System (MWFRS) according to ASCE design code and randomize them with COV of 0.1 These are used in the next step in various wind direction dependent combinations to establish the wall pressure coefficients

	189-199
	Wall Pressure Coefficient Assignment:
Assign wall pressure coefficients Cp_w dependent upon wind direction

	201-202
	Calculation of Velocity Pressure and Internal Pressure:
Calculate velocity pressure ‘qh’ with equation from ASCE-98
Calculate internal pressure as internal pressure coefficient times velocity pressure

	
203
	Calculation of Roof and Wall Pressures:
Call the function pressures.m
This function is used to assign the overall wind pressure to the walls, roof cover, and roof sheathing, and is dependent upon the current wind speed and direction, external and internal pressures.

	207-233
	Assignment of Front & Back Door, Window, and Garage Door Pressures:
Assign values for front_door_pressure, back_door_pressure, & window_pressure as a function of wind direction and speed
Assign garage_pressure to the same as front_door_pressure

	238-245
	Calculation of Sheathing, Roofcover & Wall Capacities:
Call the functions capacity_sheathing.m and capacity_roofcover.m to assign the probabilistic capacity of failure for the sheathing panels and roof-cover, respectively, on the roof of the house.
Call the function capacity_wall.m to assign the probabilistic capacity of failure for the structural portion of the walls (i.e. cracks in masonry or failure if studs in wood walls).

	246-248
	Assignment of Gable Panels Capacity (for Gable roofs only):
IF the model has a gable roof, call the function capacity_wall_sheathing.m to assign the probabilistic capacity of failure for the sheathing panels on the gable walls of the house.

	250-256
	Assignment of Wall Sheathing Capacity:
Call the function capacity_wall_sheathing.m to assign the probabilistic capacity of failure for the wall sheathing panels on the long and short side walls of the house.

	261-267
	Calculation of Initial Gable-End and Roof-to-Wall Connection Capacity:
Call the function capacity_r2w.m to assign two vectors of random roof to wall connection capacities (r2winitial is for long sides of house, gableinitial is for short sides with gable roofs). Then assign output from above function call to r2w_cap and gable_cap vectors

	269
	Calculation of Load on Roof-to-Wall Connections:
Call the function r2w_conn_uplift.m to calculate the loads on the roof to wall connections (whose capacities were just assigned)

	274
	Calculation of Opening Capacities:
Call the function capacity_opening.m to assign wind pressure capacities to doors and windows

	
At this stage the loads and capacities have been assigned. The next section is the INITIAL failure check, -where INITIAL refers to the first iteration before load redistributions take place due to failures

	284-292
	Initialization of Failed Sheathing Area:
Identify failed roof sheathing panels, assign capacity of failed panels to zero, and create perct_failed_sheathing

	295-298
	Initialization of Failed Roof-Cover Area:
Identify failed roof shingles, and create perct_failed_roofcover

	308-335
	Calculation of Failed Wall Sheathing:
This section identifies the number of failed wall sheathing panels on the front, back, and sides of the model house. Then, the information is vectorized, and a percentage of failure is calculated.

	
339-365
	Calculation of Wall Loading Failure:
Call function wall_loading.m to check for structural wall failure. Output includes ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘V_locn’ to indicate which direction the wind is approaching the house, and ‘fvmax’ is the maximum shear load for checking shear failure.
Then, the program assigns the 1st column of failedwall 4x2 vector, where 0 is non-failure, 1 is failure. This first column is a check for uplift/bending wall failure.
Assign 2nd column of failedwall 4x2 vector, depending upon wind direction, where 2nd column is for shear wall failure.

	369-375
	Obtain the Windward Side of Window for Impact Calculation:
Assign impact_windows as those windows on the side(s) of the house that wind is approaching, wind direction dependent

	378
	Identify the Broken Openings:
Call the function missile_impact.m to identify windows broken due to debris impact, set capacity of those broken to zero

	380
	Re-Calculate the Internal Pressure from Impacted Windows:
Call the function window_pressure_check to count # of windows broken due to wind pressure, and reassign internal pressure due to broken windows due to either impact or pressure

	383-398
	Re-Calculate the Internal Pressure from Impacted Doors:
Check for failure of back and front doors, reassign internal pressure if failure occurs

	400-411
	Re-Calculate the Internal Pressure from Impacted Garage:
Check for garage door failure and re-assign internal pressure based on several possible combinations of failed doors and windows in combination with failed garage

	415-517
	Routine to Update Values for New Internal Pressure:
The IF structure between these lines is executed if internal pressure has changed due to INITIAL failures, in which case loads are re-calculated and components re-checked under the new loading

	415-416
	Internal Pressure Check:
Check if the current internal pressure after initial failure checks is different from the originally assigned internal pressure prior to any failure checks. If there is a difference, assign the internal pressure variable ‘internal’ to the current value as adjusted.

	419
	New Roof & Wall Pressures Calculation:
Call the function pressures.m to reassign overall pressure values on the walls and roof. (overall pressure combines external and internal pressures)

	422-448
	Re-Assign Opening Pressures:
Assign values for front_door_pressure, back_door_pressure, & window_pressure as a function of wind direction and speed
Assign garage_pressure to the same as front_door_pressure. Values may have changed if internal pressure was adjusted due to window/door failures.

	
The next section is the NEXT failure check after loads have been adjusted to account for internal pressure changes

	455
	New Window Pressure Check:
Call the function window_pressure_check.m to identify windows that failed under new overall wind pressures.

	458-461
	New Back & Front Door Check:
Re-check back, front and garage failure.
Create perct_failed_opening output variable now that checks to openings has been completed

	468
	New Failed Sheathing Area Calculation:
Identify failed roof sheathing
Create perct_failed_sheathing output variable

	472
	Adjustment of Pressure on Failed Sheathing Panels:
The uplift pressure on damaged sheathing panels is reduced by a factor of 2.5

	476-482
	New Calculation of Failed Roof-Cover:
For roof cover (shingles) attached to failed sheathing panels, reduce their capacity to zero and re-identify failed shingles
Create perct_failed_roofcover output variable

	488-515
	New Failure Check for Wall Sheathing:
Repeat failure checks for wall sheathing failure.
Create perct_failed_wall_panels output vector.

	517
	End Internal Pressure Check:
End IF structure that re-assesses failure if internal pressures had changed in INTIIAL failure check

	

	

	The next section is the ADDITIONAL failure checks. Regardless of whether internal pressure had changed, there are several iterative checks that are conducted for load re-distribution and additional failure

	525-530
	Calculate the Roof-to-Wall Connection Uplift Forces:
Call the function r2w_conn_uplift.m to calculate the uplift in each of the roof to wall (r2w) connections. This includes the r2w connections along the long sides of the house, and the gable end connections along the short sides of the house
The first call generates ‘up’and ‘up_gable’,.
The second call is used in the redistribution WHILE loops.

	531
	Check for Roof-to-Wall Connection Failure:
Identify initial r2w failures along the long sides of the house

	533
	Redistribute Uplift Pressure on Trusses not Failed:
Call the function redist_uplift.m to transfer the loads previously carried by r2w connections that have failed. The failed r2w connections cannot carry any load, so the load is redistributed to the neighboring connections that are still intact with this function. Once the redistribution is finished, the remaining r2w connections are tested for failure under the new loads. If used by a damage_model_*** with a hip roof, this function is used for all r2w connections. If used by a gable roof model, this function is used for the r2w connections along the long sides of the building, and redist_gable.m is used for the r2w connections along the gable end

	535-538
	Continue Redistribution of Uplift Pressure to Convergence:
WHILE loop to check for additional r2w failures along the long sides, and again redistribute the loads if more fail. Repeated until no further connections fail

	541-548
	Check for Roof-to-Wall Connection Failure from Toppling Over:
Check for r2w failures due to toppling rather than uplift. The comments in the code explain the calculations

	550-559
	Check for Gable-End Connection Failure:
Repeat the algorithm used previously, now applying to gable-end r2w connections to find initial failure, and redistribute and recheck failures in a WHILE loop

	561
	Calculate Failed Roof-to-Wall Connection Failure:
Create perct_failed_r2w output variable.

	
564
	New Check for Wall Loading Failure:
Call the function wall_loading (1st called on line 464) to check for wall failure (structural). Output includes ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘V_locn’ to indicate which direction the wind is approaching the house, and ‘fvmax’ is the maximum shear load for checking shear failure.

	565-569
	Calculation of Gable-End Connection & Wall Sheathing Failure:
Calculate the gable-end pressure (same as windows) and identify the failed gable-end wall sheathing panels.
Create perct_failed_gable_end_panels output variable.

	572-595
	New Check for Wall Loading Failure:
Repeat procedure used in lines 466 to 489 to identify wall failures
Create failed_wall output variable

	599-602
	Breach Check:
Determine if house has been breached

	603
	Append Damage Matrix:
Create next row in damage output matrix, which will be 15 x ‘count’ when simulations complete

	606
	First Loop End:
End inner loop (249-731) that controls the simulation count

	608-612
	MAT-File Preparation:
Set up strings for title of output file

	614
	Create the MAT-File for Wind Direction & Speed:
Save the damage matrix for all simulations at a given wind speed and direction

	617
	End middle loop that controls wind speed

	618
	End outer loop that controls wind angle

Return to calling program

Below is list of user-defined functions called from within this function (in order of appearance)

92	debris_model_input
146	rooflayout6038
203	pressures
238	capacity_sheathing
242	capacity_roofcover
360	capacity_wall
247, 250, 251, 252	capacity_wall_sheathing
261	capacity_r2w
269	r2w_conn_uplift
274	capacity_opening
339	wall_loading
378	missile_impact
380	window_pressure_check
419	pressures
455	window_pressure_check
526, 527	r2w_conn_uplift
533, 537	redist_uplift
554, 558	redist_gable
564	wall_loading

Damage_Model_N_W_H.m
Purpose of function:
This function is used by main_driver to perform simulations of damage. The model is for the northern region with wood walls and hip end roof.

Frequency of function call:
This function is called once from the main_driver program per execution of main_driver.m.

Input variables:
count			The number of simulations to be executed per wind direction per model
winds			a vector containing the specific wind speeds to be used for the simulations
date	This scalar is added to the name of all output files produced by the function. It makes the label for a set of runs unique and identifiable

Note: while wind speeds can be controlled by the user (‘winds’), wind direction is not adjustable. Simulations are performed at wind direction angles from 0 to 315 degrees at 45-degree increments, with 0 degrees representing the wind perpendicular to the front elevation of the model house. A number of simulations equal to ‘count’ are performed for each direction and wind speed.

Output variables:
The results from the simulation are archived into MAT-files saved into the local work directory. These output files are produced and saved for post-processing.

A separate output file is produced for each combination of wind speed and direction, with each row of the output file presenting the results of a single simulation, and each column representing a different building component or load information.

If the input variable ‘count’ has the value 5000, then each output file would have 5000 rows.
There are 15 columns in each output file.

The name of the output file has the following structure:

	Region_date&rooftype_walltype&windspeed&winddirection.mat

Example:

	south_211052g_woodV100at135.mat
	
Interpretation:
South 		= South region
211052	= Model run Feb. 11, 2005, 2nd run that day
g		= gable roof type
wood		= wood walls
V100 		= 100 m.p.h. 3 sec gust
at135 		= wind coming from 135 degrees relative to front of house

	The contents of the output file are as follows:

1:	perct_failed_sheathing	=	percentage of roof sheathing failed
2:	perct_failed_roofcover	=	percentage of roof cover lost
3:	perct_failed_r2w		=	percentage of roof to wall connections failed
4:	failed_wall			=	# of failed walls (0-4)
5:	failed_window			=	# of failed windows (0-15)
6:	failed_door			=	# of failed door (0-2)
7:	failed_garage			=	# of failed garage (0-1)
8:	breach				=	breach (0-1) (1 if window, door or garage damaged)
9:	sum(impact_broken)		=	total number of windows broken by impact, not pressure
10:	perct_failed_gable_end_panels	=	percentage of gable end panels failed (zero if
hip roof building)
11:	internal_pressure		=	calculated internal pressure
12:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed (front)
13:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed (back)
14:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed (side)
15:	perct_failed_wall_panels	=	percentage of wall sheathing panels failed (side)

Note: A value of zero indicates no damage.

Program Architecture:

	Lines of code
	Purpose of section

	41-59
	Initialization:
Set up parameters that describe this model type (wall type, roof type, etc.)

	61
	Mitigation Switch Statement:
Execute the code main_driver_input to input the desired strength definitions (weak, medium, strong, mitigated, metal roof, etc.)

	63-65
	Opening Parameter Definition:
The front and back door types are defined here. Also, the ‘windows’ matrix is defined here. Documentation for the ‘windows’ matrix may be located in the function capacity_opening.m

	84-86

	Wind Load Parameter Definition:
This section defines the Cp reduction factor, the terrain exposure coefficient @ mean roof height, and the topography escarpment factor.

	90
	Debris Impact Model:
Call to debris_model_input.m to establish the probability of windows being broken as a function of wind speed (see documentation for this function)

	108- 599
	Triple Loop Simulation Structure:
The triple loop structure to complete the simulations and create/store the output files:
	Outside loop controls the current wind angle relative to the front door
		Middle loop controls the current wind speed
			Inner loop controls the current simulation for that speed and angle

	108-118
	Loop for Angles:
This section sets the current angle from ‘angles’ vector, and establishes the status of the font and back location of the model house relative to the wind. A value of ‘w’ represents the ‘windward’ side, ‘l’ represents the ‘leeward’ side, ‘s’ represents the side, and ‘corner(l/w)’ represents the leeward or windward corner.

	120-129
	Loop for Windspeeds:
Assign current wind speed to be used, provide screen feedback to user on angle and speed
Create P-row - a scalar used as an index into the vector P_shgl to create Prob_shingle_impact. At the minimum wind speed (50), P-row takes the value of 1. The first row in P_shgl corresponds to a probability of window damage from a 50 m.p.h. wind (see documentation for debris_model_input.m and missile_impact.m)
Create Prob_shingle_impact - a 1x4 vector that contains the probability of a missile breaking a large, skinny, medium or small window, respectively. The portion of the 201x12 matrix P_shgl that is relevant for the current wind speed and wind direction is placed into Prob_shingle_impact

	135-140
	Randomize Cp Values:
The assigned wind speed V is randomized with a COV of 0.1
Roof, wall, and internal pressure coefficients (Cp_R, Cp_wall, Cpi) are assigned and randomized with a COV of 0.1 (Gaussian randomization for all)

	143
	Roof Layout Function Call:
Call function rooflayout6038.m to establish the structural layout of the roof system. The function determines number and placement of sheathing panels, number of trusses, number of roof to wall connections, the pressure coefficients aggregated over each sheathing panel (function of wind direction), and the roof area.

	145-154
	Calculation of Roof Panel Areas:
	Total roof area
gable end wall area
	number of sheathing panels (4’x8’) needed for
		long side vertical walls
		short side vertical walls
	reduce # of sheathing panels on front if garage is present

	156-161
	Cp Roof Matrix Assignment:
Assign roof pressure coefficients (Cp_roof) depending upon angle of wind

	165-183
	Wall and Roof Zone Pressure Coefficient Definition:
Assign pressure coefficients for the Main Wind Force Resisting System (MWFRS) according to ASCE design code and randomize them with COV of 0.1 These are used in the next step in various wind direction dependent combinations to establish the wall pressure coefficients

	185-195
	Wall Pressure Coefficient Assignment:
Assign wall pressure coefficients Cp_w dependent upon wind direction

	198-199
	Calculation of Velocity Pressure and Internal Pressure:
Calculate velocity pressure ‘qh’ with equation from ASCE-98
Calculate internal pressure as internal pressure coefficient times velocity pressure

	
200
	Calculation of Roof and Wall Pressures:
Call the function pressures.m
This function is used to assign the overall wind pressure to the walls, roof cover, and roof sheathing, and is dependent upon the current wind speed and direction, external and internal pressures.

	201-230
	Assignment of Front & Back Door, Window, and Garage Door Pressures:
Assign values for front_door_pressure, back_door_pressure, & window_pressure as a function of wind direction and speed
Assign garage_pressure to the same as front_door_pressure

	233-242
	Calculation of Sheathing, Roofcover & Wall Capacities:
Call the functions capacity_sheathing.m and capacity_roofcover.m to assign the probabilistic capacity of failure for the sheathing panels and roof-cover, respectively, on the roof of the house.
Call the function capacity_wall.m to assign the probabilistic capacity of failure for the structural portion of the walls (i.e. cracks in masonry or failure of studs in wood walls).

	243-245
	Assignment of Gable Panels Capacity (for Gable roofs only):
IF the model has a gable roof, call the function capacity_wall_sheathing.m to assign the probabilistic capacity of failure for the sheathing panels on the gable walls of the house.

	246-254
	Assignment of Wall Sheathing Capacity:
Call the function capacity_wall_sheathing.m to assign the probabilistic capacity of failure for the wall sheathing panels on the long and short side walls of the house.

	256-265
	Calculation of Initial Gable-End and Roof-to-Wall Connection Capacity:
Call the function capacity_r2w.m to assign two vectors of random roof to wall connection capacities (r2winitial is for long sides of house, gableinitial is for short sides with gable roofs). Then assign output from above function call to r2w_cap and gable_cap vectors

	267
	Calculation of Load on Roof-to-Wall Connections:
Call the function r2w_conn_uplift_hip6038.m to calculate the loads on the roof to wall connections (whose capacities were just assigned)

	271
	Calculation of Opening Capacities:
Call the function capacity_opening.m to assign wind pressure capacities to doors and windows

	
At this stage the loads and capacities have been assigned. The next section is the INITIAL failure check, -where INITIAL refers to the first iteration before load redistributions take place due to failures

	280-288
	Initialization of Failed Sheathing Area:
Identify failed roof sheathing panels, assign capacity of failed panels to zero, and create perct_failed_sheathing

	292-295
	Initialization of Failed Roof-Cover Area:
Identify failed roof shingles, and create perct_failed_roofcover

	302-331
	Calculation of Failed Wall Sheathing:
This section identifies the number of failed wall sheathing panels on the front, back, and sides of the model house. Then, the information is vectorized, and a percentage of failure is calculated.

	
336-361
	Calculation of Wall Loading Failure:
Call function wall_loading.m to check for structural wall failure. Output includes ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘V_locn’ to indicate which direction the wind is approaching the house, and ‘fvmax’ is the maximum shear load for checking shear failure.
Then, the program assigns the 1st column of failedwall 4x2 vector, where 0 is non-failure, 1 is failure. This first column is a check for uplift/bending wall failure.
Assign 2nd column of failedwall 4x2 vector, depending upon wind direction, where 2nd column is for shear wall failure.
Create failed_wall_summary, a 4x1 vector that is >0 for a wailed wall, 0 for intact wall.

	364-372
	Obtain the Windward Side of Window for Impact Calculation:
Assign impact_windows as those windows on the side(s) of the house that wind is approaching, wind direction dependent

	375
	Identify the Broken Openings:
Call the function missile_impact.m to identify windows broken due to debris impact, set capacity of those broken to zero

	377
	Re-Calculate the Internal Pressure from Impacted Windows:
Call the function window_pressure_check to count # of windows broken due to wind pressure, and reassign internal pressure due to broken windows due to either impact or pressure

	379-395
	Re-Calculate the Internal Pressure from Impacted Doors:
Check for failure of back and front doors, reassign internal pressure if failure occurs

	397-408
	Re-Calculate the Internal Pressure from Impacted Garage:
Check for garage door failure and re-assign internal pressure based on several possible combinations of failed doors and windows in combination with failed garage

	411-514
	Routine to Update Values for New Internal Pressure:
The IF structure between these lines is executed if internal pressure has changed due to INITIAL failures, in which case loads are re-calculated and components re-checked under the new loading

	412-413
	Internal Pressure Check:
Check if the current internal pressure after initial failure checks is different from the originally assigned internal pressure prior to any failure checks. If there is a difference, assign the internal pressure variable ‘internal’ to the current value as adjusted from lines 379 to 408.

	416
	New Roof & Wall Pressures Calculation:
Call the function pressures.m (1st call was on line 200) to reassign overall pressure values on the walls and roof. (overall pressure combines external and internal pressures)

	418-445
	Re-Assign Opening Pressures:
Repeat calculations from lines 201 to 230 to assign values for front_door_pressure, back_door_pressure, & window_pressure as a function of wind direction and speed
Assign garage_pressure to the same as front_door_pressure. Values may have changed if internal pressure was adjusted due to window/door failures.

	
The next section is the NEXT failure check after loads have been adjusted to account for internal pressure changes

	452
	New Window Pressure Check:
Call the function window_pressure_check.m (1st called on line 377) to identify windows that failed under new overall wind pressures.

	
454-458
	New Back & Front Door Check:
Re-check back, front and garage failure.
Create perct_failed_opening output variable now that checks to openings has been completed

	460-465
	New Failed Sheathing Area Calculation:
Identify failed roof sheathing
Create perct_failed_sheathing output variable

	469
	Adjustment of Pressure on Failed Sheathing Panels:
The uplift pressure on damaged sheathing panels is reduced by a factor of 2.5

	472-478
	New Calculation of Failed Roof-Cover:
For roof cover (shingles) attached to failed sheathing panels, reduce their capacity to zero and re-identify failed shingles
Create perct_failed_roofcover output variable

	481-513
	New Failure Check for Wall Sheathing:
Repeat failure checks for wall sheathing failure, originally done in lines 302-333.
Create perct_failed_wall_panels output vector.

	514
	End Internal Pressure Check:
End IF structure that re-assesses failure if internal pressures had changed in INTIIAL failure check.

	The next section is the ADDITIONAL failure checks. Regardless of whether internal pressure had changed, there are several iterative checks that are conducted for load re-distribution and additional failure

	523
	Calculate the Roof-to-Wall Connection Uplift Forces:
Call the function r2w_conn_uplift_hip6038.m to calculate the uplift in each of the roof to wall (r2w) connections. This includes the r2w connections along the long sides of the house, and the gable end connections along the short sides of the house
The first call generates ‘up’and ‘up_gable’, which are used on line 267.
The second call is used in the redistribution WHILE loops.

	
525-529
	Check for Roof-to-Wall Connection Failure:
Identify initial r2w failures along the long sides of the house

	532-533
	Redistribute Uplift Pressure on Trusses not Failed:
Call the function redist_uplift.m to transfer the loads previously carried by r2w connections that have failed. The failed r2w connections cannot carry any load, so the load is redistributed to the neighboring connections that are still intact with this function. Once the redistribution is finished, the remaining r2w connections are tested for failure under the new loads. If used by a damage_model_*** with a hip roof, this function is used for all r2w connections. If used by a gable roof model, this function is used for the r2w connections along the long sides of the building, and redist_gable.m is used for the r2w connections along the gable end

	536-546
	Continue Redistribution of Uplift Pressure to Convergence:
WHILE loop to check for additional r2w failures along the long sides, and again redistribute the loads if more fail. Repeated until no further connections fail

	548-575
	New Check for Wall Loading Failure:
Call the function wall_loading.m (1st called on line 336) to check for wall failure (structural). Output includes ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘V_locn’ to indicate which direction the wind is approaching the house, and ‘fvmax’ is the maximum shear load for checking shear failure.

	579-582
	Breach Check:
Determine if house has been breached

	
583
	Append Damage Matrix:
Create next row in damage output matrix, which will be 15 x ‘count’ when simulations complete

	586
	First Loop End:
End inner loop (131-586) that controls the simulation count

	588-592
	MAT-File Preparation:
Set up strings for title of output file

	594
	Create the MAT-File for Wind Direction & Speed:
Save the damage matrix for all simulations at a given wind speed and direction

	597
	End middle (120-597) loop that controls wind speed

	598
	End outer loop (108-598) that controls wind angle

Return to calling program

Below is list of user-defined functions called from within this function (in order of appearance)

90	debris_model_input
143	rooflayout6038
200	pressures
235	capacity_sheathing
239	capacity_roofcover
242	capacity_wall
244, 247, 248, 249	capacity_wall_sheathing
258	capacity_r2w
267	r2w_conn_uplift_hip6038
271	capacity_opening
336	wall_loading
375	missile_impact
377	window_pressure_check
416	pressures
452	window_pressure_check
523	r2w_conn_uplift_hip6038
532, 533, 538, 543	redist_uplift
549	wall_loading

Capacity_manuf_house.m
· Description: This function is used to assign the probabilistic capacity of manufactured home components including: weight of the home, pullout capacity of ground anchors, the roof to wall (r2w) connections, and the vinyl siding (covering) on the walls.
· Input: r2w connection type, number of r2w connections, number of ground anchors used, indicator for single or double wide, and an indicator for whether ground anchors are used.
· Procedure:
· Weight calculation of Manufactured Home
· Assign mean value ‘mu’ of the weight of a home depending on single or double-wide
· Assign COV and calculate standard deviation ‘sigma’
· Calculate the shifted lognormal shape parameters
· Assign ‘weight’ using lognormal random variable, remove shifted mean and add back original mean
· Roof to wall connection capacity calculation
· Create vector ‘spec’ of mean values for r2w connection capacities (values depend on which model is being run (pre-HUD, HUD_II, etc.))
· Multiply mean by factor of safety 3
· Coefficient of variation = 0.25
· ‘factor’ = 2 = # of standard deviations from mean permitted in random samples
· Take a single sample of capacity, loop to ensure it is within 2 standard deviations from the mean
· Re-assign the COV to 0.05
· Assign all other connection capacities using the above singe sample as the mean value. This double-sampling process accounts for the very small variation in strength expected among manufactured straps on the same house.
· Ground anchor capacity calculation
· If there are no ground anchors (anchor_ind =0)
· Assign all anchors a capacity of 1. This will guarantee failure in the failure check of the calling program
· If there are ground anchors installed
· Assign a mean value of 1550 lbs. And a COV of 0.4
· Assign values for the anchor capacities ‘anch_cap’ using normal distribution
· Loop to reassign any values that are more than 2 standard deviations from the mean
· Vinyl siding capacity calculation
· Assign a factor of safety ‘FS’ = 1.5
· Assign vector of mean values for siding based on MH model type
· Assign the appropriate mean ‘mu’ based on connection type specified in ‘contype’
· Assign COV = 0.15
· Assign 8x9 matrix of random values for siding capacity ‘siding’ using normal distribution
· Loop to reassign any values that are more than 2 standard deviations from the mean
· Return to calling program
· Output: vectors for randomly assigned anchor capacity, r2w connection capacity, weight of the home, and capacity of vinyl siding.
Capacity_opening.m
Purpose of function:
This function is used by damage_model_ *** models to assign the probabilistic capacity of failure for the openings (garage door, entry doors and windows). Input is information regarding garage, entry door and window material type, and whether doors / windows are protected by shutters. Output is a list of variables that contain the probabilistically assigned capacities of the garage door, front and back doors and each window.

Frequency of function call:
This function is called from damage_model_***. During a given model run (41 speeds, 8 directions, 2000 samples per speed & direction for a specific damage_model_***) it is called once for each sample (i.e. called a total of 2000*41*8 times per model run)

Input variables:
front_door:	= scalar = indicates type of front door (choose between 1 through 6)
back_door	= scalar = indicates type of back door (choose between 1 through 6)
windows: 	= matrix declaring number of windows on four sides of house
example: windows = 	[3 0 0 0 0 3 0 0 0	
4 0 0 0 0 4 2 0 0
4 0 0 0 0 0 0 4 2
4 0 0 0 0 0 0 4 2]
		where rows 1-4 are front of house, back of house, side of house, side of house
		columns 1-9 are:
			column 1: total # windows on side in that row,
column 2: # large windows total on that side
column 3: # large windows at edge (edge is close to corner)
column 4: # skinny windows total on that side
column 5: # skinny edge
column 6: # medium windows total on that side
column 7: # medium edge
column 8: # small windows total on that side
column 9: # small edge	

shutter		= scalar = indicates type of window protection
				1 – none, 2 – plywood, 3 – steel, 4 - engineered
window_type	= scalar = indicates type of window glass
				1 – standard, 2 – laminated, 3 – impact resistant
door_protection = scalar = indicates if doors have shutter protection
				1 – no protection, 2 – protected (shuttered) doors
Garage_type = scalar = indicates if garage door is wind braced or not (‘rated’ door)
				1 – not braced for wind, 2 – braced for wind
Win_ind = scalar = indicates whether new or old windows are used to determine pressure capacity
				0 – old windows, 1 – modern stronger windows

Output variables:
garage_cap:	= scalar = random assigned garage door capacity
fdoor_cap:	= scalar = random capacity of front door
bdoor_cap: 	= scalar = random capacity of back door
lg_cap: 	= vector with random pressure capacity of each large window
skinny_cap: 	= vector with random pressure capacity of each skinny window
med_cap: 	= vector with random pressure capacity of each medium window
small_cap: 	= vector with random pressure capacity of each small window

Program Architecture:

Create a vector ‘doors_mean’ that will represent the mean pressure capacity (units = psf)
Create the coefficient of variation (COV) vector

If door_protection input indicates protected doors (=2), then multiply door capacity by 1.25

Assign ‘factor’ = 2.5, this is the # of standard deviations from the mean that will be allowed for assigned capacities.

Create a vector ‘mean_garage’ that represents mean pressure capacity in psf

Assign a random garage door capacity using a normal distribution
	Loop to replace (re-sample) the value if it is > 2.5 standard deviations from the mean

Assign random front door capacity using the mean, COV, and a normal distribution (units = psf)
	Loop to replace (re-sample) the value if it is > 2.5 standard deviations from the mean

Assign random back door capacity using the mean, COV, and a normal distribution
	Loop to replace (re-sample) the value if it is > 2.5 standard deviations from the mean

Create a 1x4 vector ‘win_mean’ that contains the mean pressure capacity of windows
	[large window capacity, skinny window, medium window, small window]

assign win_COV = 0.2 (coefficient of variation for window capacities)

if win_ind = 1, these are new windows and a different mean and COV are assigned than above

Alter the mean pressure capacity of the windows if windows are protected
	For windows that have covering (shutters)
	If windows have plywood shutters (shutter = 2)
 			Multiply mean capacity by 1.15
		If windows have steel shutters (shutter = 3)
			Multiply mean capacity by 1.25
		If windows have engineered shutters (shutter = 4)
			Multiply mean capacity by 1.5

	For windows made of impact resistant material (glass made to resist impact)
		If windows are laminated (window_type = 2)
			Multiply mean capacity by 1.5
		If windows are impact resistant (window_type = 3)
			Multiply mean capacity by 2

Note that shutters and impact resistance are cumulative. That is, if window has plywood shutters AND is impact resistant, then mean capacity = mean capacity * 1.15 * 1.5
	
Calculate the total number of windows on the model

Initialize a matrix ‘window_cap’ with zeros

For the special case of no windows, set capacities to 2000 to ensure no breakage

Determine the number of large, skinny, medium and small windows by adding the appropriate columns in the ‘windows’ matrix

If the number of large windows is > 0
	Create a random vector ‘lg_cap’ that contains a random value for capacity of each window
		Loop to replace any random values > 2.5 standard deviations (std. dev.) from mean

If the number of skinny windows is > 0
	Create a random vector ‘skinny_cap’ that contains a random value for capacity of each window
		Loop to replace any random values > 2.5 standard deviations (std. dev.) from mean

If the number of medium windows is > 0
	Create a random vector ‘med_cap’ that contains a random value for capacity of each window
		Loop to replace any random values > 2.5 standard deviations (std. dev.) from mean

If the number of small windows is > 0
	Create a random vector ‘small_cap’ that contains a random value for capacity of each window
		Loop to replace any random values > 2.5 standard deviations (std. dev.) from mean

Return to calling program

List of user defined functions called from within this function (in order of appearance)
None

Example execution of this function

Examples: This function capacity_opening does not use wind speed or direction as an input. Therefore results are not dependent upon these parameters. A random number generator is used to assign random capacities within the function. Therefore, in order to provide samples of input and output that can be confirmed, this function will be called many times, and the average of the output vectors will be presented. The test person should get very similar, but not exactly the same results. The test code used to call the function for the examples is provided below. The code capacity_opening_test_code.m has been forwarded as a separate document.

Sample input:
garage_type = 1;
front_door = 4;
back_door = 1;
windows = [3 0 0 0 0 3 0 0 0;4 0 0 0 0 4 2 0 0;4 0 0 0 0 0 0 4 2;4 0 0 0 0 0 0 4 2];
shutter = 1;
window_type = 1;
door_protection = 1;
win_ind = 0;

Code used to run sample input :
for i = 1:5000;
 [garage_cap,fdoor_cap,bdoor_cap,lg_cap,skinny_cap,med_cap,small_cap]=capacity_opening(front_door,back_door,windows,shutter,window_type,door_protection,garage_type,win_ind);
 gdoor(i) = garage_cap;
 fdoor(i) = fdoor_cap;
 bdoor(i) = bdoor_cap;
 lg(i,:) = lg_cap;
 skinny(i,:) = skinny_cap;
 medium(i,:) = med_cap;
 small(i,:) = small_cap;

end
disp(['garage door ',num2str(mean(gdoor))])
disp(['front door ',num2str(mean(fdoor))])
disp(['back door ',num2str(mean(bdoor))])
disp(['large windows ',num2str(mean(lg))])
disp(['skinny windows ',num2str(mean(skinny))])
disp(['medium windows ',num2str(mean(medium))])
disp(['small windows ',num2str(mean(small))])

Sample output #1:
Output from ‘disp’ command above

garage door 29.9895
front door 100.6754
back door 49.9587
large windows 0
skinny windows 0
medium windows 69.6806 69.625 69.6143 69.881 69.4828 69.6499 69.4948
small windows 104.0293 104.5841 103.8881 104.1707 103.94 103.8652 104.2289 104.4501

 Capacity_r2w.m
Purpose of function:
This function is used by damage_model_ *** models to assign the probabilistic capacity of the roof to wall (r2w) connections. Input consists of wall type (wood or CB), and number and type of r2w connections being used. information regarding the sheathing fasteners (6d or 8d nails). Output is a vector that contains the probabilistically assigned capacity of the r2w connections. If gable roof, output is in two vectors ‘capacity’ and ‘capacity_gable’. If hip roof, all output is in the vector ‘capacity’ and ‘capacity_gable’ is empty.

Terms used:
Wood frame walls:	Walls are made of 2x4 vertical studs connected to the base (sill) plate and the top plate. The top plate is a horizontal wood member that is fastened to the roof trusses by the r2w connections.
Concrete block walls:	Also called masonry walls, these are the stacked hollow concrete blocks that sit on the foundation, and are topped by the tie- or bond-beam that runs around the entire wall top. The trusses are connected to this bond beam.

Frequency of function call:
This function is called from damage_model_***. During a given model run (41 speeds, 8 directions, 2000 samples per speed & direction for a specific damage_model_***) it is called once for each sample (i.e. called a total of 2000*41*8 times per model run)

Input variables:
connection:	= scalar describing the type of roof to wall connection along the long dimensions of the house (front and back). 1 = toe nail connections (weakest), 2 = metal clips (stronger), 3 = metal straps (strongest)
dim:	= scalar =

if roof is gabled, this is the total number of r2w connections along the long walls. I.e. if the front and back walls each have 20 connections, dim = 40.

If the roof is hip, this is the total number of connections along all walls. I.e. if the long walls each have 20 connections, and the short walls each have 8 connections, dim = 56.

gable_connection: = scalar describing the type of roof to wall connection along the short dimensions of the house (sides). 1 = toe nail connections (weakest), 2 = metal clips (stronger), 3 = metal straps (strongest). For hip roofs these 3 options are available. For gable roof houses, wood frame construction has 3 options, masonry houses only have 2 options for gable roof ends.
dim2:	= scalar =

if roof is gables, this is the total number of r2w connections along the short walls. I.e. if the side walls each have 8 connections, dim2 = 16.

If roof is hip, dim2 = 0 and is not used in the function

wall_type:	= scalar = 1 for concrete block (masonry) walls, =2 for wood frame walls

Output variables:
capacity:	= 1 x ‘dim’ vector that contains the uplift capacity of each of the r2w connections along the long walls if roof is gabled. If roof is hipped, this contains the capacity of all r2w connetions, long walls and short walls.
capacity_gable = 1 x ‘dim2’ vector that contains the uplift capacity of each of the r2w connections along the short walls (sides) if the roof is gabled. If roof is hipped, capacity_gable is assigned 0

Program Architecture:

Start with the capacity of r2w connections on the long sides of the house (front and back). If roof type is hip, then this section assigns all capacities along short and long walls. If the roof is gabled, the gable end r2w connections are assigned in the subsequent section.

Assign vector of possible mean capacity values for connections along long end of building for both masonry and wood wall structures

Assign the mean connection value as 3 times the mean value. This accounts for the factor of safety as provided by the manufacturer (Simpson Strong Tie)

Assign coefficient of variation (COV) and the number of standard deviations ‘factor’ allowed from the mean

IF the connections are straps or clips (connection > 1)
		Assign the appropriate mean value for the connection as provided in ‘connection’
	Take a single sample of capacity, loop to ensure it is within 2 standard deviations from the mean
	Re-assign the COV to 0.05
Assign all other connection capacities using the above singe sample as the mean value. This double-sampling process accounts for the very small variation in strength expected among manufactured straps on the same house.

	ELSE if the connections are toe nail
		Assign the appropriate mean value for the connection as provided in ‘connection’
		Assign a random capacity to each of the r2w connections along the long wall
		Loop to re-sample any capacities that fall outside 2 standard deviations of the mean
The double sampling is not used since connection is toe nailed, giving a larger spread of capacity values between connections

Move to the capacity of r2w connections on the short sides of the house (sides)

Assign vector of possible mean capacity values for connections along gabled ends of building for both masonry and wood wall structures

Assign the mean connection value as 3 times the mean value. This accounts for the factor of safety as provided by the manufacturer (Simpson Strong Tie)

Assign coefficient of variation (COV) and the number of standard deviations ‘factor’ allowed from the mean

	IF there are any gable connections (gable_connection>0)
		IF the gable connection is clips or straps
			Assign the appropriate mean value for the connection as provided in ‘gable_connection’
Take a single sample of capacity, loop to ensure it is within 2 standard deviations from the mean
	Re-assign the COV to 0.05
Assign all other connection capacities using the above singe sample as the mean value. This double-sampling process accounts for the very small variation in strength expected among manufactured straps on the same house.

		ELSE if the connections are toe nail
			Assign the appropriate mean value for the connection as provided in ‘gable_connection’
			Assign a random capacity to each of the r2w connections along the gable end wall
		Loop to re-sample any capacities that fall outside 2 standard deviations of the mean
The double sampling is not used since connection is toe nailed, giving a larger spread of capacity values between connections

Return to calling program

List of user defined functions called from within this function (in order of appearance)
None

Example execution of this function

Examples: This function capacity_r2w not use wind speed or direction as an input. Therefore results are not dependent upon these parameters. A random number generator is used to assign random capacities within the function. Therefore, in order to provide samples of input and output that can be confirmed, this function will be called many times, and the average of the output will be presented. The test person should get very similar, but not exactly the same results. The test code used to call the function for the examples is provided below. The code test_capacity_sheathing_test_code.m has been forwarded as a separate document.

Sample input:

Connection = 1;			% 	toe nail connections along long walls
dim = 54;					%	27 connections on front and back (long) walls
gable_connection = 1;	%	toe nail connection along gable ends
dim2 = 16;					% 8 connections on each gable end
wall_type = 2;				%	wood frame construction

Code used to run sample input:

clear all
connection = 1;			% 	toe nail connections along long walls
dim = 54;					%	27 connections on front and back (long) walls
gable_connection = 1;	%	toe nail connection along gable ends
dim2 = 16;					% 8 connections on each gable end
wall_type = 2;				%	wood frame construction

r2w_long_sum = zeros(1,dim);
r2w_gable_sum = zeros(1,dim2);
sims = 20000;

for i = 1:sims;
 [r2w_long,r2w_gable]=capacity_r2w(connection,dim,gable_connection,dim2,wall_type);
 r2w_long_sum = r2w_long_sum + r2w_long;
	r2w_gable_sum = r2w_gable_sum + r2w_gable;
end
mean_r2w_long = r2w_long_sum/sims;
mean_r2w_gable = r2w_gable_sum/sims;

disp('r2w capacity: long dimension')
disp([num2str(mean_r2w_long')])
disp(' ')
disp('r2w capacity: gable end')
disp([num2str(mean_r2w_gable')])

Sample output:
Output from ‘disp’ command above

1380.9886
1378.2478
1377.5721
1381.4709
1380.7937
1379.8745
 1379.662
1379.2778
1381.4094
1381.5083
1378.6996
1383.4491
1379.0402
1376.8437
1378.7426
1382.0371
1379.3188
1379.1584
1379.6458
 1378.211
1380.2736
1381.2358
1380.2247
1382.5192
1380.3887
1378.1538
 1382.268
1380.0126
1380.4116
1382.2991
1378.1755
1383.4766
1379.4826
1378.2146
1381.0482
1379.2894
1378.9249
1380.0183
1379.0975
1382.1876
1379.7586
1379.7429
 1377.155
1380.4868
1382.6623
1378.5747
1379.5387
 1376.575
1377.8453
1380.0586
 1379.834
1382.1473
1379.1095
1379.8405

r2w capacity: gable end
1141.0663
1140.0515
 1139.758
1137.9029
1140.5951
1141.4055
 1138.153
1142.2055
 1141.289
1136.7467
1137.2802
 1138.197
 1139.015
1141.4702
1138.0744
1137.3215

Capacity_sheathing.m
Capacity_sheathing.m

Purpose of function:
This function is used by damage_model_ *** models to assign the probabilistic capacity of failure for the roof sheathing panels on the house. Input consists of information regarding the sheathing fasteners (6d, 8d or RS nails, spacing). Output is a matrix that contains the probabilistically assigned capacity of the sheathing panels.

Terms used:
Roof sheathing:	The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roofcover.

Frequency of function call:
This function is called from damage_model_***. During a given model run (41 speeds, 8 directions, 2000 samples per speed & direction for a specific damage_model_***) it is called once for each sample (i.e. called a total of 2000*41*8 times per model run)

Input variables:
sheathing_type:= scalar = 1 = 6d nail 12" oc, 2 = 8d 6/12", 3 = 8d 6/6 or RS 6/12, 4 = RS 6/6

roof_pressure	= Matrix containing the averaged pressure coefficient on each of the sheathing panels of the roof. For this function, only the dimensions of the matrix are used to determine the appropriate size of the output matrix. The actual contents or roof_pressure are not used in this function. Size depends on the model being run and hip or gable roof.

Output variables:
capacity:	= Matrix contains the randomly assigned capacity of each of the sheathing panels on the roof. Size depends on the model being run and hip or gable roof.
		Units are psf

Program Architecture:

Create 1x4 ‘sheathing_fail’ vector containing the mean value of the roof sheathing capacity in psf
		[55 80 130]
Create 1x4 ‘sheathing_COV’ vector containing the coefficient of variation to be used

Assign ‘mn’ and ‘COV’ (mean and coeff. of variation) based on ‘sheathing_type’ scalar

Determine the size of the output matrix ‘capacity’ from the size of the ‘roof_pressure’ input matrix

Create ‘capacity’ matrix of same dimensions as the input ‘roof_pressure’ matrix containing the randomly assigned values for roof sheathing capacity based on a Gaussian distribution
Loop to find any random capacity value that is more than 2 standard deviations from the mean
		Replace these samples with a new sample
Repeat replacement until all randomly assigned capacities are within 2 standard deviations of the mean value

Return to calling program

List of user defined functions called from within this function (in order of appearance)
None

Example execution of this function

Examples: This function capacity_sheathing does not use wind speed or direction as an input. Therefore results are not dependent upon these parameters. A random number generator is used to assign random capacities within the function. Therefore, in order to provide samples of input and output that can be confirmed, this function will be called many times, and the average of the output will be presented. The test person should get very similar, but not exactly the same results. The test code used to call the function for the examples is provided below. The code capacity_sheathing_test_code.m has been forwarded as a separate document.

Sample input:

Sheathing_type = 1;
roof_pressure = ones(14,8);

Code used to run sample input:

clear all
sheathing_type = 1;
%note: contents of roof_pressure is not used by capacity_sheathing
%so below I simply populate with ones. The SIZE of roof_pressure
%is used to determine the size of the output sh_cap matrix
% 14x8 is matrix size for sheathing panel layout

roof_pressure = ones(14,8);
dim = size(roof_pressure);
sh_cap_sum = zeros(dim);
sims = 20000;
for i = 1:sims;
 [sh_cap]=capacity_sheathing(sheathing_type,roof_pressure);
 sh_cap_sum = sh_cap_sum + sh_cap;

end
mean_sh_cap = sh_cap_sum/sims;
disp([num2str(mean_sh_cap)])

Sample output:
Output from ‘disp’ command above

55.0706 54.899 54.9006 54.9422 54.89 55.0572 54.9739 55.0435
55.1173 54.9894 54.9852 55.072 54.8313 54.9525 54.9739 55.0262
55.0653 54.9912 55.052 55.0641 55.0697 54.9831 54.9604 54.9621
55.1338 55.1409 55.032 55.1323 54.9025 55.0599 54.969 54.9987
54.9365 54.981 55.1015 54.9329 55.049 54.9765 55.0188 55.0761
54.8273 54.8852 54.9256 55.0016 55.1116 55.05 55.0554 55.0256
54.9479 54.8223 55.0061 55.0202 55.0146 55.0365 54.9958 54.9388
54.8267 55.0866 54.825 55.1117 55.248 55.0996 55.1726 54.8833
54.9408 55.0587 54.9737 54.9642 54.9896 54.9936 55.152 54.9097
54.9499 55.0401 55.12 54.961 54.99 55.0664 55.0326 55.0631
55.0958 54.944 55.0752 55.0461 54.899 54.9251 55.0907 55.0249
55.0885 55.2152 55.066 54.9981 55.0384 54.9405 54.943 54.992
55.1448 54.9076 54.8765 54.9559 54.9805 54.907 54.9633 55.0736
 55.006 54.9856 55.0114 54.8941 54.8259 55.0004 55.0249 55.0811

Capacity_roofcover.m
Purpose of function:
This function is used by damage_model_ *** models to assign the probabilistic capacity of failure for the roofcover (shingles/tiles) on the house. Input consists of information regarding the roofcover type (old or new shingles or metal roof). Output is a matrix that contains the probabilistically assigned capacity of the roofcover. For geometric simplicity, a single random value is assigned for all shingles on a single piece of sheathing rather than a single value for each individual shingle.

Terms used:
	Roof cover:	The shingles or tiles attached to the roof sheathing.
Roof sheathing:	The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roofcover.

Frequency of function call:
This function is called from damage_model_***. During a given model run (41 speeds, 8 directions, 2000 samples per speed & direction for a specific damage_model_***) it is called once for each sample (i.e. called a total of 2000*41*8 times per model run)

Input variables:
cover_type:	= scalar = 1 is older shingles (weaker), 2 is 110 MPH rated shingles (stronger)
				3 is new HVHZ rated, 4 is metal
roof_pressure	= Matrix containing the averaged pressure coefficient on each of the sheathing panels of the roof. For this function, only the dimensions of the matrix are used to determine the appropriate size of the output matrix ‘cover_cap’. The actual contents or roof_pressure are not used in this function. Size depends on the model being run and hip or gable roof.

Output variables:
cover_cap:	= Matrix contains the randomly assigned capacity of the shingles on each of the sheathing panels of the roof. Size depends on the model being run and hip or gable roof.
		Units are psf

Program Architecture:

Determine the size of the output matrix ‘cover_cap’ from the size of the ‘roof_pressure’ input matrix
Create 1x4 ‘cover_fail’ vector containing the mean value of the roof cover capacity in psf
Create 1x4 ‘cover_COV’ vector containing the coefficient of variation to be used

Assign ‘mu’ and ‘sigma’ (mean and standard deviation) based on ‘cover_type’ scalar

Create ‘cover_cap’ matrix of same dimensions as the input ‘roof_pressure’ matrix. Cover_cap contains the randomly assigned values for roof cover capacity based on a Gaussian distribution
Loop to find any random capacity value that is more than 2 standard deviations from the mean
		Replace these samples with a new sample
Repeat replacement until all randomly assigned capacities are within 2 standard deviations of the mean value

Return to calling program

List of user defined functions called from within this function (in order of appearance)
None

Example execution of this function

Examples: This function capacity_roofcover does not use wind speed or direction as an input. Therefore results are not dependent upon these parameters. A random number generator is used to assign random capacities within the function. Therefore, in order to provide samples of input and output that can be confirmed, this function will be called many times, and the average of the output will be presented. The test person should get very similar, but not exactly the same results. The test code used to call the function for the examples is provided below. The code capacity_roofcover_test_code.m has been forwarded as a separate document.

Sample input #1: wood wall, old shingles, gable roof, southern model

cover_type = 1;
roof_pressure = ones(14,8);

Code used to run sample input #1:

clear all
cover_type = 1;
%note: contents of roof_pressure is not used by capacity_roofcover
%so below I simply populate with ones. The SIZE of roof_pressure
%is used to determine the size of the output cover_cap matrix
% 14x8 is matrix size for sheathing panel layout for a southern
%	model, wood wall, gable roof home
%
roof_pressure = ones(14,8);
dim = size(roof_pressure);
cover_cap_sum = zeros(dim);
sims = 20000;
for i = 1:sims;
 [cover_cap]=capacity_roofcover(cover_type,roof_pressure);
 cover_cap_sum = cover_cap_sum + cover_cap;

end
mean_cover_cap = cover_cap_sum/sims;
disp([num2str(mean_cover_cap)])

Sample output #1:
Output from ‘disp’ command above

50.9061 50.9683 50.9803 50.9349 50.9916 51.0801 50.9419 51.0486
51.0397 51.0039 51.0322 51.0041 51.1136 51.0394 51.0769 51.0892
50.9016 51.0012 50.9351 51.0556 51.0623 51.0355 50.9656 50.9441
50.9985 50.9555 50.9472 51.0068 51.0371 51.0345 50.9857 50.9606
51.0296 51.0086 51.0026 50.9561 50.9726 51.0246 50.9913 50.9348
51.0645 51.0534 50.9855 51.1231 51.0158 50.9466 51.0203 50.9911
51.0247 50.9908 50.9788 51.0002 50.965 51.0437 50.9013 51.0503
51.0247 51.0106 51.0221 51.0098 51.0937 51.0496 50.9798 51.007
51.0052 50.9424 51.0699 51.0289 51.0075 50.9932 51.0164 51.085
 51.05 50.9156 51.017 51.0846 51.0078 51.0501 50.9797 50.99
50.9351 51.0872 51.0278 50.9297 51.0129 51.0964 51.0632 51.1817
 51.106 50.8821 50.9628 51.165 50.9493 51.0501 51.0244 50.9925
51.0309 50.9256 51.0319 51.057 51.0146 51.0279 51.0109 50.9995
51.0208 51.0023 51.013 50.9136 51.0426 51.021 51.0548 50.9788

Sample input #2 concrete block wall, new (rated) shingles, hip roof, southern model
cover_type = 2;
roof_pressure = ones(14,14);

Code used to run sample input #2:
clear all
cover_type = 2;
%note: contents of roof_pressure is not used by capacity_roofcover
%so below I simply populate with ones. The SIZE of roof_pressure
%is used to determine the size of the output cover_cap matrix
% 14x14 is matrix size for sheathing panel layout for a southern
%	model, CB wall, hipped roof home
roof_pressure = ones(14,14);
dim = size(roof_pressure);
cover_cap_sum = zeros(dim);
sims = 20000;
for i = 1:sims;
 [cover_cap]=capacity_roofcover(cover_type,roof_pressure);
 cover_cap_sum = cover_cap_sum + cover_cap;

end
mean_cover_cap = cover_cap_sum/sims;
disp(mean_cover_cap)

Sample output #2:
Output from ‘disp’ command above

 Columns 1 through 7
 70.1894 70.0586 70.0320 69.9625 69.9690 69.8260 70.1142
 69.8006 70.0942 69.9694 69.9644 70.0708 70.0205 70.0707
 70.0420 69.8618 70.0233 69.9736 70.0819 70.0264 70.0350
 70.0438 69.9369 69.9798 70.0325 70.0150 69.9589 70.0924
 70.1263 70.0771 69.9221 69.9614 70.1826 69.8691 69.8489
 69.9260 69.9142 70.0200 69.9138 69.8752 69.9087 70.0312
 69.9456 69.9429 70.0997 69.9395 69.9221 70.1070 70.1134
 69.9990 70.1661 70.1112 70.0769 70.1100 69.9484 70.0512
 70.0108 69.9044 70.0446 70.0521 69.9005 69.9941 70.0218
 69.7888 69.9521 70.0190 70.0529 69.9424 69.9511 69.9869
 70.0482 70.0168 69.9258 69.9681 69.8980 69.8771 69.8321
 69.9147 69.9774 70.0206 69.9406 69.9893 70.0642 69.8919
 69.9664 69.9757 70.0940 70.0519 69.9751 70.1474 70.0285
 69.8961 69.9299 70.0696 70.0008 69.9835 70.1081 69.8793

 Columns 8 through 14
 69.9624 69.9293 69.9054 70.1113 69.9551 69.8708 70.0425
 69.9435 69.9775 69.9853 69.9658 69.9759 70.1151 69.8920
 69.9940 70.0497 70.0802 69.8718 70.0500 70.1146 69.9035
 70.0515 69.9015 69.7584 70.0816 70.0538 70.0735 70.1276
 69.9401 69.9222 70.1402 70.0385 70.0608 69.9880 69.9867
 70.2298 69.8498 69.8761 70.0309 69.9743 69.9224 70.0085
 70.0372 69.9100 70.0811 69.8829 69.9682 69.8571 70.0812
 70.0590 70.0853 69.9698 70.1816 70.0616 69.9510 70.0203
 70.0097 70.1800 70.0744 69.8655 70.0798 70.1618 70.1248
 69.9544 70.1731 69.9336 70.2347 70.2063 69.8907 69.9323
 69.9939 69.8784 70.0317 69.8995 70.0195 69.9658 70.0908
 69.9496 70.0613 69.9780 70.0560 69.9738 69.9973 69.9894
 69.9939 70.0209 70.2418 70.1127 69.9418 69.9402 69.9225
 70.0486 69.8808 70.0065 70.2023 70.1565 69.9614 69.8495

Capacity_wall_sheathing.m
· Description: This function is used to assign the probabilistic capacity of failure for the wooden sheathing panels on the walls of a house. For wood frame houses this includes the front, back and side walls, and the gable end walls (the triangle part of a gable end). For a concrete block house this includes only the gable end walls (not used for CB hipped roof houses). The function is called separately to assign the capacity of panels to the front, back, sides, and gable end walls.
· Input: A scalar containing the length of the vector to be created (i.e. the # of wall panels to assign capacities to).
· Procedure:
· Assign mean and COV of the panels in psf
· Multiply the mean by a factor of 0.84 to scale from 8d to 6d nails
· Create ‘capacity’ matrix of size dim x 2 containing the randomly assigned values for wall sheathing capacity based on a Gaussian distribution
· Loop to find any random capacity value that is more than 2 standard deviations from the mean
· Replace these samples with a new sample
· Repeat replacement until all randomly assigned capacities are within 2 standard deviations of the mean value
· Return to calling program
· Output: A matrix that contains the probabilistically assigned capacity of the wall sheathing panels.
Capacity_wall.m
· Description: This function is used to assign the probabilistic capacity of failure for the walls of the house. The separate modes of failure are shear failure, bending failure, and tensile/compression failure.
· Input: The wall type (masonry or wood), the spacing between roof trusses (always 24 inches), and 2 indicators (one indicating yes or no for reinforced masonry wall, one indicating the connection type between the sill plate and vertical studs).
· Procedure:
· Assign ‘factor’ = 2. ‘Factor’ is the number of standard deviations from the mean that is permitted for the random sampling of the capacities
· IF wall_type is wood
· Assign random capacity for wood walls in shear (assign final value for ‘shearcapacity’ vector)
· Assign factor of safety (FS), mean value, and coefficient of variation (COV)
· Assign random 1x4 vector to ‘shearcapacity’ from normal distribution
· Loop to replace any random values > 2 standard deviations (std. dev.) from mean
· Assign random capacity for wood wall capacity due to toenail connection between stud and sill
· Assign factor of safety (FS), mean value, and coefficient of variation (COV)
· Assign random 1x4 vector to ‘capacitytoe’ from normal distribution
· Loop to replace any random values > 2 standard deviations (std. dev.) from mean
· Assign random capacity for wood walls due to sheathing attached to both studs and sill plate
· Assign factor of safety (FS), mean value, and coefficient of variation (COV)
· Assign random 1x4 vector to ‘nailcap’ from normal distribution
· Loop to replace any random values > 2 standard deviations (std. dev.) from mean
· If stud2sill > 1 (stud to sill connections are clips or straps) then randomly assign capacity to either clips or straps
· Assign factor of safety (FS), mean value, and coefficient of variation (COV)
· Mean depends on whether connection is clip or strap
· Assign random 1x4 vector to ‘s2s_cap’ from normal distribution
· Loop to replace any random values > 2 standard deviations (std. dev.) from mean
· Assign final value to ‘tensilecapacity’ vector
· If stud to sill connection is toenail
· ‘tensilecapacity’ is ‘s2s_cap’ + ‘nailcap’
· This is the combined strength of the clips or straps connecting the studs to the sill plate, and the nails connecting the wall sheathing to both the studs and sill plate
· Assign final values to the ‘bendcapacity’ vector
· Calculate the addition lateral resistance from the sheathing nails (‘addon’)
· If stud to sill connection is toenail
· ‘bendcapacity’ is ‘capacitytoe’ + ‘addon’
· This is the combined strength of the nails connecting the studs to the sill plate, and the nails connecting the wall sheathing to both the studs and sill plate
· If stud to sill connection is clips or straps
· ‘bendcapacity’ is ‘s2s_cp’ + ‘addon’
· This is the combined strength of the clips or straps connecting the studs to the sill plate, and the nails connecting the wall sheathing to both the studs and sill plate
· IF wall_type is masonry
· Assign random capacity for masonry walls in shear (assign final value for ‘shearcapacity’ vector)
· Assign factor of safety (FS), mean value, and coefficient of variation (COV)
· Mean depends on whether walls are reinforced
· Assign random 1x4 vector to ‘shearcapacity’ from normal distribution	
· Loop to replace any random values > 2 standard deviations (std. dev.) from mean
· Assign random capacity for ‘tensilecapacity’ and ‘bendcapacity’
· Assign mean values for tensile and bending (‘P_allow’ and ‘M_allow’), safety factors and COV. Mean values depend on whether walls are reinforced or not.
· Assign random 1x4 vector to ‘tensilecapacity’ and ‘bendcapacity’ from normal distribution
· Loop to replace any random values > 2 standard deviations (std. dev.) from mean
· Return to calling program
· Output: Three 1x4 vectors corresponding to each of the four walls in each of the three modes.
Debris_model_input.m
· Description: This function is used to return a matrix (P_shgl) with the probability of a shingle damaging windows of various sizes for a vector of wind speeds from 50 to 250 mph 3-second gust. This is calculated based on the percent of window exposed when wind is coming perpendicular to the long dimension, short dimension, and cornering winds
· Input: dimensions of model
· 1x5 vector = [width(ft), length(ft), height(ft), overhang(ft), pitch(rise)]
· Procedure:
· Create a vector ‘v’ that represents wind speeds from 50 to 250 mph in steps of 1 mph
· Governing equation: 	probability(window damage | given velocity) = 1-exp[-(A*N_A*B*C*D)]
· Assign functional shape to ‘A’ parameter – fraction of potential missiles in air
· Assign functional shape to ‘B’ parameter – fraction of available missiles that strike house
· Calculate dimensions of each window size and the surface area of the long and short dimensions of house
· Assign constant values to ‘C_window’ matrix – a 4x3 matrix that contains the fraction of house surface that a window of a particular size occupies.
· Rows 1-4 are for large, skinny, medium, and small windows, respectively.
· Columns 1-3 are for winds perpendicular to either long side, or short side, and any of the 4 corners, respectively.
· Assign functional shape to ‘D’ - probability that momentum of the missile is enough to damage window
· Calculate the 201 x 12 matrix ‘P_shgl_on_window’ –
· Double loop to assign probability of window failure due to missile impact for 4 window sizes for three different wind directions (perpendicular to the long dimension, short dimension, and cornering winds)
· Return to calling program.
· Output: A 201x12 matrix with probability of a shingle damaging individual windows of various sizes for varying wind speeds.
Missile_impact.m
· Description: This function is used to calculate the number of windows broken by missile impact. It is the counterpart to window_pressure_check.m (which calculates windows broken by wind pressure), which together tally the total windows broken by either pressure or impact.
· Input: the number of large, skinny, small and medium windows that are on the side(s) of the house currently ‘feeling’ the approach wind, and thus are exposed to potential damage from missile impact (impact_windows).
· Procedure:
· Total up the number of windows susceptible to missile impact (sum up contents of impact_windows).
· Generate random numbers from a uniform distribution for each of these windows. Store in a column vector called generated_number, which is the same length as the total number of windows currently exposed to missiles.
· Reduce the probability that a missile will damage a window if it is protected by either a shutter (plywood, steel or engineered) or by specialized glass (laminated or impact resistance).
· Determine if windows are broken by missile impact one at a time
· If there are large windows (numbers(1) > 0)
· Loop for each large window, comparing a random uniform number from the generated_numbers vector with the probability that a large window will break from missiles. Breakage occurs IF generated_number < Prob_shingle_impact.
· If breakage occurs for that window, add one to the first value in the 1x4 vector ‘results’
· If there are skinny windows (numbers(2) > 0)
· Loop for each skinny window, comparing a random uniform number from the generated_numbers vector with the probability that a skinny window will break from missiles. Breakage occurs IF generated_number < Prob_shingle_impact.
· If breakage occurs for that window, add one to the second value in the 1x4 vector ‘results’
· If there are medium windows (numbers(3) > 0)
· Loop for each medium window, comparing a random uniform number from the generated_numbers vector with the probability that a medium window will break from missiles. Breakage occurs IF generated_number < Prob_shingle_impact.
· If breakage occurs for that window, add one to the third value in the 1x4 vector ‘results’
· If there are small windows (numbers(4) > 0)
· Loop for each small window, comparing a random uniform number from the generated_numbers vector with the probability that a small window will break from missiles. Breakage occurs IF generated_number < Prob_shingle_impact.
· If breakage occurs for that window, add one to the fourth value in the 1x4 vector ‘results’
· Account for the impact broken windows by zeroing the capacities of the windows that broke
· If there are large windows broken (results(1) > 0), replace as many places in the lg_cap vector as there are impact broken windows with zeros
· If there are skinny windows broken (results(2) > 0), replace as many places in the skinny_cap vector as there are impact broken windows with zeros
· If there are medium windows broken (results(3) > 0), replace as many places in the med_cap vector as there are impact broken windows with zeros
· If there are small windows broken (results(4) > 0), replace as many places in the small_cap vector as there are impact broken windows with zeros
· Return to calling program
· Output:
· A 1x4 vector ‘results’ that contains the number of large, skinny, medium and small windows that were broken, respectively.
· This function is called just before window_pressure_check.m, and also returns the lg_cap, skinny_cap, med_cap and small_cap vectors after zeroing their pressure capacities if broken by a missile.
pressures.m
· Description: This function is used to assign the external wind pressure to the walls, roof cover, and roof sheathing, and is dependent upon the current wind speed and direction.
· Input: The pressure coefficients for the roof and walls (function of wind direction), the internal pressure, and the velocity pressure (function of wind speed).
· Procedure:
· Adjustment to pressure on roof if house is 2 story
· If story == 2, divide the velocity pressure qh by 0.85
· Assign ‘roof_pressure’ = (roof pressure coefficient) * (velocity pressure) – (internal pressure)
· Locate any roof pressure coefficients that are zero valued (this indicates that that piece of sheathing was damaged and removed from the structure)
· Re-assign the roof pressure on any removed sheathing panels to zero
· Assign ‘roofcover_pressure’ = (roof pressure coefficient) * (velocity pressure)
· Assign ‘wall_pressure’ = (wall pressure coefficient) * (velocity pressure) – (internal pressure)
· Return to calling program
· Output: The physical pressures acting on the various surfaces of the model (roof and walls).
R2w_conn_uplift_hip6044.m
· Description: This function is used to calculate the uplift in each of the roof to wall (r2w) connections along the sides and long walls of a house that has a 60 x 44 ft footprint. This function is only used by damage models that simulate structures with Hip roof end.
· Input: the spacing between trusses in feet, and roof pressure currently acting on each sheathing panel (function of wind speed and direction).
· Procedure:
· Preliminary calculations
· Convert the roof pressure currently provided perpendicular to the plane of the sheathing to its vertical uplift component only by: roof_pressure=abs(roof_pressure.*12/13)
· Calculate the length of each of the trusses along one long end of the house: length = [2*26/24:2*26/24:26,zeros(1,6) + 26,26:-2*26/24:2*26/24]
· Calculate the dead load (gravity downward load) from the weight of the long end trusses: DL_truss_end = length_end./26.*(220/2)
· Calculate the length of each of the trusses along one short end of the house
· Calculate the dead load from the weight of the short end trusses
· Find the sheathing panels that have not already been removed (damaged)
· Subtract the dead load of roofing material (not truss weight) from the roof pressure uplift on all intact sheathing panels.
· Calculate the uplift in each r2w connection in four separate sections, each representing one wall of the house
· Calculate uplift in each of the 30 r2w connections along the front long side, save in ‘uplift’
· Combine results into ‘total_side_1’ and subtract the self weight from the trusses from the uplift
· total_side_1=uplift-DL_truss
· Calculate uplift in each of the 23 r2w connections along the short side, save in ‘uplift’
· Combine results into ‘total_end_1’ and subtract the self weight from the trusses from the uplift
· total_end_1=uplift-DL_truss_end
· Calculate uplift in each of the 30 r2w connections along the back long side, save in ‘uplift’
· Combine results into ‘total_side_2’ and subtract the self weight from the trusses from the uplift
· total_end_2=uplift-DL_truss_end
· Repackage results into the output vectors and remove negative numbers
· Place the 4 vectors from the above calculations into 2 matrices that are output from the function, one containing both long ends, one containing both short ends
· uplift_r2w=[total_side_1',total_side_2']
· uplift_end=[total_end_1',total_end_2']
· Remove any negative uplift values and replace them with zeros
· Return to calling program.
· Output: Two matrices, one that provided the uplift in each r2w connection along the long wall (one column per side), and one that provides the uplift in each r2w connection along the short wall (one column per side).

R2w_conn_uplift_hip5638.m
· Description: This function serves the same purpose of the R2w_conn_uplift_hip6044.m with the exception that the house’s footprint is different. It is 56x38 ft. as opposed to 60x44 ft.
· Input: See R2w_conn_uplift_hip6044.m
· Procedure: See R2w_conn_uplift_hip6044.m
· Output: See R2w_conn_uplift_hip6044.m
R2w_conn_uplift_hip5644.m
· Description: This function serves the same purpose of the R2w_conn_uplift_hip6044.m with the exception that the house’s footprint is different. It is 56x44 ft. as opposed to 60x44 ft.
· Input: See R2w_conn_uplift_hip6044.m
· Procedure: See R2w_conn_uplift_hip6044.m
· Output: See R2w_conn_uplift_hip6044.m
R2w_conn_uplift_hip6038.m
· Description: This function serves the same purpose of the R2w_conn_uplift_hip6044.m with the exception that the house’s footprint is different. It is 60x38 ft. as opposed to 60x44 ft.
· Input: See R2w_conn_uplift_hip6044.m
· Procedure: See R2w_conn_uplift_hip6044.m
· Output: See R2w_conn_uplift_hip6044.m
R2w_conn_uplift.m
· Description: This function is used to calculate the uplift in each of the roof to wall (r2w) connections. This includes the r2w connections along the long sides of the house, and the gable end connections along the short sides of the house. It is only used by damage models which simulate a structure with gable end roof.
· Input: The roof pressure currently acting on each sheathing panel (function of wind speed and direction), a matrix giving the width of each sheathing panel on one half of the gable roof, the number of r2w connections along one long side, the number of r2w connections along one short (gable) side, and the dimensions of the house (length, width, height, roof overhand length, and roof pitch)
· Procedure:
· Calculate dead loads due to the weight of the roofing material and weight of the trusses
· assign 10 psf to each cell in a matrix ‘DL_roof_material’
· Find those sheathing panels that have been damaged and removed (roof_pressure = 0)
· Remove the 10 psf contribution in ‘DL_roof_material’ at those damaged sheathing locations
· Create the ‘pressure’matrix’ as the upward wind pressure minus the dead loads from roof material
· Assign a constant value of 110 to ‘DL_truss’, which accounts for dead loads due to truss weight
· Set up parameters needed for uplift calculations
· ‘half’ is a scalar that represents the number of sheathing panels from a corner of the house to the peak (ridgeline). Subsequent calculations will operate on each half of the roof separately. ‘half’ represents the # of rows of sheathing panels on one side of a gable roof, where a single row runs gable end to gable end along the long dimension of the house
· ‘tw’ = 2 is a 2 foot separation between adjacent trusses
· ‘y’= 12/13 is a constant used to calculate y-component uplift (it accounts for the roof overhang in calculations) of sheathing size.
· ‘w’ is the first column of sheathing widths
· 4 Nested FOR loop series to calculate total uplift on each truss (contained in ‘uplift’)
· Calculate the uplift load in each r2w connection
· ‘Uplift’ was calculated in the previous section as a 2 row matrix, where each row represents one half of the house (separated by the ridge line), and each column represents the total uplift in each of the individual trusses on that half of the roof.
· The matrix ‘uplift’ is transposed so that it has n rows and 2 columns, where n is the # of trusses
· uplift = uplift’;
· The uplift for each of the r2w connections along the long sides of the house is now extracted, taking only the interior rows 2 through second to last one. Thus the loads in the r2w connections along each long end are taken from all trusses except the outside end trusses
· uplift_r2w=uplift(2:end-1,:)
· The uplift in the gable end connections comes from the two outside trusses only. The uplift in the outside trusses is divided equally into each of the 8 gable end r2w connections
· uplift_gable(:,1)=zeros(num_gable_connections,1)+sum(uplift(1,:))/num_gable_connections
· uplift_gable(:,2)=zeros(num_gable_connections,1)+sum(uplift(end,:))/num_gable_connections
· Return to calling program
· Output: Two matrices, one that provided the uplift in each r2w connection along the long side (one column per side), and one that provides the uplift in each r2w connection along the gable end (one column per side).

Redist_gable.m
· Description: This function is used to transfer the loads previously carried by gable end r2w connections that have failed. The failed r2w connections cannot carry any load, so the load is redistributed to the neighboring connections that are still intact. Once the redistribution is finished, the remaining r2w connections are tested for failure under the new loads. This function is only used by damage models which simulate structures with gable roof end.
· Input: the current capacity of each connection, the uplift in each connection, an index pointing to which connections have failed, and the number of r2w connections along one gable end.
· Procedure:
· Calculate the number of intact r2w gable connections
· IF any connections are undamaged (gable_intact > 0)
· Calculate a ‘factor’ that is the total # of connections in ratio with the intact connections
· ELSE
· Set ‘factor’ = 1
· Reassign the uplift in each connection as its original load multiplied by ‘factor’. This redistributes the load from failed connections evenly to all remaining connections on that gable end
· Re-check for failure by comparing the new uplift vs. the r2w capacities
· If any more r2w fail, reset their ‘gable_cap’ to zero
· Return to calling program.
· Output: An index pointing to which connections have failed, the number of failed connections, and a matrix with the newly calculated capacities of the connections.
Redist_uplift.m
· Description: This function is used to transfer the loads previously carried by r2w connections that have failed. The failed r2w connections cannot carry any load, so the load is redistributed to the neighboring connections that are still intact with this function. Once the redistribution is finished, the remaining r2w connections are tested for failure under the new loads. If used by a damage_model_*** with a hip roof, this function is used for all r2w connections. If used by a gable roof model, this function is used for the r2w connections along the long sides of the building, and redist_gable.m is used for the r2w connections along the gable end.
· Input: The current capacity of each connection, the uplift in each connection, an index pointing to which connections have failed, and the number of r2w connections along one gable end.
· Procedure:
· Set the capacities of failed connections to zero
· Loop over number of failed connections, start the major portion of the program
· This program considers several different possible scenarios to redistribute loads from failed connections. Cases include:
· An interior (not at the ends of the wall) failed connection has its load redistributed to the two connections on either side (4 total connections take up the load)
· Two adjacent connections fail, load is redistributed to intact adjacent connections
· Multiple failed connections, load is redistributed to first two connections still intact
· Outside FOR loop, check to see if redistribution of loads to fewer connections has caused any further failures.
· Assign new_r2w_indx as pointer to location of failed connections within r2w_cap vector
· Count new total number of failed connections
· Assign capacities of newly failed connections to zero.
· Return to calling program.
· Output: An index pointing to which connections have failed, the number of failed connections, a matrix with the newly calculated capacities of the connections, and a matrix with the adjusted uplift load in each intact r2w connection.
Rooflayout5638.m
· This function is used to establish the structural layout of the roof system. The function determines number and placement of sheathing panels, number of trusses, number of roof to wall connections, the pressure coefficients aggregated over each sheathing panel, and the roof area. 5638 refers to the length and width of the house in feet (56 ft by 38 ft). It is only used by models which simulate a structure that is located in southern and central regions and has concrete block walls.
· Input: The roof type, dimensions of structure, spacing between adjacent roof trusses in inches (24 inches used for all models), and the randomly assigned pressure coefficients for the three zones on the roof.
· Procedure:
· For gable roofs (roof_type = ‘g’)
· Calculate total area of sheathing panels (create roof_area=[sh_area;sh_area])
· Calculate number of r2w connections (create num_r2w_connections & num_gable_connections)
· Aggregate pressure coefficients on each sheathing panel
· Winds perpendicular to ridge line (create Cp0 & Cp180)
· Winds parallel to ridge line (create Cp90)
· Cornering winds (create Cp45 & Cp135)
· For hip roofs (roof_type = ‘h’)
· Calculate total area of sheathing panels
· (create sh_area=[sheathing_side,sheathing_end], roof_area=[sh_area;sh_area])
· Calculate number of r2w connections
· (create num_r2w_connections=num_r2w_conn_side+num_r2w_conn_end)
· Aggregate pressure coefficients on each sheathing panel
· Winds perpendicular to ridge line (create Cp0 & Cp180)
· Winds parallel to ridge line (create Cp90)
· Cornering winds (create Cp45 & Cp135)
· For both roofs: create roof_area=[sh_area;sh_area]
· Return to calling program.
· Output: How many sheathing panels, the pressure coefficients on the roof, and the number of roof to wall connections on each side.
Rooflayout5644.m
· Description: This function serves the same purpose of the Rooflayout5638.m with the exception that the house’s footprint is different. It is 56x44 ft. as opposed to 56x38 ft.
· Input: See Rooflayout5638.m
· Procedure: See Rooflayout5638.m
· Output: See Rooflayout5638.m
Rooflayout6038.m
· Description: This function serves the same purpose of the Rooflayout5638.m with the exception that the house’s footprint is different. It is 60x38 ft. as opposed to 56x38 ft.
· Input: See Rooflayout5638.m
· Procedure: See Rooflayout5638.m
· Output: See Rooflayout5638.m
rooflayout6044.m
· Description: This function serves the same purpose of the Rooflayout5638.m with the exception that the house’s footprint is different. It is 60x44 ft. as opposed to 56x38 ft.
· Input: See Rooflayout5638.m
· Procedure: See Rooflayout5638.m
· Output: See Rooflayout5638.m
Wall_loading.m
· Description: This function is used to check for wall failure.
· Input: Wall and roof type, truss spacing, uplift in r2w connections, capacity of walls in tension and bending, velocity pressure, pressure coefficients on various components on the house, and whether the gable end is braced.
· Procedure:
· Adjustment to pressure on roof is house is 2 story
· If story == 2, divide the velocity pressure qh by 0.85
· Calculate 4x1 ‘P’ vector: this is the uplift per foot of wall length along each side of house: units = lbs. P=[front wall uplift/foot length; back wall uplift/foot length; side wall uplift/foot length; side wall uplift/foot length]
· Calculate 4x1 ‘intact_connections’ vector: the number of intact roof to wall connections on each wall
· Intact_connections = [# intact on front wall, # intact back wall, # intact side wall, # intact side wall]
· IF wall_type is masonry
· Calculate applied bending moment on walls ‘M’ for walls that are simply supported (i.e. connected at wall top and bottom to floor / roof systems)
· multiplier=velocity pressure*(wall height)^2 / 8
· M = abs(multiplier.*MWFRS pressure coefficient for walls)
· Calculate an increase in the applied moment ‘M’ if too many r2w connections fail
· For long walls (front and back), if more than half the r2w connections fail, increase the moment ‘M’ by a factor of 1.6 this represents the wall being partially cantilevered rather than simply supported.
· For side walls
· If roof is hipped
· If ¾ of r2w connections fail, increase moment
· If roof is gabled
· If gable is braced (stronger)
· If ¾ of r2w connections fail, increase moment
· If gable is not braced (weaker)
· If ¼ of r2w connections fail, increase moment
· Convert moment ‘M’ to lb.-inches from lb.-feet
· Perform wall check using interaction equation. This is the combined tension in a masonry wall due to uplift and bending.
· ‘wall_check’ is a 4x1 vector (scalar for each wall), if value is > 1, wall is failed
· ‘wall_check’ = P. / P_allow + M / M_allow where
· P is applied uplift on each wall
· P_allow is capacity of each wall in tension
· M is applied moment on each wall
· M_allow is capacity of each wall in tension from bending
· IF wall_type is wood
· Calculate the ‘Lateral’ vector - lateral load per vertical stud at the base connection for each wall
· Lateral value = (pressure coefficient per wall) * (velocity pressure) * (applied area per stud)
· Calculate a ‘multiplier_long’ and ‘multiplier_short’ to increase lateral load if too many r2w connections fail at the top of a wall.
· Check for loss of too many roofs to wall connections. If too many fail, increase the load applied to the wall, and reduce the resistance of the wall. Failure mode will change from lateral to bending failure if wall looses connection to roof (simply supported wall becomes cantilevered)
· For long walls (front and back), if more than half the r2w connections fail, increase the ‘Lateral’ load by a factor of ‘multiplier_long’. And decrease the capacity by a multiple of 0.125. This represents the wall being partially cantilevered rather than simply supported. This reduction means the stud to sill connection is no longer resisting in a lateral sense, but rather is now resisting bending. Since the connection is not designed for bending, it becomes very weak.
· For short walls (sides)
· If roof is hipped
· If ¾ of r2w connections fail, increase load and reduce resistance by 0.4
· If roof is gabled
· If gable is braced (stronger)
· If ¾ of r2w conn. fail, increase load and reduce resistance by 0.125
· If gable is not braced (weaker)
· If ¼ of r2w conn. fail, increase load and reduce resistance by 0.125
· Perform wall check by viewing tensile capacity and lateral capacity separately
· Create wall_check = 4x1 vector
· For each wall, find the larger of the ratios P/P_allow & Lateral/M_allow and save the larger to the wall_check vector. If the larger of the 2 ratios for a given wall is > 1, that wall will be counted as failed in the damage_model_*** calling program
· Calculate the shear loading on the walls parallel to the wind direction (units are pounds lbs.)
· If wind is hitting a side wall, calculate MWFRS loads on side walls (V_wall)
· If wind is hitting a corner, calculate MWFRS loads on all walls (V_wall)
· If wind is hitting front or back wall, calculate MWFRS loads on front/back walls (V_wall)
· For masonry (concrete block) walls
· If wind hitting side wall
· Convert shear load to psi, take maximum of two long sides (‘fvmax’)
· If wind hitting front or back wall
· Convert shear load to psi, take maximum of two short sides (‘fvmax’)
· If wind hitting any corner
· Convert shear load to psi
· Take maximum of two long sides (‘fvmax(1)’)
· Take maximum of two short sides (‘fvmax(2)’)
· For wood walls
· If wind hitting side wall
· Convert shear load to lbs. per foot, take maximum of two long sides (‘fvmax’)
· If wind hitting front or back wall
· Convert shear load to lbs. Per foot, take maximum of two short sides (‘fvmax’)
· If wind hitting any corner
· Convert shear load to lbs. Per foot
· Take maximum of two long sides (‘fvmax(1)’)
· Take maximum of two short sides (‘fvmax(2)’)
· Return to calling program.
· Output: ‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘fvmax’ is the maximum shear load for checking shear failure, and ‘V_locn’ to indicate which direction the wind is approaching the house.
window_pressure_check.m
· Description: This function is used to determine if windows break due to pressure loading (not missile impact).
· Input: Windows’ pressure coefficients and number of windows on four sides of the house.
· Procedure:
· Run if wind is perpendicular to any side, not a corner wind (row_windward < 10)
· Check windward wall first (could be either front, back or side depending on wind direction)
· Determine failure of windows on windward wall in this order:
· Large windows interior (windows(row_windward, 2))
· Large windows edge (windows(row_windward, 3))
· Skinny windows interior (windows(row_windward, 4))
· Skinny windows edge (windows(row_windward, 5))
· Medium windows interior (windows(row_windward, 6))
· Medium windows edge (windows(row_windward, 7))
· Small windows interior (windows(row_windward, 8))
· Small windows edge (windows(row_windward, 9))
· Check side and back walls (side and back relative to wind direction)
· Determine failure of windows on leeward and side walls in this order:
· Large windows interior (windows(ii, 2))
· Large windows edge (windows(ii, 3))
· Skinny windows interior (windows(ii, 4))
· Skinny windows edge (windows(ii, 5))
· Medium windows interior (windows(ii, 6))
· Medium windows edge (windows(ii, 7))
· Small windows interior (windows(ii, 8))
· Small windows edge (windows(ii, 9))
· If any windows failed due to winds perpendicular to any side of the house, assign internal pressure to the average of the pressure at the failed windows
· Run if wind is cornering, hitting front corner of house (row_windward = 12)
· Check windows on front corner walls first (could be either front corner)
· Determine failure of windows on front wall and side wall facing cornering wind in this order:
· Large windows interior (windows(ii, 2))
· Large windows edge (windows(ii, 3))
· Skinny windows interior (windows(ii, 4))
· Skinny windows edge (windows(ii, 5))
· Medium windows interior (windows(ii, 6))
· Medium windows edge (windows(ii, 7))
· Small windows interior (windows(ii, 8))
· Small windows edge (windows(ii, 9))
· Check windows on two walls not facing cornering wind
· Determine failure of windows on walls not facing cornering wind in this order:
· Large windows interior (windows(ii, 2))
· Large windows edge (windows(ii, 3))
· Skinny windows interior (windows(ii, 4))
· Skinny windows edge (windows(ii, 5))
· Medium windows interior (windows(ii, 6))
· Medium windows edge (windows(ii, 7))
· Small windows interior (windows(ii, 8))
· Small windows edge (windows(ii, 9))
· If any windows failed due to cornering winds hitting front corner of house, assign internal pressure to the average of the pressure at the failed windows
· Run if wind is cornering, hitting back corner of house (row_windward = 34)
· Check windows on back corner walls first (could be either back corner)
· Determine failure of windows on back wall and side wall facing cornering wind in this order:
· Large windows interior (windows(ii, 2))
· Large windows edge (windows(ii, 3))
· Skinny windows interior (windows(ii, 4))
· Skinny windows edge (windows(ii, 5))
· Medium windows interior (windows(ii, 6))
· Medium windows edge (windows(ii, 7))
· Small windows interior (windows(ii, 8))
· Small windows edge (windows(ii, 9))
· Check windows on two walls not facing cornering wind
· Determine failure of windows on walls not facing cornering wind in this order:
· Large windows interior (windows(ii, 2))
· Large windows edge (windows(ii, 3))
· Skinny windows interior (windows(ii, 4))
· Skinny windows edge (windows(ii, 5))
· Medium windows interior (windows(ii, 6))
· Medium windows edge (windows(ii, 7))
· Small windows interior (windows(ii, 8))
· Small windows edge (windows(ii, 9))
· If any windows failed due to cornering winds hitting back corner of house, assign internal pressure to the average of the pressure at the failed windows
· Return to calling program	
· Output: A tally of total windows broken for that simulation and the new internal pressure of the structure, re-calculated within this function if any windows have broken.

Figure 4.1.4: Class diagram for MCS

Figure 4.1.5: Program flowchart of MCS damage model

Figure 4.1.6: Overall data flow diagram of MCS

Figure 4.1.7: Detailed data flow diagram of MCS (damage model data flow)
[bookmark: _Toc346555774]Glossary

The following tables map variables in the code to input and output terms of the detailed description of the programs described in Section 4.1.3.3 (“Implementation of the Monte Carlo Simulation model”).

Program: Main_driver.m
	Input Variables
	Descriptions
	Terms in Documentation

	Ind_compile

	Prompt from program forces user to decide whether changes warrant that the code be recompiled: 0 – no recompile needed, proceed; 1 – yes, recompile needed, program exits and user will recompile
	Required user defined inputs that describe the input file name to access, recompile indicator, date of run, number and types of models to run, wind speeds to include, and number of simulations to conduct

	Input_file
	Declare the name of the input file to access, currently hardwired as ‘input_2’
	

	Date
	Prompt from program for user to declare the current date and a unique identifier for this run. The Monte Carlo functions that are executed from main_driver.m will generate output files that have this date and identifier within the name
	

	Num_FileTypes
	Scalar value > 0, < 10 that specifies how many different models are to be executed in this run; read from the input file specified in Input_file
	

	Num_winds
	Scalar value (typically 41) that specifies how many different wind speeds are to be executed in this run; read from the input file specified in Input_file
	

	FileTypes
	A vector read from the input file specified in Input_file, where each value in the vector is associated with a specific model type that is to be executed:
1 - damage_model_N_W_G
2 - damage_model_N_W_H
3 - damage_model_S_CB_G
4 - damage_model_S_CB_H
13 - damage_model_MH_1
14 - damage_model_MH_1_pre
15 - damage_model_MH_2
16 - damage_model_MH_1_HUD_II
17 - damage_model_MH_1_HUD_III
; read from the input file specified in Input_file
	

	Count
	Number of simulations to be executed per wind speed and direction; read from the input file specified in in Input_file
	

	Winds
	Vector of wind speed values to at which simulations are to be executed; typically this is 50:5:250 in 3-s3ec gust mph. ; read from the input file specified in in Input_file
	

	Output Variables
	Descriptions
	Terms in Documentation

	none
	
	

Program: Main_driver_input.m
	Input Variables
	Descriptions
	Terms in Documentation

	story

	Number of stories in the model:
1 or 2
	User enters these inputs to the program to specify the strength component combinations required for this execution of main_driver.

This program is executed from within the damage_model_***.m programs

	Shutter
	Window protection type:
1 – no window protection
2 – plywood window protection
3 – metal panel window protection
4 – engineered (e.g. roll down) protection
	

	Metal_roof_indicator
	Roof cover type:
0 – non-metal roof (shingles)
1 – new metal roof
	

	HVHZ_indicator
	Building location indicator
0 – inland or WBDR regions
1 – HVHZ region
	

	mitigated
	Indicates the component strength combinations required
0 = non-mitigated as defined by commission standards
1 = mitigated as defined by commission standards
2 = special case for S-5 form, page 142 of 2004 standards
%%unmitigated = no shutters, 1980 construction, 55 mph shingles, 6-d sheathing nails, toe nails / no straps
 %%mitigated = shutters, 1980 construction, 110 mph shingles, 8-d sheathing nails, hurricane straps
3 = strong inland
4 = strong HVHZ (stronger sheathing, shingles, and r2w)
5 = medium case (8d sheathing 6x12, weak garage, clips)
6 = weak case (6d 6x12 sheathing, weak garage, toe nail r2w)
7 = W10 - strong decking (represents plank decking, use one of the stronger values [3 or 4])
8 = W01 - strong decking and rated shingles (represents reroof, two versions, standard S and HVHZ)
9 = M10 - weak deck (represents staples)
10 = M01 -strong decking and rated shingles (represents reroof, two versions, standard S and HVHZ)
	

	Output Variables
	Descriptions
	Terms in Documentation

	cover_type
	Mean strength of roof cover
1 unrated shingles, 2 110 mph rated in 1980; 3 HVHZ 4 new metal roof
	These variables are assigned based upon the combination of five input variables above

	sheathing_type
	Mean strength of roof sheathing
1 6d nail data 12" oc, 2 8d 6/12", 3 8d 6/6 or RS 6/12, 4 RS 6/6
	

	connection_type
	Mean strength of r2w connections: long ends
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	gable_conn_type
	Mean strength of r2w connections: short ends (gable models only)
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	window_type
	Mean pressure strength of windows
1 typical window, no laminate or impact, 2 laminated, 3 impact resistance
	

	door_protection
	Assign entry door protection
1 no shutter protection, 2 shutter protection
	

	reinforcing
	Assign reinforcing for masonry walls
0 no reinforcing in CB walls, 1 reinforcing in CB walls
	

	gable_brace
	Assign bracing for gable ends
1 is no gable brace, 2 gable brace
	

	garage_type
	Assign garage pressure strength
1 is unbraced garage door, 2 is braced door
	

	stud2sill
	Mean strength of stud to sill connections
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	win_ind
	Window strength indocator
0 weak or medium houses, 1 strong house, higher pressure capacity
	

Program: damage_model_S_CB_G.m
	Input Variables
	Descriptions
	Terms in Documentation

	count

	Number of simulations to be executed per wind speed and direction
	These inputs are passed through from the call from main_driver.m
The describe the number of simulations, wind speeds, and date stamp for the output file name

	Winds
	Vector of wind speed values to at which simulations are to be executed; typically this is 50:5:250 in 3-s3ec gust mph.
	

	date
	User to declared current date and a unique identifier for this run. This damage_model code will generate output files that have this date and identifier within the name
	

	cover_type
	Mean strength of roof cover
1 unrated shingles, 2 110 mph rated in 1980; 3 HVHZ 4 new metal roof
	These inputs are created by executing main_driver_input.m within this damage_model code.
They are used to assign the mean capacities of the components as described

	sheathing_type
	Mean strength of roof sheathing
1 6d nail data 12" oc, 2 8d 6/12", 3 8d 6/6 or RS 6/12, 4 RS 6/6
	

	connection_type
	Mean strength of r2w connections: long ends
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	gable_conn_type
	Mean strength of r2w connections: short ends (gable models only)
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	window_type
	Mean pressure strength of windows
1 typical window, no laminate or impact, 2 laminated, 3 impact resistance
	

	door_protection
	Assign entry door protection
1 no shutter protection, 2 shutter protection
	

	reinforcing
	Assign reinforcing for masonry walls
0 no reinforcing in CB walls, 1 reinforcing in CB walls
	

	gable_brace
	Assign bracing for gable ends
1 is no gable brace, 2 gable brace
	

	garage_type
	Assign garage pressure strength
1 is unbraced garage door, 2 is braced door
	

	stud2sill
	Mean strength of stud to sill connections
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	win_ind
	Window strength indicator
0 weak or medium houses, 1 strong house, higher pressure capacity
	

	Output Variables
	Descriptions
	Terms in Documentation

	dimensions
region
wall_type
roof_type
story
mitigated
shutter
cover_type
sheathing_type
connection_type
gable_conn_type
window_type
door_protection
reinforcing
garage_type
stud2sill
win_ind
	Building size
South or north model
Wood or masonry
Gable or hip
1 or 2
1 – 10
Window protection class
Shingle strength or metal roof
Sheathing strength
R2w connection strength (front/back)
R2w connection strength (sides)
Regular or impact resistant
On or off
Yes or no (masonry)
Braced or weak
Connection strength
Old or new windows – pressure strength
	All relevant descriptors of the model are saved such that the output file alone can completely describe the model that was run. Each item in left column is an individual variable saved in the output file described in the bottom row of this table

	perct_failed_sheathing
	percentage of roof sheathing failed
	Results of the Monte Carlo simulation of physical exterior damage. All output variables in the left column are saved into a single matrix ‘damage’, where each column is one of the quantities described to the left, each row is a single simulation, and each of the 328 matrices are results from a single speed and direction (41 * 8 = 328). ‘damage’ matrix is saved in the output file described in the bottom row of this table

	perct_failed_roofcover
	percentage of roof cover lost
	

	perct_failed_r2w
	percentage of roof to wall connections failed
	

	failed_wall
	# of failed walls (0-4)
	

	failed_window
	# of failed windows (0-15)
	

	failed_door
	# of failed door (0-2)
	

	failed_garage
	# of failed garage (0-1)
	

	breach
	(0-1) (1 if window, door or garage damaged)
	

	sum(impact_broken)
	total number of windows broken by impact, not pressure
	

	perct_failed_gable_end_panels
	percentage of gable end panels failed (zero if hip roof building)
	

	internal_pressure
	calculated internal pressure
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (front)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (back)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (side)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (side)
	

	Name of the output file containing all of the above has the following structure:
Region_date&rooftype_walltype&windspeed&winddirection.mat
Example: south_211052g_woodV100at135.mat
south 		= South region
211052	= Model run Feb. 11, 2005, 2nd run that day
g		= gable roof type
wood		= wood walls
V100 		= 100 m.p.h. 3 sec gust
at135 		= wind coming from 135 degrees relative to front of house
	

Program: damage_model_S_CB_H.m
	Input Variables
	Descriptions
	Terms in Documentation

	count

	Number of simulations to be executed per wind speed and direction
	These inputs are passed through from the call from main_driver.m
The describe the number of simulations, wind speeds, and date stamp for the output file name

	Winds
	Vector of wind speed values to at which simulations are to be executed; typically this is 50:5:250 in 3-s3ec gust mph.
	

	date
	User to declared current date and a unique identifier for this run. This damage_model code will generate output files that have this date and identifier within the name
	

	cover_type
	Mean strength of roof cover
1 unrated shingles, 2 110 mph rated in 1980; 3 HVHZ 4 new metal roof
	These inputs are created by executing main_driver_input.m within this damage_model code.
They are used to assign the mean capacities of the components as described

	sheathing_type
	Mean strength of roof sheathing
1 6d nail data 12" oc, 2 8d 6/12", 3 8d 6/6 or RS 6/12, 4 RS 6/6
	

	connection_type
	Mean strength of r2w connections: long ends
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	gable_conn_type
	Mean strength of r2w connections: short ends (gable models only)
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	window_type
	Mean pressure strength of windows
1 typical window, no laminate or impact, 2 laminated, 3 impact resistance
	

	door_protection
	Assign entry door protection
1 no shutter protection, 2 shutter protection
	

	reinforcing
	Assign reinforcing for masonry walls
0 no reinforcing in CB walls, 1 reinforcing in CB walls
	

	gable_brace
	Assign bracing for gable ends
1 is no gable brace, 2 gable brace
	

	garage_type
	Assign garage pressure strength
1 is unbraced garage door, 2 is braced door
	

	stud2sill
	Mean strength of stud to sill connections
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	win_ind
	Window strength indicator
0 weak or medium houses, 1 strong house, higher pressure capacity
	

	Output Variables
	Descriptions
	Terms in Documentation

	dimensions
region
wall_type
roof_type
story
mitigated
shutter
cover_type
sheathing_type
connection_type
gable_conn_type
window_type
door_protection
reinforcing
garage_type
stud2sill
win_ind
	Building size
South or north model
Wood or masonry
Gable or hip
1 or 2
1 – 10
Window protection class
Shingle strength or metal roof
Sheathing strength
R2w connection strength (front/back)
R2w connection strength (sides)
Regular or impact resistant
On or off
Yes or no (masonry)
Braced or weak
Connection strength
Old or new windows – pressure strength
	All relevant descriptors of the model are saved such that the output file alone can completely describe the model that was run. Each item in left column is an individual variable saved in the output file described in the bottom row of this table

	perct_failed_sheathing
	percentage of roof sheathing failed
	Results of the Monte Carlo simulation of physical exterior damage. All output variables in the left column are saved into a single matrix ‘damage’, where each column is one of the quantities described to the left, each row is a single simulation, and each of the 328 matrices are results from a single speed and direction (41 * 8 = 328). ‘damage’ matrix is saved in the output file described in the bottom row of this table

	perct_failed_roofcover
	percentage of roof cover lost
	

	perct_failed_r2w
	percentage of roof to wall connections failed
	

	failed_wall
	# of failed walls (0-4)
	

	failed_window
	# of failed windows (0-15)
	

	failed_door
	# of failed door (0-2)
	

	failed_garage
	# of failed garage (0-1)
	

	breach
	(0-1) (1 if window, door or garage damaged)
	

	sum(impact_broken)
	total number of windows broken by impact, not pressure
	

	perct_failed_gable_end_panels
	percentage of gable end panels failed (zero if hip roof building)
	

	internal_pressure
	calculated internal pressure
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (front)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (back)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (side)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (side)
	

	Name of the output file containing all of the above has the following structure:
Region_date&rooftype_walltype&windspeed&winddirection.mat
Example: south_211052g_woodV100at135.mat
south 		= South region
211052	= Model run Feb. 11, 2005, 2nd run that day
g		= gable roof type
wood		= wood walls
V100 		= 100 m.p.h. 3 sec gust
at135 		= wind coming from 135 degrees relative to front of house
	

Program: damage_model_N_W_G.m
	Input Variables
	Descriptions
	Terms in Documentation

	count

	Number of simulations to be executed per wind speed and direction
	These inputs are passed through from the call from main_driver.m
The describe the number of simulations, wind speeds, and date stamp for the output file name

	Winds
	Vector of wind speed values to at which simulations are to be executed; typically this is 50:5:250 in 3-s3ec gust mph.
	

	date
	User to declared current date and a unique identifier for this run. This damage_model code will generate output files that have this date and identifier within the name
	

	cover_type
	Mean strength of roof cover
1 unrated shingles, 2 110 mph rated in 1980; 3 HVHZ 4 new metal roof
	These inputs are created by executing main_driver_input.m within this damage_model code.
They are used to assign the mean capacities of the components as described

	sheathing_type
	Mean strength of roof sheathing
1 6d nail data 12" oc, 2 8d 6/12", 3 8d 6/6 or RS 6/12, 4 RS 6/6
	

	connection_type
	Mean strength of r2w connections: long ends
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	gable_conn_type
	Mean strength of r2w connections: short ends (gable models only)
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	window_type
	Mean pressure strength of windows
1 typical window, no laminate or impact, 2 laminated, 3 impact resistance
	

	door_protection
	Assign entry door protection
1 no shutter protection, 2 shutter protection
	

	reinforcing
	Assign reinforcing for masonry walls
0 no reinforcing in CB walls, 1 reinforcing in CB walls
	

	gable_brace
	Assign bracing for gable ends
1 is no gable brace, 2 gable brace
	

	garage_type
	Assign garage pressure strength
1 is unbraced garage door, 2 is braced door
	

	stud2sill
	Mean strength of stud to sill connections
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	win_ind
	Window strength indicator
0 weak or medium houses, 1 strong house, higher pressure capacity
	

	Output Variables
	Descriptions
	Terms in Documentation

	dimensions
region
wall_type
roof_type
story
mitigated
shutter
cover_type
sheathing_type
connection_type
gable_conn_type
window_type
door_protection
reinforcing
garage_type
stud2sill
win_ind
	Building size
South or north model
Wood or masonry
Gable or hip
1 or 2
1 – 10
Window protection class
Shingle strength or metal roof
Sheathing strength
R2w connection strength (front/back)
R2w connection strength (sides)
Regular or impact resistant
On or off
Yes or no (masonry)
Braced or weak
Connection strength
Old or new windows – pressure strength
	All relevant descriptors of the model are saved such that the output file alone can completely describe the model that was run. Each item in left column is an individual variable saved in the output file described in the bottom row of this table

	perct_failed_sheathing
	percentage of roof sheathing failed
	Results of the Monte Carlo simulation of physical exterior damage. All output variables in the left column are saved into a single matrix ‘damage’, where each column is one of the quantities described to the left, each row is a single simulation, and each of the 328 matrices are results from a single speed and direction (41 * 8 = 328). ‘damage’ matrix is saved in the output file described in the bottom row of this table

	perct_failed_roofcover
	percentage of roof cover lost
	

	perct_failed_r2w
	percentage of roof to wall connections failed
	

	failed_wall
	# of failed walls (0-4)
	

	failed_window
	# of failed windows (0-15)
	

	failed_door
	# of failed door (0-2)
	

	failed_garage
	# of failed garage (0-1)
	

	breach
	(0-1) (1 if window, door or garage damaged)
	

	sum(impact_broken)
	total number of windows broken by impact, not pressure
	

	perct_failed_gable_end_panels
	percentage of gable end panels failed (zero if hip roof building)
	

	internal_pressure
	calculated internal pressure
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (front)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (back)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (side)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (side)
	

	Name of the output file containing all of the above has the following structure:
Region_date&rooftype_walltype&windspeed&winddirection.mat
Example: south_211052g_woodV100at135.mat
south 		= South region
211052	= Model run Feb. 11, 2005, 2nd run that day
g		= gable roof type
wood		= wood walls
V100 		= 100 m.p.h. 3 sec gust
at135 		= wind coming from 135 degrees relative to front of house
	

Program: damage_model_N_W_H.m
	Input Variables
	Descriptions
	Terms in Documentation

	count

	Number of simulations to be executed per wind speed and direction
	These inputs are passed through from the call from main_driver.m
The describe the number of simulations, wind speeds, and date stamp for the output file name

	Winds
	Vector of wind speed values to at which simulations are to be executed; typically this is 50:5:250 in 3-s3ec gust mph.
	

	date
	User to declared current date and a unique identifier for this run. This damage_model code will generate output files that have this date and identifier within the name
	

	cover_type
	Mean strength of roof cover
1 unrated shingles, 2 110 mph rated in 1980; 3 HVHZ 4 new metal roof
	These inputs are created by executing main_driver_input.m within this damage_model code.
They are used to assign the mean capacities of the components as described

	sheathing_type
	Mean strength of roof sheathing
1 6d nail data 12" oc, 2 8d 6/12", 3 8d 6/6 or RS 6/12, 4 RS 6/6
	

	connection_type
	Mean strength of r2w connections: long ends
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	gable_conn_type
	Mean strength of r2w connections: short ends (gable models only)
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	window_type
	Mean pressure strength of windows
1 typical window, no laminate or impact, 2 laminated, 3 impact resistance
	

	door_protection
	Assign entry door protection
1 no shutter protection, 2 shutter protection
	

	reinforcing
	Assign reinforcing for masonry walls
0 no reinforcing in CB walls, 1 reinforcing in CB walls
	

	gable_brace
	Assign bracing for gable ends
1 is no gable brace, 2 gable brace
	

	garage_type
	Assign garage pressure strength
1 is unbraced garage door, 2 is braced door
	

	stud2sill
	Mean strength of stud to sill connections
1 toe nail, 2 clips, 3 straps, 4 HVHZ
	

	win_ind
	Window strength indicator
0 weak or medium houses, 1 strong house, higher pressure capacity
	

	Output Variables
	Descriptions
	Terms in Documentation

	dimensions
region
wall_type
roof_type
story
mitigated
shutter
cover_type
sheathing_type
connection_type
gable_conn_type
window_type
door_protection
reinforcing
garage_type
stud2sill
win_ind
	Building size
South or north model
Wood or masonry
Gable or hip
1 or 2
1 – 10
Window protection class
Shingle strength or metal roof
Sheathing strength
R2w connection strength (front/back)
R2w connection strength (sides)
Regular or impact resistant
On or off
Yes or no (masonry)
Braced or weak
Connection strength
Old or new windows – pressure strength
	All relevant descriptors of the model are saved such that the output file alone can completely describe the model that was run. Each item in left column is an individual variable saved in the output file described in the bottom row of this table

	perct_failed_sheathing
	percentage of roof sheathing failed
	Results of the Monte Carlo simulation of physical exterior damage. All output variables in the left column are saved into a single matrix ‘damage’, where each column is one of the quantities described to the left, each row is a single simulation, and each of the 328 matrices are results from a single speed and direction (41 * 8 = 328). ‘damage’ matrix is saved in the output file described in the bottom row of this table

	perct_failed_roofcover
	percentage of roof cover lost
	

	perct_failed_r2w
	percentage of roof to wall connections failed
	

	failed_wall
	# of failed walls (0-4)
	

	failed_window
	# of failed windows (0-15)
	

	failed_door
	# of failed door (0-2)
	

	failed_garage
	# of failed garage (0-1)
	

	breach
	(0-1) (1 if window, door or garage damaged)
	

	sum(impact_broken)
	total number of windows broken by impact, not pressure
	

	perct_failed_gable_end_panels
	percentage of gable end panels failed (zero if hip roof building)
	

	internal_pressure
	calculated internal pressure
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (front)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (back)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (side)
	

	perct_failed_wall_panels
	percentage of wall sheathing panels failed (side)
	

	Name of the output file containing all of the above has the following structure:
Region_date&rooftype_walltype&windspeed&winddirection.mat
Example: south_211052g_woodV100at135.mat
south 		= South region
211052	= Model run Feb. 11, 2005, 2nd run that day
g		= gable roof type
wood		= wood walls
V100 		= 100 m.p.h. 3 sec gust
at135 		= wind coming from 135 degrees relative to front of house
	

Program: Capacity_manuf_house.m
	Input Variables
	Descriptions
	Terms in Documentation

	Contype

	
Scalar indicating roof to wall connection type:
 1 for single wide post 1976 HUD
 2 for double wide post 1976 HUD
 3 for pre-1976
 4 for post 1994 HUD, wind zone II
 5 for post 1994 HUD, wind zone III

	r2w connection type, number of r2w connections, number of ground anchors used, indicator for single or double wide, and an indicator for whether ground anchors are used.

	Dim
	
Number of r2w connections along one long side (based on house dimensions)

	

	Anch
	
Number of ground anchors along each side (based on house dimensions).

	

	Type
	
Single or double wide home:
 1 for single wide
 2 for double wide

	

	Anchor_ind
	
Ground anchor indicator:
 0 for no anchors
 1 for anchors

	

	Output Variables
	Descriptions
	Terms in Documentation

	Anch_cap
	
Vector of randomly assigned capacities for ground anchor uplift.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.

	

	Cap_r2w
	
Randomly assigned capacities of the r2w connections along either side of the long walls.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.

	

	Weight
	
Randomly assigned scalar of the MH weight.
Shifted Lognormal distribution

	

	siding
	
Matrix of randomly assigned capacities of vinyl siding:
 row 1: front of MH along edges
 row 2: front of MH
 row 3: back edge of MH
 row 4: back of MH
 row 5: side 1 edge
 row 6: side 1
 row 7: side 2 edge
 row 8: side 2
	

Program: Capacity_opening.m
	Input Variables
	Descriptions
	Terms in Documentation

	Front_door
	Type of front door (between 1 through 6)
	Information regarding garage, entry door and window material type, and whether doors / windows are protected by shutters

	Back_door
	Type of back door (between 1 through 6)
	

	Windows
	
Number of windows on four sides of house:
 column 1: total # windows on side in that row,
 column 2: # large windows total on that side
 column 3: # large windows at edge (edge is close to corner)
 column 4: # skinny windows total on that side
 column 5: # skinny edge
 column 6: # medium windows total on that side
 column 7: # medium edge
 column 8: # small windows total on that side
 column 9: # small edge
	

	Shutter
	
Type of window protection:
 1 – none, 2 – plywood, 3 – steel, 4 – engineered
	

	Window_type
	
Type of window glass:
 1 – standard, 2 – laminated, 3 – impact resistant
	

	Door_protection
	
Doors shutter protection:
 1 – no protection, 2 – protected (shuttered) doors
	

	Garage_type
	
Garage door bracing:
 1 – not braced for wind, 2 – braced for wind
	

	Win_ind
	Indicator for new or old windows
0 – old windows, 1 – new windows
	

	Output Variables
	Descriptions
	Terms in Documentation

	garage_cap
	
Random capacity of garage door
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	A list of variables that contain the probabilistically assigned capacities of the garage door, front and back doors and each window

	Fdoor_cap
	
Random capacity of front door
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	Bdoor_cap
	
Capacity of back door
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	Lg_cap
	
Random capacity of each large window
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	Skinny_cap
	
Random capacity of each skinny window
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	Med_cap
	
Random capacity of each medium window
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	Small_cap
	
Random capacity of each small window
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

Program: Capacity_r2w.m
	Input Variables
	Descriptions
	Terms in Documentation

	Connection

	
Type of roof to wall connection along the long dimensions of the house (front and back):
 1 = toe nail connections (weak), 2 =
 metal clips (medium), 3 = metal straps
 (strong inland), 4 = metal straps (HVHZ strong)
	Wall type (wood or CB), and number, type of r2w connections being used, and information regarding the sheathing fasteners (6d or 8d nails).

	Dim
	
If roof is gabled, this is the total number of r2w connections along the long walls. If the roof is hip, this is the total number of connections along all walls. Based on house dimensions/truss spacing.
	

	gable_connection
	
Type of roof to wall connection along the short dimensions of the house (sides).
1 = toe nail connections (weak), 2 =
 metal clips (medium), 3 = metal straps
 (strong inland), 4 = metal straps (HVHZ strong)
	

	dim2
	
If roof is gable, this is the total number of r2w connections along the short walls. If roof is hip, dim2 = 0 and is not used in the function. Based on house dimensions/truss spacing.
	

	wall_type
	
Indicates masonry or wood frame walls:
1 for concrete block (masonry) walls, =2 for wood frame walls.
	

	Output Variables
	Descriptions
	Terms in Documentation

	Capacity
	
Vector that contains the uplift capacity of each of the r2w connections along the long walls if roof is gabled. If roof is hipped this contains the capacity of all r2w connections, long walls and short walls.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	
A vector that contains the probabilistically assigned capacity of the r2w connections. If gable roof, output is in two vectors ‘capacity’ and ‘capacity_gable’. If hip roof, all output is in the vector ‘capacity’ and ‘capacity_gable’ is empty

	capacity_gable
	
Vector that contains the uplift capacity of each of the r2w connections along the short walls (sides) if the roof is gabled. If roof is hipped capacity_gable is assigned 0.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

Program: Capacity_roofcover.m
	Input Variables
	Descriptions
	Terms in Documentation

	cover_type

			
Mean strength assignment for roof cover: 1 – old unrated shingles, 2 – rated shingles inland, 3 – rated shingles HVHZ, 4 – new metal roof cover
	Information regarding the roofcover type (shingle strength or metal cover).

	roof_pressure
	
Matrix containing the averaged pressure coefficient on each of the sheathing panels of the roof. Weighted average based of the area of the sheathing panel lying within zones I, II, III. Result is one aggregate pressure coefficient per sheathing panel
	

	Output Variables
	Descriptions
	Terms in Documentation

	cover_cap
	
Randomly assigned capacity of the shingles on each of the sheathing panels of the roof. Units are psf.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	
A matrix that contains the probabilistically assigned capacity of the roofcover.

Program: Capacity_sheathing.m
	Input Variables
	Descriptions
	Terms in Documentation

	sheathing_type
			
Mean strength assignment for sheathing:
1 - 6d nails@12 (weak), 2 - 8d nails 6/12 (medium),
3 - 8d nails 6x6 or Ring Shank 6/12 (strong), Ring Shank 6/6 (HVHZ and all metal roofs)
	Information regarding the roof sheathing type (nail type and fastener schedule).

	roof_pressure
	
Matrix containing the averaged pressure coefficient on each of the sheathing panels of the roof. Weighted average based of the area of the sheathing panel lying within zones I, II, III. Result is one aggregate pressure coefficient per sheathing panel.
	

	Output Variables
	Descriptions
	Terms in Documentation

	capacity
	
Randomly assigned capacity of the sheathing on the roof. Units are psf.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	A matrix that contains the probabilistically assigned capacity of the sheathing panels

Program: Capacity_wall_sheathing.m
	Input Variables
	Descriptions
	Terms in Documentation

	dim
	
Number of wall sheathing panels being assigned a capacity. Based on house dimensions.
	
A scalar containing the length of the vector to be created (i.e. the # of wall panels to assign capacities to).

	Output Variables
	Descriptions
	Terms in Documentation

	capacity
	
Randomly assigned capacity of the sheathing on the walls. Units are psf.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	
A matrix that contains the probabilistically assigned capacity of the wall sheathing panels.

Program: Capacity_wall.m
	Input Variables
	Descriptions
	Terms in Documentation

	wall_type

	
Masonry or wood walls.
1 if model is masonry wall
2 if model is wood wall
	The wall type (masonry or wood), the spacing between roof trusses (always 24 inches), and 2 indicators (one indicating yes or no for reinforced masonry wall, one indicating the connection type between the sill plate and vertical studs).

	truss_spacing
	Spacing between adjacent trusses. Always 24 inches for current models.
	

	reinforcing
	
Masonry wall reinforcing indicator
0 is no reinforcing in masonry walls, 1 is reinforced masonry walls
	

	stud2sill
	
Connection from wall studs to sill plate:
1 is toe nail, 2 is clips, 3 is straps
	

	Output Variables
	Descriptions
	Terms in Documentation

	Shearcapacity
	
1x4 vector of the randomized capacity of each wall in shear failure mode.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	Three 1x4 vectors corresponding to each of the four walls in each of the three modes.

	Tensilecapacity
	
1x4 vector of the randomized capacity of each wall in axial failure mode.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	Bendcapacity
	
1x4 vector of the randomized capacity of each wall in bending failure mode.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

Program: Debris_model_input.m
	Input Variables
	Descriptions
	Terms in Documentation

	
dimensions
	
Dimensions is used by the function to determine the % of a wall surface that a particular window occupies. [width(ft), length(ft), height(ft), overhang(ft), pitch(rise)]
	 dimensions of model

	Output Variables
	Descriptions
	Terms in Documentation

	P_shgl_on_window
	
201x12 matrix with probability of a shingle damaging individual windows of various sizes for varying wind speeds
row represents wind speeds from 50 to 250 mph in 1 mph steps
column represents 4 window sizes and 3 wind directions (see below)

Column #	 CASE
1 	large window, long wall windward
2 	tall window, "
3 	med window, "
4 	small window, "
5 	large window, short wall windward
6 	tall window, "
7 	med window, "
8 	small window, "
9 	large window, cornering wind
10 	tall window, "
11 	med window, "
12 	small window, "
	A 201x12 matrix with probability of a shingle damaging individual windows of various sizes for varying wind speeds

Program: Missile_impact.m
	Input Variables
	Descriptions
	Terms in Documentation

	impact_windows
	
Contains a listing of the number of windows on the side(s) of the house that are currently exposed to approaching winds. Based on current wind direction and window layout on house.
	The number of large, skinny, small and medium windows that are on the side(s) of the house currently ‘feeling’ the approach wind, and thus are exposed to potential damage from missile impact (impact_windows).

	lg_cap
	
Random pressure capacity of each large window.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	skinny_cap
	
Random pressure capacity of each skinny window.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	med_cap
	
Random pressure capacity of each medium window
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	small_cap
	
Random pressure capacity of each small window
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	Prob_shingle_impact
	
The probability of a window breaking due to debris impact at the current wind speed and direction. Calculated in debris_model_input.
	

	Shutter
	
Window protection status, used to adjust the probability of impact damage due to protection:
1=no protection, 2=plywood shutters, 3=steel shutters, 4=engineered shutters
	

	window_type
	
Window type status, used to adjust the probability of impact damage due to window type:
1=standard window, 2=laminated glass, 3=impact resistant
	

	Output Variables
	Descriptions
	Terms in Documentation

	Results
	
Vector containing the number of large, skinny, medium and small windows that were broken, respectively. MC simulation using probability of debris impact and probability of sufficient momentum to break window.
	A 1x4 vector ‘results’ that contains the number of large, skinny, medium and small windows that were broken, respectively.
This function is called just before window_pressure_check.m, and also returns the lg_cap, skinny_cap, med_cap and small_cap vectors after zeroing their pressure capacities if broken by a missile.

	lg_cap
	
Random pressure capacity of each large window.
Adjusts capacity to zero if damaged by debris
	

	skinny_cap
	
Random pressure capacity of each skinny window
Adjusts capacity to zero if damaged by debris
	

	med_cap
	
Random pressure capacity of each medium window
Adjusts capacity to zero if damaged by debris
	

	small_cap
	
Random pressure capacity of each small window
Adjusts capacity to zero if damaged by debris
	

Program: Pressures.m
	Input Variables
	Descriptions
	Terms in Documentation

	
Cp_roof
	
Matrix that contains the averaged pressure coefficient on each of the sheathing panels on the roof. The values change for parallel, perpendicular and cornering winds. Size depends on the number of sheathing panels, which in turn depends on region (south, central, north), wall type (wood or CB), and roof type (hip or gable). Based on ASCE-7
	

The pressure coefficients for the roof and walls (function of wind direction), the internal pressure, and the velocity pressure (function of wind speed).

	Cp_wall
	
Matrix with the component and cladding wall pressure coefficients, one for each wall. Based on ASCE-7.
	

	Internal
	Internal pressure in psf. Based on ASCE-7
	

	V
	Current approach wind velocity. Assigned by user
	

	qh
	
The velocity pressure. The square of the current wind velocity multiplied by a constant to account for air density, etc.
	

	story
	
House height:
1=one story, 2=two story
	

	Output Variables
	Descriptions
	Terms in Documentation

	roof_pressure
	
The pressure load on each sheathing panel on the roof. Velocity pressure multiplied by pressure coefficients, (external suction pressure minus internal pressure).
	The physical pressures acting on the various surfaces of the model (roof and walls).

	roofcover_pressure
	
The pressure load on each group of shingles on the roof. Velocity pressure multiplied by pressure coefficients, (external suction pressure only).
	

	wall_pressure
	
The pressure load on each of the four walls. Velocity pressure multiplied by pressure coefficients, (external wall load minus internal pressure)
	

Programs: 	R2w_conn_uplift_hip6044.m
		R2w_conn_uplift_hip5638.m
R2w_conn_uplift_hip5644.m
R2w_conn_uplift_hip6038.m
	Input Variables
	Descriptions
	Terms in Documentation

	TW
			
Spacing between adjacent hip roof trusses in feet. Assigned my user
	The spacing between trusses in feet, and roof pressure currently acting on each sheathing panel (function of wind speed and direction).

	roof_pressure
	
Matrix containing the pressure load on each sheathing panel on the roof (external suction pressure minus internal pressure). Calculated in pressures.m: size depends on the number of sheathing panels, which in turn depends on region (south, central, north), and wall type (wood or CB). Content is a function of current wind speed and direction.
	

	Output Variables
	Descriptions
	Terms in Documentation

	uplift_r2w
	
The uplift load (lbs.) in each long wall connection, one long side per column. Using tributary area and roof uplift pressure.
	Two matrices, one that provided the uplift in each r2w connection along the long wall (one column per side), and one that provides the uplift in each r2w connection along the short wall (one column per side).

	uplift_end
	
The uplift load (lbs.) in each short wall connection, one short side per column. Using tributary area and roof uplift pressure
	

Program: R2w_conn_uplift.m
	Input Variables
	Descriptions
	Terms in Documentation

	roof_pressure

	
Matrix containing the pressure load on each sheathing panel on the roof (external suction pressure minus internal pressure). Calculated in pressures.m: size depends on the number of sheathing panels, which in turn depends on region (south, central, north), and wall type (wood or CB). Content is a function of current wind speed and direction.
	The roof pressure currently acting on each sheathing panel (function of wind speed and direction), a matrix giving the width of each sheathing panel on one half of the gable roof, the number of r2w connections along one long side, the number of r2w connections along one short (gable) side, and the dimensions of the house (length, width, height, roof overhand length, and roof pitch)

	sheathing_w
	
For gable roof only: a matrix giving the width of each panel on one half of a gable roof. Function of the house footprint
	

	num_r2w_connections
	
Number of r2w connections along one end of the long side. Function of the house footprint and truss spacing
	

	num_gable_connections
	
Number of r2w connections along one gable end. Function of the house footprint and truss spacing.
	

	dimensions
	
[width(ft), length(ft), height(ft), overhang(ft), pitch(rise)]. User input
	

	Output Variables
	Descriptions
	Terms in Documentation

	uplift_r2w
	
The uplift load (lbs.) in each long end connection, one long side per column. Using tributary area and roof uplift pressure
	Two matrices, one that provided the uplift in each r2w connection along the long side (one column per side), and one that provides the uplift in each r2w connection along the gable end (one column per side).

	uplift_gable
	
The uplift load (lbs.) in each gable end connection, one short side per column. Using tributary area and roof uplift pressure
	

Program: Redist_gable
	Input Variables
	Descriptions
	Terms in Documentation

	
gable_cap
	Capacity of each r2w along the gable end. Assigned in capacity_r2w
	The current capacity of each connection, the uplift in each connection, an index pointing to which connections have failed, and the number of r2w connections along one gable end

	uplift_gable
	
Load on each r2w along the gable end. Calculated in r2w_conn_uplift
	

	gable_indx
	
Index to each r2w connection that has failed. Result of initial failure check.
	

	num_gable_connections
	
Number of r2w connections along one gable end. Based on house dimensions and truss spacing
	

	Output Variables
	Descriptions
	Terms in Documentation

	new_gable_indx
	
Index to each r2w connection that has failed after the redistribution of loads. Result of iterative failure check. Uplift loads from failed connections are redistributed to others, requiring additional checks for failure under new loads
	An index pointing to which connections have failed, the number of failed connections, and a matrix with the newly calculated capacities of the connections.

	new_failed_gable
	
The number of r2w connections that have failed. See above
	

	gable_cap
	
Capacity of each r2w along the gable end after iterative load redistribution. If a particular r2w has already failed, its capacity has been set to zero. This can have different values from its input version if more connections fail due to the load redistribution
	

Program: Redist_uplift.m
	Input Variables
	Descriptions
	Terms in Documentation

	r2w_cap

	
The uplift capacity of each of the r2w connections along the long walls if roof is gabled. If roof is hipped this contains the capacity of all r2w connetions, long walls and short walls. Assigned in capacity_r2w.m		
	The current capacity of each connection, the uplift in each connection, an index pointing to which connections have failed, and the number of r2w connections along one gable end.

	uplift
	
Uplift load in each r2w connection, one long end per column. This is both input and output. Calculated in r2w_conn_uplift.
	

	r2w_indx
	Index to each r2w connection within ‘r2w_cap’that has failed
	

	num_r2w_connections
	
Number of r2w connections along one long end. Based on house dimensions and truss spacing
	

	Output Variables
	Descriptions
	Terms in Documentation

	new_r2w_indx
	
An index to each r2w connection that has failed after the redistribution of loads. Result of iterative failure check. Uplift loads from failed connections are redistributed to others, requiring additional checks for failure under new loads.
	An index pointing to which connections have failed, the number of failed connections, a matrix with the newly calculated capacities of the connections, and a matrix with the adjusted uplift load in each intact r2w connection.

	new_failed_r2w
	The number of r2w connections that have failed. See above.
	

	r2w_cap
	
Capacity of each r2w along the long end after iterative load redistribution. If a particular r2w has already failed, its capacity has been set to zero. This can have different values from its input version if more connections fail due to the load redistribution.
	

	uplift
	
Uplift load in each r2w connection, one long end per column. This is both input and output. Calculated in r2w_conn_uplift.m
	

Programs: 	Rooflayout_5638.m
Rooflayout_5644.m
Rooflayout_6038.m
Rooflayout_6044.m
	Input Variables
	Descriptions
	Terms in Documentation

	
roof_type
			
String describing roof type:
‘g’ for gable, ‘h’ for hip
	The roof type, dimensions of structure, spacing between adjacent roof trusses in inches (24 inches used for all models), and the randomly assigned pressure coefficients for the three zones on the roof.

	dimensions
	
It is equal to [width(ft), length(ft), height(ft), overhang(ft), pitch(rise)] of house. Input by user.
	

	truss_spacing
	
Spacing between adjacent roof trusses in inches (24 inches).
	

	Cp_R
	
Randomly assigned C&C pressure
coefficients for the three zones on the roof.
-Zone 1 is the interior portion of the roof (not the edges or corners)
-Zone 2 is along the edges of the roof, not corners
-Zone 3 is the corners of the roof
Based on ASCE-7 with directionality accounted for and a truncated Gaussian random assignment.
	

	Output Variables
	Descriptions
	Terms in Documentation

	roof_area
	
Area of each piece of sheathing on the roof. Sheathing comes in 4x8 ft panels. For gable roofs they are staggered one row to the next, so some are 4x4 ft, some are 4x8 ft, and the edge is 2 ft wide.
	How many sheathing panels, the pressure coefficients on the roof, and the number of roof to wall connections on each side.

	sheathing_w
	
For gable roof only: a 6x8 matrix giving the width of each panel on one half of a gable roof. m Based on house dimensions, assuming standard 4x8 foot sheathing.
	

	num_r2w_connections
	
Gable roof only: # of roof to wall (r2w) connections along one long side. Based on house dimensions.
	

	num_r2w_conn_side
	
Hip roof only: # r2w connections along one long side. Based on house dimensions
	

	num_r2w_conn_end
	
Hip roof only: # r2w connections along one short side. Based on house dimensions
	

	num_gable_connections
	
Gable roof only: # of roof to wall connections along gable (short) side. Based on house dimensions
	

	Cp0
	
The averaged pressure coefficient on each of the sheathing panels of the roof. For winds approaching building front.
	

	Cp45
	
The averaged pressure coefficient on each of the sheathing panels of the roof. For cornering winds.
	

	Cp90
	
The averaged pressure coefficient on each of the sheathing panels of the roof. For winds approaching building right side.
	

	Cp135
	
The averaged pressure coefficient on each of the sheathing panels of the roof. For rear cornering winds.
	

	Cp180
	
The averaged pressure coefficient on each of the sheathing panels of the roof. For winds approaching back of building.
	

Program: Wall_loading.m
	Input Variables
	Descriptions
	Terms in Documentation

	
wall_type
			
1=masonry, 2=wood frame
	Wall and roof type, truss spacing, uplift in r2w connections, capacity of walls in tension and bending, velocity pressure, pressure coefficients on various components on the house, and whether the gable end is braced.

	Roof_type
	
This variable is of type String.
‘h’=hip, ‘g’=gable
	

	Locn_front
	
String variable describing wind direction:
's' wind hitting perpendicular to side of house
'w' wind hitting perpendicular to front of house
'l' wind hitting perpendicular to back of house
'cornerw' wind hitting either front corner of house
'cornerl' wind hitting either back corner of house
	

	A
	
Wind zone dimension from ASCE. 10% width of shorter side of house.
	

	Truss_spacing
	
24 inch spacing for roof trusses (24 inches standard).
	

	R2w_cap
	
Randomly assigned capacity of roof to wall connections along long dimension of house. From capacity_r2w.m.
	

	Gable_cap
	

Randomly assigned capacity of roof to wall connections along short dimension of house. From capacity_r2w.m.
	

	Num_r2w_connections
	
Number of r2w connections along one long side of house. Based on house dimensions.
	

	num_gable_connections
	
Number of r2w connections along one short side of house. Based on house dimensions.
	

	dimensions
	
It is equal to [width(ft), length(ft), height(ft), overhang(ft), pitch(rise)].
User defined.
	

	uplift
	
Uplift load in each roof to wall connection along long dimension of house. Calculated in r2w_conn_uplift.m.
	

	uplift_gable
	Uplift load in each roof to wall connection along short dimension of house. Calculated in r2w_conn_uplift.m.
	

	Qh
	
The velocity pressure. The square of the current wind velocity multiplied by a constant to account for air density, etc.
	

	Cpi
	Internal pressure coefficient (From ASCE-7).
	

	P_allow
	
Uplift (tensile) capacity of each of 4 walls.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	M_allow
	
Bending capacity of each of 4 walls.
Stored values are randomly assigned from a Gaussian distribution. Random values outside +/- 2 standard deviations from the mean are deleted and re-sampled. This eliminates the occurrence out outlier values that are not physically possible.
	

	Cp_wall
	
Pressure coefficient for components and cladding (such as window loads) loads on each wall of house.
From ASCE-7 modified for wind direction.
	

	Cp_w
	
Pressure coefficient for MWFRS (Main Wind Force Resisting System) loads on each wall of house. From ASCE-7 modified for wind direction.
	

	Mid_A
	
MWFRS pressure coefficient for middle of side walls in shear deformation. From ASCE-7 modified for wind direction.
	

	Edge_A
	
MWFRS pressure coefficient for edges of side walls in shear deformation. From ASCE-7 modified for wind direction.
	

	Mid_B
	
MWFRS pressure coefficient for middle of front/back walls in shear deformation. From ASCE-7 modified for wind direction.
	

	Edge_B
	
MWFRS pressure coefficient for edge of front/back walls in shear deformation. From ASCE-7 modified for wind direction.
	

	Gable_brace
	
Braced gable indicator:
1 is for non-braced gable end roofs, 2 is for braced ends
	

	Story
	
House height:
1=one story, 2=two story
	

	
Output Variables
	Descriptions
	Terms in Documentation

	wall_check
	4x1 vector that contains results of wall failure check in bending and tension for each of the 4 walls. If returned value is > 1, that wall has failed.
	
‘wall_check’ which gives a yes or no for failure of each of the four walls in bending and/or uplift, ‘fvmax’ is the maximum shear load for checking shear failure, and ‘V_locn’ to indicate which direction the wind is approaching the house.

	V_locn
	Wind direction indicator directs the wall loading calculations:
1 = wind hitting side wall, 2 = wind hitting front/back wall, 3 = wind hitting any of the 4 corners
	

	Fvmax
	Shear loading on walls parallel to wind direction (MWFRS ASCE).
	

Program: window_pressure_check.m
	Input Variables
	Descriptions
	Terms in Documentation

	
lg_cap
			
Pressure capacity of large windows. Assigned in capacity_opening.m, truncated Gaussian.
	Windows’ pressure coefficients and number of windows on four sides of the house.

	skinny_cap
	
Pressure capacity of skinny windows. Assigned in capacity_opening.m, truncated Gaussian.
	

	med_cap
	
Pressure capacity of medium windows. Assigned in capacity_opening.m, truncated Gaussian.
	

	small_cap
	
Pressure capacity of small windows. Assigned in capacity_opening.m, truncated Gaussian.
	

	windows
	
Matrix declaring number of each type of window on each side of house. User assigned.
	

	window_pressure
	
2 matrix describing external wind pressure on all sides of house. C&C loading used for windows, function of wind direction.
	

	row_windward
	
Wind direction relative to front of house:
1 = wind approaching house perpendicular to front
2 = wind approaching house perpendicular to back
3 = wind approaching house perpendicular to either side
12 = wind approaching house from either front corner
34 = wind approaching house either back corner
	

	internal
	
Internal pressure in house before checks for broken windows. Enclosed structure Cp from ASCE-7.
	

	Output Variables
	Descriptions
	Terms in Documentation

	Failed_window
	
Total number of failed windows on entire house. Failure check is from pressure only in this function. Result of comparing random capacity with random pressure load on window.
	A tally of total windows broken for that simulation and the new internal pressure of the structure, re-calculated within this function if any windows have broken.

	internal_pressure
	
Internal pressure adjusted after window failures tallied. Size and location (relative to wind direction) of failed window(s) used to re-calculate internal pressure. Based on ASCE-7.
	

[bookmark: _Toc346555775]References

1. K. Gurley, J.-P. Pinelli, C. Subramanian, A. Cope, L. Zhang, J Murphree, A. Artiles, P. Misra, FLORIDA PUBLIC HURRICANE LOSS PROJECTION MODEL , Engineering Team Final Report - Predicting the Vulnerability of Typical
Residential Buildings to Hurricane Damage, March 2005, Volume II

[bookmark: _Toc346555776]Monte Carlo Simulation Model for Commercial Residential Buildings (MCS-CRB) Use Case II

[bookmark: _Toc346555777]General Description of MCS-CRB

Given the hurricane hazard defined by the atmospheric component, the Carlo Simulation Model for Commercial Residential Buildings (MCS-CRB) estimates the physical damage to all exterior components of typical buildings or apartment. Two types of commercial residential models are addressed: low-rise commercial residential buildings (LB) and mid-/high-rise buildings (MHR), a distinction made given the distinctly different construction characteristics and modes of damage in high winds. The MCS-CRB uses a Monte Carlo simulation based on a component approach to determine the external vulnerabilities at various wind speeds of buildings in the case of LB, or apartment units in the case of MHB. For the case of LB, the procedure is identical to the one described for single-family residential (RB). In the case of mid-/high-rise buildings (MHB) the simulations address only wind pressure and debris impact on the openings.

[bookmark: _Toc346555778]Technical Description

Exposure Study

Most low-rise commercial residential buildings (LB) (Figure 4.2.1) can be categorized into a few generic groups having similar structural characteristics, layout, and materials (although they may differ somewhat in dimensions). These buildings can suffer substantial external structural damage (in addition to envelope and interior damage) from hurricane winds. The modeling approach to assessing damage for all these building types is the same as that for assessing damage for single-family homes in that it models the building as a whole.

On the other hand, commercial residential mid- and high-rise buildings (MHB) (Figure 4.2.2) are very different from low-rise buildings and single-family-homes. The mid-/high-rise buildings are usually engineered structures, which suffer few structural failures during a windstorm but are subject to cladding and opening failures and the resultant water ingress. These buildings, which come in many different types, shapes, height, and geometries, consist of steel, reinforced concrete, timber, masonry, or a combination of different structural materials.

It is not realistic to perform damage simulations on a reduced collection of ‘base’ buildings, as is done for single-family residential and low-rise commercial residential buildings, because that will necessarily leave out a majority of existing mid- and high-rise typologies. For instance, for steel frame structures alone there are a wide variety of possible building shapes and configurations. These different shapes lead to very different wind-loading scenarios and therefore different vulnerabilities. Equally important, the number of MHB is at least an order of magnitude smaller than the number of RB or LB. It is therefore not feasible to average the losses over a very large number of buildings and compensate small differences between buildings, as in the case of RB. On the contrary, the analyst is faced with a relatively small number of buildings, each of which is different from the other.

As a result, the FPHLM has adopted a modular approach to model mid- and high-rise buildings. Rather than considering a structure as a whole, the model treats the building as a collection of apartment units. The base modules are typical apartment units, divided as corner and middle units. Thus, buildings with any number of stories and any number of units per floor can be modeled by aggregating the corresponding apartment units’ vulnerabilities and accounting for correlation of damage among units (e.g., water ingress through an envelope breach in a 5th-floor unit creates problems for lower units with no failures).

To summarize, in the case of LB, typical models of the whole structure that are representative of the vast majority of this building population in Florida must be defined. In the case of MHB, typical models of individual units that are representative of the vast majority of units in Florida must be defined.

An extensive survey of the Florida building stock was carried out to generate a manageable number of these building and apartment models to represent the majority of the Florida residential building stock. The modelers analyzed Florida counties’ property tax appraisers’ (CPTA) databases for building stock information. Although the database contents and format vary from county to county, many of the databases contain the structural information needed to define the most common structural types. The information from 23 counties was collected for commercial residential buildings. The modelers extracted information on several building characteristics for classification, including roof cover, roof shape, exterior wall material, number of stories, year built, building area, foundation type, floor plan, shape, and opening protection.

[bookmark: _Ref294695249]Figure 4.2.1: Typical low-rise buildings

[bookmark: _Ref294695265]Figure 4.2.2: Examples of mid- and high-rise buildings

Commercial Residential Building Survey

In the case of the commercial residential buildings, the CPTAs classify the buildings either as condominiums or as multifamily residential (MFR) based only on the type of ownership. Condo buildings are such that each unit or apartment has a different owner. The condo unit can then be occupied by the owner or by a renter. The CPTAs do not record if the condo unit is rented or owned. Condo owners’ expenses include the maintenance and use of the common areas and common facilities because the condo owner actually owns a percentage of the entire facility. The condo buildings relevant to this survey are all classified by the CPTAs as residential. Commercial office condo buildings are out of the scope of the survey.

A MFR building has a single owner who rents the units to tenants. The CPTAs classify MFR with fewer than 10 units (duplex, triplex, and quadruplex) as residential buildings whereas MFR with 10 units or more are classified as commercial buildings. Both residential and commercial MFR were considered in this survey. The MFR are usually referred to, interchangeably, as apartment buildings by CPTAs. Residential MFR (fewer than 10 units) account for approximately 70% of the MFR building stock, and the remaining 30% are commercial MFR (10 units or more).

The commercial-residential buildings, regardless of whether they are condos or MFR, were divided in two categories: low rise (one–three stories) and mid/high rise (four stories and more). Low-rise buildings have three stories or fewer because these buildings, which represent the majority of the building stock, have different characteristics than taller buildings, as the survey shows. The mid- and high-rise buildings tend to be more heterogeneous and necessitate a different treatment in the vulnerability model. Unanwa (1997) uses a similar definition in his study. Buildings included in this survey consist of owned as well as rented apartment units (the CPTAs do not distinguish between the two).

As a general comment, the results show, and the appraisers have confirmed, that MFR tend to have fewer stories than condo buildings and the majority of MFR buildings are duplexes, triplexes, and quadruplexes. Also, the proportion of MFR that can be classified as mid/high rise is negligible according to available information and consultation with CPTAs.

BUILDING MODELS

Distinctly different construction characteristics and modes of damage in high winds led to the development of separate models for low-rise commercial residential construction (LB) and mid-/high-rise commercial residential construction (MHR).

Low-Rise Commercial Residential Models

The commercial residential low-rise model (LB) was developed to represent typical apartment and town-house style structures of three stories or fewer (Figure 4.2.1). The model framework is based on the single-family, site-built residential model, which uses a probabilistic description of wind loads and exterior and structural component capacities to project physical damage as a function of wind speed. The components in the LB damage model include roof cover, roof sheathing, roof-to-wall connections, wall type, wall sheathing, windows, entry doors, sliding-glass doors, and gable end truss integrity.

Given the large array of sizes and geometries for low-rise commercial residential structures, the program is developed to provide flexibility in choosing a building layout and dimensioning details (footprint, overhang length, roof slope, roof shape, etc.). The changes in construction practice over decades in Florida also necessitate flexibility when choosing construction quality with regard to hurricane wind resistance. The model allows the selection of building components with a variety of strength options to represent a range from low to high wind resistance (braced or unbraced gable ends, old or new roof cover, sheathing nailing schedules, etc.).

A standard (default) model was developed based on the building exposure study that quantified average square footage per story, units per story, and other descriptors. Default settings were also developed to represent weak, medium, and strong construction practice. Any given strong, medium, or weak model may be altered by additional mitigation or retrofit measures individually or in combination. For example, reroofing an older apartment can be represented by increasing the probabilistic descriptor of capacity for the roof cover.

Outputs (damage matrices) have been produced for each combination of the following: building height (one, two, or three stories), wall type (timber or masonry), roof shape (hip or gable), strength (weak, medium, or strong), and window protection (no protection or with shutters).

Mid-/High-Rise Commercial Residential Models

The mid-/high-rise model uses the Monte Carlo simulation concept, but it differs from the low- rise model in significant ways. There is a high level of variability among mid-/high-rise buildings because of the combination of the number of stories, the number of units per floor, intentionally unique geometries, and the materials used for the exterior. This makes the application of a “standard” or default model infeasible. Because of the construction methods and materials used in these structures, damage to the superstructure and exterior surfaces of the buildings tends to be relatively minor. The majority of damage accumulation in mid-/high-rise structures is due to water penetration and loss of openings. The model reflects this by focusing on the failure of windows and doors, the ingress of rain water, and the proliferation of water from the source of the ingress to adjacent living units. The structure in whole is not modeled. Rather, individual units are modeled in isolation. That is, the vulnerability of a single unit is explicitly modeled, and damage is assessed to openings as a function of wind speed.

Two different mid-/high-rise classifications are modeled for this study: “closed building” and “open building.” Closed buildings are characterized by the location of the unit entry doors at the interior of the building. The sliding-glass doors and windows are all facing the exterior of the building. For the open building model there is exterior corridor access to each unit entry door on one side of the building, and the patio areas are situated on the opposite side of the building (Figure 4.2.3). The type of building chosen can increase or decrease the vulnerability of a selected unit because of the exposure of the exterior openings. Middle units in a closed or open building have one or two exterior walls, respectively.

There are three main differences between the low-rise and mid-/high-rise models: (1) the use of a modular (i.e., per unit rather than per building) approach, (2) the exterior components that are being analyzed for failure, and (3) the use of two basic floor plans. Location of unit within the plan view of the building, unit square footage, and number of available openings are some of the important factors that separate one unit from another:

Corner units are subjected to higher wind pressures that are present along the edges of the building, compared to the middle units, which are located within lower pressure zones at the center of the wall area (Figure 4.2.3).
Increased square footage typically results in an increase in exterior wall frontage and the number of openings vulnerable to damage.

The MHB model uses the same analysis and output technique as the LB model. The difference is the number of failure types. The MHB model analyzes only the damages to the openings, which include the windows, sliding doors, and entry doors. Each of the components can fail because of pressure or debris impact.

[bookmark: _Ref294695294]Figure 4.2.3: Apartment types according to layout (left: closed building with interior entry door; right: open building with exterior entry door)
DAMAGE MATRICES

Exterior Damage

The vulnerability model uses a Monte Carlo simulation based on a component approach to determine the external vulnerability (as shown in Figure 4.2.4) at various wind speeds of buildings in the case of LB, or apartment units in the case of MHB. For the case of LB, the procedure is identical to the one described for single-family residential (RB). In the case of the mid-/high-rise buildings (MHB) the simulations address only wind pressure and debris impact on the openings.

The damage assessment is conducted over a range of wind speeds and wind directions, and results are stored in a damage matrix. Probabilistic damage assessment is conducted by first creating an individual building realization by mapping each component according to typical construction practice. Random capacity values are assigned to the various components on the basis of a probability distribution for each component type. This realization is subjected to a peak three-second gust wind speed from a particular direction. Directional loads are calculated using randomized pressure coefficients based on directional modifications to ASCE 7 as well as wind tunnel data (NIST Aerodynamic Database - http://fris2.nist.gov/winddata), and a comparison of resulting surface and internal loads to component capacities is conducted. Damage occurs when the assigned capacity of a component is exceeded by its loading. Once the openings have been checked for failure due to pressure, the damage due to the impact of airborne debris is also evaluated. Damaged components are removed, and a series of checks are performed to determine if lost components will redistribute loading to adjacent components or change the overall loading. For example, loss of a roof-to-wall connection places additional load on adjacent connections, whereas an envelope breach will potentially alter internal loading—changing the overall loading on most components. Iterative convergence is used to produce the final damage state for that building realization. The results of this single simulation are documented on the basis of the final iteration, another realization of that building is constructed by assigning new random capacities to each component, and the process repeats for the same three-second gust, same wind direction, and newly randomized pressure coefficients based on the number of desired simulations the user would like to run. The process is repeated for eight wind directions and a series of three-second wind speeds between 50 and 250 mph in 5 mph increments.

The output of the Monte Carlo simulation model is an estimate of physical damage to structural and exterior components. The results are in the form of a four-dimensional damage matrix. Each row of the matrix lists the results of one simulation; the amount of damage to each of the modeled components for a simulation is listed in the 32 columns of the row. The third dimension represents the peak three-second gust wind speed between 50 and 250 mph in 5 mph increments, and the fourth dimension represents the eight angles between 0 and 315 degrees in 45-degree increments. Table 4.2.1 delineates the damage matrix contents for the case of the low-rise building (LB). A description of the values in each of the six columns of the MHB damage matrix is given in Table 4.2.2.

[image:]
[bookmark: _Ref294695323]Figure 4.2.4: Monte Carlo simulation procedure to predict external damage
[bookmark: _Ref294693121]Table 4.2.1: Description of values given in the damage matrices for LB
	Col.#
	Description of Value
	Min Value
	Max Value

	1
	Percent roof cover (shingles or tiles) failed
	0
	100

	2
	Percent field roof sheathing lost (field roof sheathing is all but overhang)
	0
	100

	3
	Percent edge (overhang) roof sheathing failed
	0
	100

	4
	Percent roof-to-wall connections failed
	0
	100

	5
	Collapse of gable end trusses side 1 - Assuming 38 trusses
	0
	19

	6
	Collapse of gable end trusses side 2 - Assuming 38 trusses
	0
	19

	7
	Percent gable end wall covering failed
	0
	100

	8
	Percent gable end sheathing failed
	0
	100

	9
	Percent wall covering failed – 1st floor
	0
	100

	10
	Percent wall sheathing failed – 1st floor
	0
	100

	11
	Number of windows failed from wind pressure – 1st floor
(assuming 15 windows per floor)
	0
	15

	12
	Number of windows failed from debris impact – 1st floor
(assuming 15 windows per floor)
	0
	15

	13
	Number of sliding glass doors failed from wind pressure – 1st floor
(assuming 3 units per floor)
	0
	3

	14
	Number of sliding glass doors failed from debris impact – 1st floor
(assuming 3 units per floor)
	0
	3

	15
	Number of entry doors failed from wind pressure – 1st floor
(assuming 3 units per floor)
	0
	3

	16
	Number of entry doors failed from debris impact – 1st floor
(assuming 3 units per floor)
	0
	3

	17-24
	Repeat columns 9-16 respectively for 2nd floor
	-
	-

	25-32
	Repeat columns 9-16 respectively for 3rd floor
	-
	-

[bookmark: _Ref294693132]Table 4.2.2: Description of values given in the damage matrices for MHB apartments
	Col #
	Description of Value
	Min Value
	Max Value

	1
	# of windows failed due to pressurization (out of a possible 5 windows)
	0
	5

	2
	Entry door failure due to pressurization
	0
	1

	3
	Sliding door failure due to pressurization
	0
	1

	4
	# of windows failed due to debris impact (out of a possible 5 windows)
	0
	5

	5
	Entry door failure due to debris impact
	0
	1

	6
	Sliding door failure due to debris impact
	0
	1

[bookmark: _Toc346555779]MCS-CRB Design Requirements

Name:	Monte Carlo Simulation model for Commercial Residential Buildings

Description:	Two building models are modeled in the MCS-CRB: low-rise buildings (MCS-LB) and mid-/high-rise buildings (MCS-MHB). The MCS-LB is the same as that of the personal residential model. For the MCS-MHB, the user provides the following information: unit dimensions (length 30ft, width 30ft), the size of the analysis (number of simulations), the building type (interior or exterior corridor), unit location (middle or corner unit), and capacities and dimensions of the individual building components (doors, windows, and sliding doors). The program generates a four dimensional matrix containing data for six types of damages:

Window damage due to pressure
Entry door damage due to pressure
Sliding door damage due to pressure
Window damage due to impact
Entry door damage due to impact
Sliding door damage due to impact
	
In the MCS-LB, the flow of events is as follows:

1.	The input information consist of the following input variables:
	Input Variable
	Description

	ConstructionQuality
	The quality of the individual components. Variable is assigned as “Weak”, “Medium” or “Strong”, depending on the level of resilience of the components. Selection of capacities are based on this input.

	NoofSimulations
	Total number of simulation to be ran for every wind speed, and at eight directions

	ShutterProtection
	Identifies whether or not Shutter Protection is available for the windows. There are four selectable options: “ None” which signifies that no additional protection was used. An input of “Plywood”, “Steel” or “Engineered” indicates the use of shutter protection and including the type. Window capacity is multiplied by a factor, depending on the selection.

	RoofType
	Identifies the type of roof system used, “Gable” or “Hip” Roof

	TotalNumberofStories
	Identifies he number of stories the building has. (1, 2 or 3
stories)

	LengthFLR
	The longer of the two footprints dimensions

	WidthFLR
	The shorter of the two footprints dimensions

1.
2. Mapping the building components’ matrices: the system calls a series of functions that reassign the size of the building and place the components in appropriate locations in a matrix that represents a given building face.
3. Looping through wind direction: the system loops through 8 different wind approach directions, 4 of these are directly perpendicular to a face, while the other 4 are cornering winds.
3.1. Determining and processing the external pressure coefficients: the system determines the external pressure coefficients
3.2. The system enters loop for wind speeds
3.2.1. The system enters loop for number of simulations: for each new simulation, the properties of the buildings components must be initialized and re-randomized. The output of a given simulation is stored as a row in a matrix.
3.2.1.1. The system initializes the building components’ maps to zero damage and also initializes the enclosure type. The building components’ maps need to be initialized to zero damage at the beginning of each simulation so that a new building gets analyzed. The enclosure condition is set to the original enclosure condition. As the analysis progresses, the damage and enclosure conditions might change and will appropriately updated within a given simulation.
3.2.1.2. The system randomizes building components’ capacities: the building components’ capacities are initialized and re-randomized at the beginning of each simulation. The building model remains the same, while the randomized values of its capacities change from one simulation to the next.
3.2.1.3. Iterative damage convergence looping: the purpose of this loop is to account for wind duration and the influence of component damage upon the vulnerability of other components. For example, loss of windows changes the loading on the walls and roof.
3.2.1.3.1. The system randomizes the wind speeds: although the sample (building and its capacities) is constant inside this loop, the wind speeds and the loads they cause on the structure are not. The iterative damage convergence looping considers this.
3.2.1.3.2. The system determines the randomized pressure and impact loads: the calculation of the randomized pressure loads imparted to the structure by the wind follows the ASCE 7-05 procedure, it multiples as follows: 0.00256*GCp*WindSpeed2. Regarding debris impact load the code has to calculate a value using a probability distribution function for rare events. This is a function of several parameters that describe the environment surrounding the building, the opening’s properties and the winds acting on it as it approaches the building.
3.2.1.3.3. The system assesses the building damage: the model loads the building and then determines the damage on the building’s components. This is achieved by calculating the limit states of the components, which compares resistance to load G = R – L, where G <= 0 indicates failure.
3.2.1.3.4. The system analyzes the damage and updates the buildings’ enclosure types: once the building is damaged, the internal pressure can changed and affect the building. The enclosure condition describes what the internal pressure is.
3.2.1.4. The system stores the damage in a multi-dimensional array: at the end of every simulation, the outputs obtained from the analysis (the damage state of the various components) are stored as a row in a matrix.
3.2.2. The system finishes the simulations loop
3.3. The system ends the wind speeds loop

In the MCS-MHB, the flow of events is as follows:

1. The input information consists of the following input variables:

	Input Variable
	Description

	No_of_Simulations
	Total number of simulation to be ran for every wind speed, within ever orientation

	ShutterProtection
	Identifies whether or not Shutter Protection is available for the
windows. There are four selectable options: “ None” which signifies that no additional protection was used. An input of “Plywood”, “Steel” or “Engineered” indicates the use of shutter protection and including the type. Window capacity is multiplied by a factor, depending on the selection. [Factor = 1 (“None”), 1.1 (“Plywood”), 1.25 (“Steel”) and 1.5(“Engineered”)]

	MissleExposureType
	Identifies the surrounding area of the building. (Input ‘Urban’, 'Suburban', 'Open', or 'Treed')

	Unit_Location
	= Identifies the location of the unit within the building (‘Corner Unit’ or ‘Middle Unit’)

	Bldg_Type
	= Identifies the type of building in which the unit is located (‘Closed corridor building’ or ‘Open corridor building’)

	Unit_Ext_Lengths
	Dimension of the unit wall along the exterior of the building. Unit are in ft

	Unit_Int_Widths
	Dimension of the unit wall along shared by adjacent units. Unit are in ft

2. The system determines the ‘a’ dimension in accordance to ASCE 7-05. This variable is used delineate the different wind pressure zones.
3. The system determines the number of windows on each exterior wall based on the exposed wall area and the size of the windows
4. The system loops through the wind direction loop: the program begins to loop through 8 different wind approach directions, 4 of these are directly perpendicular to a face, while the other 4 are cornering winds. Unit location is held constant as program cycles through the different approaches. Damages are assessed in accordance w/ the wind direction.
	

	Wind Directions for Interior Entry Door Model

5. The system determines and processes the external pressure coefficients: the program determines the external pressure coefficients; this lies outside the loop for wind speeds because this only depends on the building geometry and on the wind effective area for the entire building, which varies with wind directions. The wall pressure coefficients were determined from the ASCE 7-05.
6. The system loops through the wind speeds: This loop subjects the structure to loadings produced by wind speeds ranging from 0 to 250 mph or from 50 to 250 mph at 5 mph increments.
7. The system loops through the number of simulations: For each new simulation the capacities of the buildings components must be initialized and randomized, essentially creating a new structure of a varied strength. The output of each simulation is stored in a matrix, and is independent of previous simulations.
8. The system initializes the building components’ maps to zero damage and the enclosure type to the original enclosure condition: The building components’ maps need to be initialized to zero, indicating undamaged component. This is done at the beginning of each simulation so that a new building gets analyzed. The enclosure condition needs to be set to the original enclosure condition. It is assumed that the building fully enclosed at the beginning of each simulation. These need to be done because as the analysis progresses the damage and enclosure conditions might change and they need to be appropriately updated within a given simulation.
9. The system randomizes the building components capacities: The building components’ capacity needs to be initialized (based on Construction Quality inputs) and randomized at the beginning of each simulation so that a new building is analyzed. The location of the building is exactly the same, except that the strengths will be varied from simulation to simulation due to random number assignment.
10. The system performs wind speeds randomization: The model applies wind speeds of 50 to 250 mph. Since multiple stories are not analyzed as part of the same model, no height adjustment is made. The assigned gust wind speed for a simulation (e.g. 125 mph) is used as the mean value of a random distribution. The actual speed applied for a given simulation is a random number based on that mean value.
11. The system calculates the randomized pressure and impact loads: To calculate the randomized pressure loads imparted to the structure by the wind the code simply follows the ASCE 7-05 procedure, it multiples as follows: 0.00256*GCp*WindSpeed2. The pressure was also reduced by a factor of .94 to take into consideration the change in air density during a wind event. However, regarding the impact load the code has to calculate a value using a probability distribution function for rare events. These value are a function several parameters that describe the environment surrounding the building, the opening’s properties and the winds acting on it as it approaches the building.
12. The system assesses the building damage: The model loads the building and then determines the damage on the building’s components. This is achieved by calculating the limit states of the components.
13. The system analyzes the building’s damage and updating the building’s enclosure condition appropriately: Once the building is damaged, the internal pressure can changed and affect the building. The enclosure condition describes what the internal pressure is.
14. The system stores the damage in a multi-dimensional array after each wind speed finishes running.

The damage output matrix includes data for the following six failure types: Damages to windows, entry doors and sliding doors due to both pressure and impact.
Damage output matrix = [Window damage due to pressure; Entry Door damage due to pressure; Sliding Door damage due to pressure; Window damage due to impact; Entry Door damage due to impact; Sliding Door damage due to impact].

The “output” matrix is a four dimensional matrix. Each column represents one of the different failure types. The rows identify the number of simulations ran. Lastly, the final two out of plane dimensions for the matrix represents the different wind speeds and directions of analysis. (Example: No. of Simulations = 1000, Output data = 6 variables, Velocity = 50:5:250 (41 values) and Orientation = 0:45:315 (8 values) ……Size is equal to 1000*30*41*8).

[bookmark: _Toc346555780]Computer Model Design

[bookmark: _Toc346555781]Use Case View of MCS-CR

Actors:

There is one actor (scientists) in MCS-CR.

Use Case:

Use case Monte Carlo Simulation for Commercial Residential Buildings is used to estimate damages to two types of buildings: low-rise buildings and mid-/high-rise buildings. The estimated data generated by the MCS-CRB is used by later modules and use cases to generate vulnerability functions.

Use Case Diagram

[image:]
Figure 4.2.5: Use case diagram for MCS-CRB
[bookmark: _Toc346555782]System Design

This section covers the system design of the MCS-CRB for low-rise buildings (i.e., MCS-LB) and for mid-/high-rise buildings (i.e., MCS-MHB).

MCS-LB

This section describes the system design of MCS-LB. Appropriate diagrams are provided to describe the system functions, activities, and the overall flowchart of MCS-LB.

The MCS-LB consists of main components:
Model control
Main driver

[image:]
Figure 4.2.6: Flowchart for MCS-LB

MCS-MHB

This section describes the system design. Appropriate diagrams are provided to describe the system functions, activities, and the overall flowchart of MCS-MHB.

The MCS-MHB consists of four main components:
The model control, implemented by Model_Control_for_Mid_High_Model.m,
The mid-high opening analysis driver, implemented by Mid_High_Opening_Analysis_Driver.m,
The opening protection factor, implemented by OPENINGCORRECTIONFACTOR.m, and
The ‘a’ dimension calculator, implemented by adimcalculator.m

The program flowchart of MCS-MHB is depicted in Figure 4.2.7.

[image:]
[bookmark: _Ref294695358]Figure 4.2.7: MCS-MHB overall flowchart
A description of each component is as follows:

Model_Control_for_Mid_High_Mode.m: This code utilizes batching to be able to run and analyze multiple specimens without the need for the user to be present and running the program
Mid_High_Opening_Analysis_Driver.m: this is the program executed by the user to produce Monte Carlo simulation results. It is the only program that is ever explicitly run by the user; all other functions are called by this program.
OPENINGCORRECTIONFACTOR.m: determines a correction factor for the mean resistance of components placed at the building openings (windows, entry doors, and sliding doors) due to presence of protection systems and impact resistant materials.
adimcalculator.m: calculates the 'a' dimension in accordance with ASCE 7-05. The 'a' dimension variable is used to determine the loading zone or zones on the building exterior.

[bookmark: _Toc346555783]Implementation
The MCS-CRB is implemented in MATLAB because the latter provides easy-to-use and efficient matrix and vector operations.

Monte Carlo for Low-Rise Buildings (MCS-LB)

This section provides documentation for the implementation of MCS-LB. The list of the program files of MCS-LB is as follows:
adimcalculator.m
BUILDINGDIMREASSIGNER.m
CONSTRUCTIONQLTYTOBLDGSTRENGTH.m
CVARIABLE.m
DAMAGECOUNTERIMPACTWINDOWS.m
DAMAGECOUNTERWALLCOVER.m
DAMAGECOUNTERWALLSHEETS.m
DAMAGECOUNTERWINDOWS.m
ENCLOSURECONDITIONUPDATER_GABLE.m
ENCLOSURECONDITIONUPDATER_HIP.m
EXTONLYWALLSHEETPRESSURECOEFFICIENTSRANDOMIZED.m
MissilePhysParam.m
Model_Control.m
Numberofavailablemissileobjects.m
OPENINGCORRECTIONFACTOR.m
r2w_Capacity_Gable.m
r2w_Capacity_Hip.m
r2w_Loading_Failure_Gable_New_Approach.m
r2w_Loading_Failure_Hip_New_Approach.m
redist_uplift.m
Roof_Cover_Loss_Gable_Truncation_Fix_8_20.m
Roof_Cover_Loss_Hip_Truncation_Fix_8_20.m
Sheathing_Capacity_Gable_Truncation_Fix_8_20.m
Sheathing_Capacity_Hip_Truncation_Fix_8_20.m
Sheathing_Layout_Gable_Nov_2009.m
Sheathing_Layout_Hip.m
Sheathing_Loading_Failure_Gable_New_Approach.m
Sheathing_Loading_Failure_Hip_New_Approach.m
Sheathing_R2W_Interface.m
Truss_Layout_Gable_Reduced_Aug_20_2009.m
Truss_Layout_Hip_Reduced_Aug_20_2009.m
Variables_A_B_D_Bakers.m
WALL_GCpe_MINUS_GCpi.m
WALLCOVERLOADER.m
WALLLOADER.m
WALLPRESSURECOEFFASCE.m
WALLSHEETAREAMAP.m
WALLSHEETCAPACITIESUPDATER.m
WALLSHEETPRESSURECOEFFICIENTSRANDOMIZED.m
WALLSHEETRANDOMCAPACITIESMAPPED.m
WALLSSHEETHEIGHTMAP.m
WALLSWINDSPEEDRANDOMIZED.m
WEIGHTEDEXTERNALWALLPRESSURECOEFFICIENTS.m
WINDEFFECTIVEAREAFINDER.m
WINDOWCAPACITIESUPDATER.m
WINDOWIMPACTCAPACITIESUPDATER.m
WINDOWLOADER.m
WINDOWSAREAANDHEIGHTMAP.m
WINDOWSIMPACTRANDOMCAPACITIESMAPPED.m
WINDOWSPROBABILITYOFIMPACTFAILURE.m
WINDOWSRANDOMCAPACITIESMAPPED.m
WINDSPEEDat10mtoSPEEDateverystorywalls.m
Z_Pressure_First_MAIN_DRIVER.m

Model_Control.m
Description: This program is initiated by the user to run the desired models. The user has control over the assortment of model configurations they would like to run. Many combinations of roof type, building height and dimensions, window protection, etc. can be chosen by the user. This allows the user to run simulations in a batched format. The program initiates the Z_Pressure_First_MAIN_DRIVER.m program, inputting the various specifications for the model. The Z_Pressure_First_MAIN_DRIVER.m program is ran through a series of loops representing the selections of the user. The outputs from the Z_Pressure_First_MAIN_DRIVER.m program are named with their appropriate model identifiers and are saved in a folder in the directory.
Input:
· NoofSims: Total number of simulation to be ran for every wind speed, and at eight directions.
· Protection: Identifies whether or not Shutter Protection is available for the windows. There are four selectable options: “ None” which signifies that no additional protection was used. An input of “Plywood”, “Steel” or “Engineered” indicates the use of shutter protection and including the type. Window capacity is multiplied by a factor, depending on the selection.
· Windows: type of windows, “Normal Widows”, “Laminated Windows”, “Impact Resistant Windows”
· All_MissileExposureTypes: types missile exposure, “Suburban”, “Urban”, “Open”
· Roof: Identifies the type of roof system used, “Gable” or “Hip” Roof
· Story: Identifies the number of stories the building has. (1, 2 or 3 stories)
· Quality: The quality of the individual components. Variable is assigned as “Weak”, “Medium” or “Strong”, depending on the level of resilience of the components. Selection of capacities are based on this input.
· WallType: wall type, “Wood”, or “Concrete Block”
· Cover: roof cover, “Shingle”, “Tile”
· Date: date of the run
Output: That of Z_Pressure_First_MAIN_DRIVER.m

Z_Pressure_First_MAIN_DRIVER.m
Description: this is the program executed by the user to produce Monte Carlo simulation results. It is the only program that is ever explicitly run by the user; all other functions are called by this program.
Input:
· ConstructionQuality = The quality of the individual components. Variable is assigned as “Weak”, “Medium” or “Strong”, depending on the level of resilience of the components. Selection of capacities are based on this input.
· NoofSimulations	= Total number of simulation to be ran for every wind speed, and at eight directions.
· ShutterProtection = Identifies whether or not Shutter Protection is available for the windows. There are four selectable options: “ None” which signifies that no additional protection was used. An input of “Plywood”, “Steel” or “Engineered” indicates the use of shutter protection and including the type. Window capacity is multiplied by a factor, depending on the selection.
· RoofType 	= Identifies the type of roof system used, “Gable” or “Hip” Roof.
· TotalNumberofStories = Identifies the number of stories the building has. (1, 2 or 3 stories)
· LengthFLR = The longer of the two footprint dimensions.
· WidthFLR = The shorter of the two footprint dimensions.
Output:
· The four dimensional damage matrix, containing the desired output data. Size of the matrix is dependent on the number of iterations, output data, wind speeds and orientations. (Example: NoofSimulations = 1000, Output data = 30 variables, Velocity = 50:5:250 (41 values) and Orientation = 0:45:315 (8 values) ……Size is equal to 1000*30*41*8)
· Header: List of input and model information, such as: dimensions, materials and other information particular to the model that was ran.

CONSTRUCTIONQLTYTOBLDGSTRENGTH.m
Description: this function determines the mean capacities and coefficients of variation for the building components based on the construction quality of the building.
Input:
· ConstructionQuality = a string describing the construction quality of the building; it could be ‘Weak’, ‘Medium’, or ‘Strong’.
Output:
· Roof Cover Properties:
· Mnshinglecapacity = a scalar describing the mean capacity of the shingles. It is 51 psf, 56 psf, or 70 psf for a weak, medium or strong construction quality, respectively.
· COV_shinglecapacity = a scalar describing the coefficient of variation. It decreases as the construction quality increases.
· Roof Sheathing Properties:
· mnroofsheathing:	= a scalar describing the mean capacity of the roof sheathing. It is 55 psf, 103 psf, or 181.9 psf for a weak, medium or strong construction quality, respectively.
· COV_roofsheathing:	= a scalar describing the coefficient of variation. It decreases as the construction quality increases
· Roof to Wall Connection Properties:
· mnr2w:	= a scalar describing the mean capacity of the shingles.There are two different capacities for each strength level and is based on the materials that the wall is made out of. R2W connections attached to masonry walls typically have a higher resistance than a timber framed building. It is 700 lbs, 1065 lbs, or 1240 lbs for a weak, medium or strong construction quality, respectively for a masonry building.COV_r2w:	= a scalar describing the coefficient of variation. It decreases as the construction quality increases.
· Wall Cover Properties:
· Mncapacitywallcover = a scalar describing the mean capacity of the wall cover. It is 25 psf, 72 psf, or 88 psf for a weak, medium or strong construction quality, respectively.
· COV_wallcovercapacity = a scalar describing the coefficient of variation. It decreases as the construction quality increases.
· Wall Sheathing Panel Properties:
· Mncapacitywallsheets = a scalar describing the mean capacity of the wall sheathing panels. It is 55 psf, 103 psf, or 181.9 psf for a weak, medium or strong construction quality, respectively.
· COV_wallsheetscapacity = a scalar describing the coefficient of variation. It decreases as the construction quality increases.
· Windows:
· Mncapacitywindow = a scalar describing the mean capacity of the windows against pressure loading. It is 53 psf, 71 psf, or 164 psf for a weak, medium, or strong construction quality, respectively.
· COV_windowscapacity = a scalar describing the coefficient of variation. It decreases as the construction quality increases.
· Sliding Doors:
· mncapacitySlidingDoor = a scalar describing the mean capacity of the sliding doors against pressure loading. It is 67.5 psf, 90 psf, or 173 psf for a weak, medium, or strong construction quality, respectively.
· COV_SlidingDoorscapacity = a scalar describing the coefficient of variation. It decreases as the construction quality increases.
· Entry Doors:
· mncapacityEntryDoor = a scalar describing the mean capacity of the entry doors against pressure loading. It is 73 psf, 90.5 psf, or 180 psf for a weak, medium or strong construction quality, respectively.
· COV_EntryDoorscapacity = a scalar describing the coefficient of variation. It decreases as the construction quality increases.

OPENINGPROTECTIONFACTOR.m
Description: this function determines a correction factor for the mean resistance of components placed at the building openings (windows, entry doors, and sliding doors) due to presence of protection systems and impact resistant materials
Input:
· ShutterProtection = a string array describing the type of protection present at the openings on a building, it can be ‘None’, ‘Plywood’, ‘Steel’, or ‘Engineered’. Determines the PFactor.
· ImpactResistance = a string array describing the type of impact resistance that the glazed components have, it can be ‘Normal Windows’, ‘Laminated Windows’ or ‘Impact Resistant Windows’. Determines the MFactor.
Output:
· CorrFactor: a scalar describing the correction that needs to be applied to the glazed components’ capacities, it is simply a multiplication of the PFactor and the MFactor. In this manner the protective properties of having both shutters and impact resistant material are accounted for. Factors are produced for the all three opening components, including window, sliding doors and entry doors.

BUILDINGDIMREASSIGNER.m
Description: this function re-assigns the floor and roof plan dimensions of the building. This is done in order to accommodate the 4 foot width of individual sheathing sheets. The roof plan dimensions are re-assigned assuming that there is a 2 ft. overhang on each side of the building.
Input:
· LengthFLR = a scalar describing the building’s initial floor plan length in feet as inputted by the user.
· WidthFLR = a scalar describing the building’s initial floor plan width in feet as inputted by the user.
Output:
· LengthFLR = a scalar describing the building’s re-assigned floor plan length in feet.
· WidthFLR = a scalar describing the building’s re-assigned floor plan width in feet.
· Length = a scalar describing the building’s roof plan length in feet.
· Width = a scalar describing the building’s roof floor plan width in feet.

adimcalculator.m
Description: this function calculates the 'a' dimension in accordance with ASCE 7-05. The 'a' dimension variable is used to determine the loading zone or zones on the building exterior.
Input:
· Height= a scalar describing the building’s mean roof height in feet.
· Width= a scalar describing the re-assigned building’s roof plan width dimension in feet.
Output:
· a= a scalar describing the ASCE ‘a’ dimension in feet.

WINDOWSAREAANDHEIGHTMAP.m
Description:
· This function maps all the glazed components, their areas, and their height location for every wall of the building.
Input:
· NoofWindSpeeds	= a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· LengthFLR = a scalar describing the building’s floor plan length.
· WidthFLR = a scalar, the building’s floor plan width.
· InnerStoryHeight	= a scalar, usually 2 ft.
· MainStoryHeight	= a scalar, usually 8, 9 or 10 ft.
· TotalNumberofStories = a scalar describing the total number of stories in the building.
· sheetsinLongSide = a scalar describing the number of sheathing panels that would fit in the long side if it had no openings.
· sheetsinShortSide	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings.
· FractionAreaGlazingperFloor = a scalar describing the percentage of openings per floor calculated out of the wall surface area within a given floor.
· WindowLength = a scalar, the model currently uses a 4 ft. long window.
· WindowHeight = a scalar, the model currently uses a 5 ft. tall window.
· SLDoorLength = a scalar, the model currently uses an 8 ft. long sliding door.
· SLDoorHeight = a scalar, the model currently uses an 8 ft. tall sliding door.
· EntryDoorLength	= a scalar, the model currently uses a 4 ft. long entry door.
· EntryDoorHeight	= a scalar, the model currently uses an 8 ft. tall entry door.
Output:
· Glazed Component Mappers (originals) = matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall).
· ORIGINALSlidingDoorMapLongSide13D
· ORIGINALSlidingDoorMapLongSide23D
· ORIGINALSlidingDoorMapShortSide13D
· ORIGINALSlidingDoorMapShortSide23D
· ORIGINALEntryDoorMapLongSide13D
· ORIGINALEntryDoorMapLongSide23D
· ORIGINALEntryDoorMapShortSide13D
· ORIGINALEntryDoorMapShortSide23D
· ORIGINALWindowMapLongSide13D
· ORIGINALWindowMapLongSide23D
· ORIGINALWindowMapShortSide13D
· ORIGINALWindowMapShortSide23D
· Glazed Component Area Maps	= matrices containing the areas of a particular component mapped to a particular location (identified by the indexes of its location in the matrix) in a given wall. Each component has a matrix for each wall.
· WindowsAreaLongSide1
· WindowsAreaLongSide2
· WindowsAreaShortSide1
· WindowsAreaShortSide2
· SlidingDoorAreaLongSide1
· SlidingDoorAreaLongSide2
· SlidingDoorAreaShortSide1
· SlidingDoorAreaShortSide2
· EntryDoorAreaLongSide1
· EntryDoorAreaLongSide2
· EntryDoorAreaShortSide1
· EntryDoorAreaShortSide2

WALLSHEETAREAMAP.m
Description:
· This function maps the sheathing panels and wall cover sections, their areas, and their height location for each one of the walls of the building to an entry within a matrix represent a particular face of the building.
Input:
· NoofWindSpeeds	= a scalar, it is the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· TotalNumberofStories = a scalar, number of building stories
· sheetsinGableEnd	= the number of sheathing panels that would fit in the gable end if it had no openings, a scalar.
· sheetsinLongSide	= the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide = the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· MainStoryHeight = a scalar, usually 8, 9 or 10 ft.
· InnerStoryHeight	= a scalar, usually 2 ft.
· RoofType = ‘Gable’ or ‘Hip’.
· RoofSlope	= a scalar.
· Glazed Component Area Maps = matrices containing the areas of a particular component mapped to a particular location (identified by the indexes of its location in the matrix) in a given wall. Each component has a matrix for each wall.
· WindowsAreaLongSide1
· WindowsAreaLongSide2
· WindowsAreaShortSide1
· WindowsAreaShortSide2
· SlidingDoorAreaLongSide2
· EntryDoorAreaLongSide1
Output:
· TotalGableEndWallCoverArea = a scalar, the total area occupied by the wall cover in the gable ends.
· TotalWallCoverAreaforaFloor = a scalar, the total area occupied by the wall cover per floor.
· TotalGableEndWallSheatingArea = a scalar, the total area occupied by wall sheathing in the gable ends.
· TotalWallSheatingAreaforaFloor = a scalar, the total area occupied by wall sheathing per floor.
· Component Mappers (Originals) = matrices identifying the presence or absence of a component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a component while a 0 denotes the absence of one.
· Wall Cover Sections:
· ORIGINALMainStoryWallCoverMapLongSide13D
· ORIGINALMainStoryWallCoverMapLongSide23D
· ORIGINALInnerStoryWallCoverMapLongSide13D
· ORIGINALInnerStoryWallCoverMapLongSide23D
· ORIGINALMainStoryWallCoverMapShortSide13D
· ORIGINALMainStoryWallCoverMapShortSide23D
· ORIGINALInnerStoryWallCoverMapShortSide13D
· ORIGINALInnerStoryWallCoverMapShortSide23D
· ORIGINALGableEndWallCoverMapShortSide13D
· ORIGINALGableEndWallCoverMapShortSide23D
· Wall Sheathing Panels:
· ORIGINALMainStorySheetMapLongSide13D
· ORIGINALMainStorySheetMapLongSide23D
· ORIGINALInnerStorySheetMapLongSide13D
· ORIGINALInnerStorySheetMapLongSide23D
· ORIGINALMainStorySheetMapShortSide13D
· ORIGINALMainStorySheetMapShortSide23D
· ORIGINALInnerStorySheetMapShortSide13D
· ORIGINALInnerStorySheetMapShortSide23D
· ORIGINALGableEndSheetMapShortSide13D
· ORIGINALGableEndSheetMapShortSide23D
· GableEndSheetMapShortSide1
· Component Area Maps	= matrices containing the area occupied by a component in a location of a wall mapped by the matrix indexes (matrix size = # of stories by # of wall sheathing panels on that wall).
· MainAreaWallsLongSide1
· MainAreaWallsLongSide2
· InnerAreaWallsLongSide1
· InnerAreaWallsLongSide2
· MainAreaWallsShortSide1
· MainAreaWallsShortSide2
· InnerAreaWallsShortSide1
· InnerAreaWallsShortSide2
· GableEndAreaWallsShortSide1
· GableEndAreaWallsShortSide2
· MainAreaWallCoverLongSide1
· MainAreaWallCoverLongSide2
· InnerAreaWallCoverLongSide1
· InnerAreaWallCoverLongSide2
· MainAreaWallCoverShortSide1
· MainAreaWallCoverShortSide2
· InnerAreaWallCoverShortSide1
· InnerAreaWallCoverShortSide2
· GableEndAreaWallCoverShortSide1
· GableEndAreaWallCoverShortSide2

WALLSSHEETHEIGHTMAP.m
Description:
· This function maps the height location of the centroid of the wall sheets in the building. Common construction practices indicate that 4 ft. wide by 8 ft., 9 ft., or 10 ft. long plywood sheathing panels are available. It will be assumed that the panels are placed vertically and side by side (with the 4 ft. dimension horizontally) creating the “Main Story Space” and the “Inner Story Space”.
Input:
· LengthFLR = a scalar, the building’s floor plan length.
· WidthFLR	= a scalar, the building’s floor plan width.
· InnerStoryHeight	= a scalar, usually 2 ft.
· MainStoryHeight	= a scalar, usually 8, 9 or 10 ft.
· TotalNumberofStories = a scalar, number of building stories
· RoofType	= ‘Gable’ or ‘Hip’.
· RoofSlope = a scalar, roof slope
· sheetsinGableEnd	= the number of sheathing panels that would fit in the gable end if it had no openings, a scalar.
Output:
· MainStoryHeights = a matrix (size = # of stories by 1) containing the heights of the centroids of the sheathing panels located at the main story zone.
· InnerStoryHeights = a matrix (size = # of stories by 1) containing the heights of the centroids of the sheathing panels located at the inner story zone.
· GableEndHeights = a matrix (size = 1 by # of sheathing panels that horizontally fit in the gable end) containing the heights of the centroids of the sheathing panels located at the gable end zone.

WINDSPEEDat10mtoSPEEDateverystorywalls.m
Description:
· This function converts the peak 3 sec average wind speed (50 to 250 mph with 5 mph increments) measured at a height of 10 meters (33 feet) to the peak 3sec average wind speed at a given story. The actual wind speed at a given story is a function of the average wind speed measured at a height of 10 meters, the height at which the actual wind speed is desired, and the roughness length, z0. The log law and Simiu and Scanlan are used to perform this conversion.
Input:
· z0: = a scalar = roughness length
· Height:	= a scalar representing the height above ground level at their respective positions
· MeanRoofHeight
· MainStoryHeights
· InnerStoryHeights
· GableEndHeights
· WindSpeeds_avg:	= a vector of the 41 wind speeds of interesting, ranging from 50 to 250 mph in 5 mph increments
· SheathingPanelsHorizontallyAcrossGableEnd:	= the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
· SheathingPanelsVerticallyAcrossGableEnd:	= the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
· RoofType:	= a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
Output:
· Mean Wind Speeds = matrices containing the mean wind speed at the height that the matrix index maps to the building’s face. These values are converted from the wind speed measured at a height of 10 meters (33 feet).
· WindSpeeds_mean_MainStory (matrix size = # of stories by 1)
· WindSpeeds_mean_InnerStory (matrix size = # of stories by 1)
· WindSpeeds_mean_GableEnd (matrix size = 1 by # of sheathing panels that horizontally fit in the gable end)
· WindSpeeds_mean_MeanRoofHeight (a scalar)

CVARIABLE.m:
Description:
· This function is related to the modeling of debris impacts. This function calculates a matrix containing the variable C. The variable C is the fraction of the total area of the impacted wall that is a particular opening. The variable C is not a function of the wind speed, it is only a function of the window or glazed item area and the total area of the wall (or face) in which that glazed item is. Given that a missile hits a particular face of the building, each entry of the matrix C is the probability that that opening will be hit.
Input:
· EaveHeight = a scalar of height to eave
· LengthFLR = a scalar of length of impacted wall
· WidthFLR = a scalar of width of side wall
· Component Area Maps = matrices containing the areas of a particular component mapped to a particular location (identified by the indexes of its location in the matrix) in a given wall. Each component has a matrix for each wall.
· WindowsAreaLongSide1
· WindowsAreaLongSide2
· WindowsAreaShortSide1
· WindowsAreaShortSide2
· SlidingDoorAreaLongSide1
· SlidingDoorAreaLongSide2
· SlidingDoorAreaShortSide1
· SlidingDoorAreaShortSide2
· EntryDoorAreaLongSide1
· EntryDoorAreaLongSide2
· EntryDoorAreaShortSide1
· EntryDoorAreaShortSide2
Output:
· The C Matrices = the matrices containing the fraction of area of glazing at a particular location (mapped by the matrix to a corresponding wall location) of the total wall area (matrix size = # of stories by # of wall sheathing panels that could fit on that wall).
· CLongSide1Windows
· CLongSide2Windows
· CShortSide1Windows
· CShortSide2Windows
· CLongSide1SLDoor
· CLongSide2SLDoor
· CShortSide1SLDoor
· CShortSide2SLDoor
· CLongSide1EntryDoor
· CLongSide2EntryDoor
· CShortSide1EntryDoor
· CShortSide2EntryDoor

Numberofavailablemissileobjects.m
Description:
· This function is related to the modeling of debris impacts. This function calculates the number of available objects that could potentially become missile objects. This is a function of the exposure condition of the building (the density of its location) and the size of the average building in the neighborhood (which is assumed to be the same as the building being analyzed).
Input:
· MissileExposureType = a string array describing the missile exposure type, it can be ‘open’, ‘treed’, ‘suburban’, or ‘urban’
· Number_of_shingles = a scalar describing the total number of shingles present in the roof of the building being analyzed
· direction_i = scalar values that indicates the current orientation of the wind (direction: 1-8) being analyzed
· Suburban_DistMult = Scalar multiplier that augments the distance between buildings to represent a typical Suburban spacing
· Open_DistMult = Scalar multiplier that augments the distance between buildings to represent a typical Suburban spacing
Output:
· NA = a scalar describing the total number of available potential missile objects.
· Req_Travel = a scalar value identifying the distance required for the debris to strike the building

WINDEFFECTIVEAREAFINDER.m
Description:
· This function determines the effective wind area on the walls by using the wind’s direction of approach and the building dimensions.
Input:
· LengthFLR = a scalar describing the building’s floor plan length.
· WidthFLR = a scalar describing the building’s floor plan width.
· EaveHeight = a scalar height to the roof eave in feet
· direction_i	= the wind’s direction of approach relative to the building front
Output:
· WindEffectiveArea = a scalar describing the area of the building that receives the wind. It varies as the wind’s direction of approach changes.

WALLPRESSURECOEFFASCE.m
Description:
· This function determines the ASCE 7-05 external pressure coefficients (GCp) for zones 4 and 5 of the walls. These values will later be used to determine the weighted pressure coefficient value that will be randomized to produce loads. The approach direction of the winds affects the wind effective area, which in turn affects the wall pressure coefficient.
Input:
· WindEffectiveArea = the area of the building that receives the wind. It is a scalar and varies as the winds’ direction of approach changes.
Output:
· External Pressure Coefficient Possibilities = scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the wind.
· GCp_zone4_POSITIVE
· GCp_zone5_POSITIVE
· GCp_zone4_NEGATIVE
· GCp_zone5_NEGATIVE

WEIGHTEDEXTERNALWALLPRESSURECOEFFICIENTS.m
Description:
· This function determines a weighted maximum value for the mean external pressure coefficients on each wall sheathing panel on the building. Weighted refers to an average of the pressure coefficient for sheathing panels that are in more than one load zone.
Input:
· RoofSlope	= a scalar containing roof slope
· RoofType	= ‘Gable’ or ‘Hip’.
· SheathingPanelsHorizontallyAcrossGableEnd= the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
· SheathingPanelsVerticallyAcrossGableEnd	= the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar
· sheetsinLongSide:	= the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide:	= the number of sheathing panels that would fit in the short side if it had no openings, a scalar
· a = The ASCE ‘a’ dimension used to delineate different loading zones on building exterior
· InnerStoryHeight	= a scalar, usually 2 ft.
· MainStoryHeight	= a scalar, usually 8, 9 or 10 ft.
· SheathingPanelLength:	= a scalar, the long dimension of a sheathing panel (commercially available 8 ft., 9 ft., 10 ft.).	
· Sheathing PanelWidth:	= a scalar, the short dimension of a sheathing panel (currently 4 ft.).	
· PanelHeightLeft:	= a matrix, contains the vertical dimension of the left side of each panel placed in the gable end.	
· PanelHeightRight: 	= a matrix, contains the vertical dimension of the right side of each panel placed in the gable end.
· GableEndSheetMapShortSide1:	= a matrix, identifies the presence or absence of a sheathing panel at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). A 1 denotes the presence of a panel while a 0 denotes the absence of one.
· External Pressure Coefficient Possibilities = scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the wind.
· GCp_zone4_POSITIVE
· GCp_zone5_POSITIVE
· GCp_zone4_NEGATIVE
· GCp_zone5_NEGATIVE
Output:
· Weighted External Pressure Coefficients = a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
· LongSideWeighted_GCp_POSITIVE_INNER
· LongSideWeighted_GCp_NEGATIVE_INNER
· LongSideWeighted_GCp_POSITIVE_MAIN
· LongSideWeighted_GCp_NEGATIVE_MAIN
· ShortSideWeighted_GCp_POSITIVE_INNER
· ShortSideWeighted_GCp_NEGATIVE_INNER
· ShortSideWeighted_GCp_POSITIVE_MAIN
· ShortSideWeighted_GCp_NEGATIVE_MAIN
· ShortSideWeighted_GCp_POSITIVE_GABLEEND
· ShortSideWeighted_GCp_NEGATIVE_GABLEEND

Sheathing_Layout_Gable_Nov_2009.m
Description: this function is used by the MAIN_DRIVER to construct matrices representing the location and dimensions of the sheathing required in the construction of the house. Sizes of the individual pieces of sheathing are determined by the roof dimensions. The sheathing is also positioned in accordance with typical construction practices. For each piece of sheathing, the contributions by the various roof pressure zones are based on sheathing location and ASCE 7-05 Wind Load Provisions.
Input:
· Length = the longer of the linear dimensions of the rectangular roof area. Units are ft
· Width = the shorter of the linear dimensions of the rectangular roof area. Units are ft
· direction_i = indicates orientation of the wind (direction: 1-8)
· RoofSlope = pitch of the roof from the eave to the ridge (example: 6/12)
Output:
· Area_Zone_#_Sheathing =
· Area_Zone_#_Sheathing_Overhang =
· Area_zone#	= Matrix = Summation of the respective zone matrices (Main roof area + Overhang)
· Total_Area 	= Matrix = Summation of the contributing zones for each sheathing element. The values should equal the total area of each sheet. Units are ft^2.
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof
· Number_of_Sheathing_Row = Scalar = Indicates the number of sheathing along the eave of the roof
· Length_of_Sheathing = Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions. Units are ft.		
· Width_of_Sheathing = Matrix = Indicates the length of the individual sheathing running parallel to the shorter of the two roof dimensions. Units are ft.
· l = Vector = Vector indicating a count of the number of sheathing in each row

Sheathing_Layout_Hip.m
Description:
· This function is used by the MAIN_DRIVER to construct matrices representing the location and dimensions of the sheathing panels required in the construction of a house with a hipped roof. Four matrices are created, one for each roof face. Sizes of the individual pieces of sheathing are determined by the roof dimensions and the roof slope. The sheathing is also positioned in accordance with typical construction practices. For each sheathing panel, the contributions by the various roof pressure zones found in ACSE 7-05 are determined for a particular orientation, based the location on the roof.
Input:
· a = scalar = Width of the pressure coefficient zone (ft.)
· direction_i = scalar = indicates orientation of the wind (direction: 1-8)
· Length = scalar = the longer of the linear dimensions of the rectangular roof area (ft)
· RoofSlope	= scalar = pitch of the roof from the eave to the ridge (example: 6/12)
· Width = scalar = the shorter of the linear dimensions of the rectangular roof area (ft)
Output:
· Areas = Matrix = Matrix identifying the total area of each sheathing panel on the Main Roof Regions. Units are ft^2.
· Areas_Hip	= Matrix = Matrix identifying the total area of each sheathing panel on the Hip Regions. Units are ft^2.
· Area_Zone_#_Sheathing_Hip_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region)
· Area_Zone_#_Sheathing_Overhang Hip_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region)
· Area_Zone_#_Sheathing_Main_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region)
· Area_Zone_#_Sheathing_Overhang_Main_## = Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region)
· Area_zone# = Matrix = Summation of the respective zone matrices. (Main roof area + Overhang, where # = 1-3)
· Length_of_Sheathing = Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions.
· Length_of_Sheathing_Hip = Matrix = Indicates the length of the individual sheathing running parallel to the shorter of the two roof dimensions.
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof.
· Number_of_Rows_Hip = scalar = indicates the number of rows of sheathing on one face of the roof.
· Number_of_Sheathing_Eave = scalar = Indicates the number of sheathing along the eave of the roof Main Roof Region.
· Number_of_Sheathing_Ridge = scalar = Indicates the number of sheathing along the ridge of the roof Main Roof Region.
· Sheathing_per_Row = Vector = Indicates the number of sheathing panels present in a specific rowin the main roof regions
· Sheathing_per_Row_Hip = Vector = Indicates the number of sheathing panels present in a specific row in the hip regions
· Total_Area = Matrix = Summation of the contributing zones for each sheathing element. The values should equal the total area of each sheet. 		
· Width_of_Sheathing_Main = Vector = Indicates the width of sheathing panels present in a specific row in the main roof regions
· Width_of_Sheathing_Hip = Vector = Indicates the width of sheathing panels present in a specific row in the hip regions

Truss_Layout_Gable_Reduced_Aug_20_2009.m
Description: This function is used by the MAIN_DRIVER to construct matrices representing the location and dimensions of the trusses required in the construction of a house. A single matrix is created, defining both roof faces simultaneously. Sizes of the individual trusses are determined by the roof dimensions. The trusses are also positioned in accordance with typical construction practices (2 ft. o.c.). For each r2w connection, the contributions by the various roof pressure zones found in ACSE 7-05 are determined for a particular orientation, based the location on the roof. The uplift on these areas will then be transferred as a concentrated load to the r2w connections
Input:
· a = Width of the pressure coefficient zone. Units are ft.
· direction_i 	= indicates orientation of the wind (direction: 1-8)
· Length		= the longer of the linear dimensions of the rectangular roof area. Units are ft.
· Length_of_Sheathing = Matrix that indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions. Units are ft.
· RoofSlope	= pitch of the roof from the eave to the ridge (example: 6/12)
· Number_of_Rows = indicates the number of rows of sheathing on one face of the roof
· Number_of_Sheathing_Row = Indicates the number of sheathing along the eave of the roof
· Length_of_Sheathing = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions. Units are ft.
· Width		= the shorter of the linear dimensions of the rectangular roof area. Units are ft.
· l	= Indicates the number of sheathing found in each row, where each entry represents a different row
Output:
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof
· Number_of_Trusses_Row = scalar = Indicates the number of r2w connections along the eave of the Main Roof Region.
· Tributary_Width = Vector = Indicates the width of the roof area that the r2w connection is influenced by on the main roof regions. Units are ft.
· Sheathing_Equiv= Matrix = Values indicate which number of sheathing in a particular row, starting from 1 from left to right, is attached to the truss on the Main Roof Region. The column location of the matrix identifies the truss being analyzed. Matrix is Number_of_Rows by Number_of_Trusses_Row in size

Truss_Layout_Hip_Reduced_Aug_20_2009.m
Description: this function is used by the MAIN_DRIVER to construct matrices representing the location and dimensions of the trusses required in the construction of a house with a hipped roof. Four matrices are created, one for each roof face. Sizes of the individual trusses are determined by the roof dimensions. The trusses are also positioned in accordance with typical construction practices (2 ft. o.c.). For each r2w connection, the contributions by the various roof pressure zones found in ACSE 7-05 are determined for a particular orientation, based the location on the roof. The uplift on these areas will then be transferred as a concentrated load to the r2w connections.
Input:
· a = Width of the pressure coefficient zone (ft.)
· direction_i 	= indicates orientation of the wind (direction: 1-8)
· Length:	= scalar = the longer of the linear dimensions of the rectangular roof area (ft)
· Length_of_Sheathing = Matrix that Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions.
· Length_of_Sheathing_Hip = Matrix that Indicates the length of the individual sheathing running parallel to the shorter of the two roof dimensions.
· Number_of_Rows = indicates the number of rows of sheathing on one face of the roof
· Number_of_Rows_Hip indicates the number of rows of sheathing on one face of the roof
· Length_of_Sheathing = Matrix that indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions.
· Length_of_Sheathing_Hip = Matrix that indicates the length of the individual sheathing running parallel to the shorter of the two roof dimensions.
· Sheathing_per_Row = Vector that indicates the number of sheathing panels present in a specific row in the main roof regions
· Sheathing_per_Row_Hip = Vector that indicates the number of sheathing panels present in a specific row in the hip regions
· Width		= the shorter of the linear dimensions of the rectangular roof area (ft)
· Width_of_Sheathing = Vector that indicates the width of sheathing panels present in a specific row in the main roof regions
· Width_of_Sheathing_Hip = Vector that indicates the width of sheathing panels present in a specific row in the hip regions
Output:
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof
· Number_of_Trusses_Row = scalar = Indicates the number of r2w connections along the eave of the Main Roof Region.
· Number_of_Trusses_Row_Hip= scalar = Indicates the number of r2w connections along the ridge of the Main Roof Region.
· Tributary_Width = Vector = Indicates the width of the roof area that the r2w connection is influenced by on the main roof regions. Units are ft.
· Tributary_Width _Hip = Vector = Indicates the width of the roof area that the r2w connection is influenced by on the hip regions. Units are ft.
· Sheathing_Equiv= Matrix = Values indicate which number of sheathing in a particular row, starting from 1 from left to right, is attached to the truss on the Main Roof Region. The column location of the matrix identifies the truss being analyzed. Matrix is Number_of_Rows by Number_of_Trusses_Row in size.
· Sheathing_Equiv _Hip= Matrix = Values indicate which number of sheathing in a particular row, starting from 1 from left to right, is attached to the truss on the Hip Region. Matrix is Number_of_Rows_Hip by Number_of_Trusses_Row_Hip in size.

WINDOWSIMPACTRANDOMCAPACITIESMAPPED.m
Description:
· This function generates matrices of random numbers drawn from a uniform distribution on the unit interval. These matrices model the ‘impact capacities’ for every glazed component in the building; the indexes of the entries in the matrices correspond to a particular location within a given face of the building. The rows in the matrices correspond to the stories in the building, while the columns correspond to the horizontal location within a given wall. The capacities are adjusted based on window material type and window protection use.
Input:
· NoofWindSpeeds	= a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· sheetsinLongSide	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· TotalNumberofStories = a scalar describing the total number of stories in the building.
· CorrFactor = a scalar describing the correction factor for the glazed components’ capacities; a simple multiplication of the PFactor (protection factor) and the MFactor (material factor).
· WindCorrFactor
· SlidCorrFactor
· EntryCorrFactor
· Glazed Component Mappers = matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall).
· EntryDoorMapLongSide13D
· EntryDoorMapLongSide23D
· EntryDoorMapShortSide13D
· EntryDoorMapShortSide23D
· SlidingDoorMapLongSide13D
· SlidingDoorMapLongSide23D
· SlidingDoorMapShortSide13D
· SlidingDoorMapShortSide23D
· WindowMapLongSide13D
· WindowMapLongSide23D
· WindowMapShortSide13D
· WindowMapShortSide23D
Output:
· Impact Capacity Matrices = matrices containing the randomized impact capacities for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall).
· EntryDoorLongSide1ImpactCapacity3D
· EntryDoorLongSide2ImpactCapacity3D
· EntryDoorShortSide1ImpactCapacity3D
· EntryDoorShortSide2ImpactCapacity3D
· SlidingDoorLongSide1ImpactCapacity3D
· SlidingDoorLongSide2ImpactCapacity3D
· SlidingDoorShortSide1ImpactCapacity3D
· SlidingDoorShortSide2ImpactCapacity3D
· WindowsLongSide1ImpactCapacity3D
· WindowsLongSide2ImpactCapacity3D
· WindowsShortSide1ImpactCapacity3D
· WindowsShortSide2ImpactCapacity3D

WINDOWSRANDOMCAPACITIESMAPPED.m
Description:
· This function randomizes the mean capacity for every glazed component in the building. It allocates each randomized capacity into its corresponding location within a given matrix; the indexes of each entry map a location in the face of the building. The rows in the matrices correspond to the stories in the building, while the columns correspond to the horizontal location within a given wall.
Input:
· sheetsinLongSide	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· TotalNumberofStories = a scalar describing the total number of stories in the building.
· NoofWindSpeeds	= a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· Mncapacitywindow = a scalar describing the average resistance of a window. It depends on the construction quality and can be 110 psf for weak construction quality, 150 psf for medium, or 180 psf for strong.
· COV_windowscapacity = a scalar describing the coefficient of variation of the resistances of the windows; it decreases as the construction quality increases.
· mncapacityEntryDoor = a scalar describing the average resistance of an entry door. It depends on the construction quality and can be 110 psf for weak construction quality, 150 psf for medium, or 180 psf for strong.
· COV_ EntryDoorscapacity = a scalar describing the coefficient of variation of the resistances of the entry doors; it decreases as the construction quality increases.
· mncapacitySlidingDoor = a scalar describing the average resistance of a sliding glass door. It depends on the construction quality and can be 110 psf for weak construction quality, 150 psf for medium, or 180 psf for strong.
· COV_ SlidingDoorscapacity = a scalar describing the coefficient of variation of the resistances of the sliding glass doors; it decreases as the construction quality increases.
· Glazed Component Mappers = matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall).
· EntryDoorMapLongSide13D
· EntryDoorMapLongSide23D
· EntryDoorMapShortSide13D
· EntryDoorMapShortSide23D
· SlidingDoorMapLongSide13D
· SlidingDoorMapLongSide23D
· SlidingDoorMapShortSide13D
· SlidingDoorMapShortSide23D
· WindowMapLongSide13D
· WindowMapLongSide23D
· WindowMapShortSide13D
· WindowMapShortSide23D
Output:
· Capacity Matrices = matrices containing the randomized capacities (in psf) for each glazed component on that wall (matrix size = # of stories by # of wall sheathing panels on that wall).
· EntryDoorsLongSide1Capacity3D
· EntryDoorsLongSide2Capacity3D
· EntryDoorsShortSide1Capacity3D
· EntryDoorsShortSide2Capacity3D
· SlidingDoorsLongSide1Capacity3D
· SlidingDoorsLongSide2Capacity3D
· SlidingDoorsShortSide1Capacity3D
· SlidingDoorsShortSide2Capacity3D
· WindowsLongSide1Capacity3D
· WindowsLongSide2Capacity3D
· WindowsShortSide1Capacity3D
· WindowsShortSide2Capacity3D

WALLSHEETRANDOMCAPACITIESMAPPED.m
Description:
· This function randomizes the mean capacity for each panel of wall sheathing and each section of wall cover in the building. It allocates each randomized capacity into its corresponding location in a given matrix. The rows in the matrices correspond to the stories in the building, while the columns correspond to the horizontal location within a given wall.
Input:
· RoofType = a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
· sheetsinGableEnd	= a scalar describing the number of sheathing panels that would fit in the gable end if it had no openings, a scalar.
· sheetsinLongSide	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· TotalNumberofStories = a scalar describing the total number of stories in the building.
· NoofWindSpeeds	= a scalar describing the total number of wind speeds for which the analysis is performed.
· mncapacitywallcover	= a scalar describing the average capacity of the wall cover sections; it depends on the construction quality.
· Mncapacitywallsheets = a scalar describing the average capacity of the wall sheathing panels; it depends on the construction quality.
· COV_wallsheetscapacity 	= a scalar describing the coefficient of variation for the resistance of the wall sheathing panels; it decreases as the construction quality increases.
· COV_wallcovercapacity	= a scalar describing the coefficient of variation for the resistance of the wall cover sections; it decreases as the construction quality increases.
· Component Mappers = matrices identifying the presence or absence of a component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a component while 0’s denote the absence of one).
Output:
· Capacity Matrices = matrices containing the randomized capacities (in psf) for each component on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· Wall Cover Sections:
· MainStoryWallCoverMapLongSide13D
· MainStoryWallCoverMapLongSide23D
· InnerStoryWallCoverMapLongSide13D
· InnerStoryWallCoverMapLongSide23D
· MainStoryWallCoverMapShortSide13D
· MainStoryWallCoverMapShortSide23D
· InnerStoryWallCoverMapShortSide13D
· InnerStoryWallCoverMapShortSide23D
· GableEndWallCoverMapShortSide13D
· GableEndWallCoverMapShortSide23D
· Wall Sheathing Panels:
· MainStorySheetMapLongSide13D
· MainStorySheetMapLongSide23D
· InnerStorySheetMapLongSide13D
· InnerStorySheetMapLongSide23D
· MainStorySheetMapShortSide13D
· MainStorySheetMapShortSide23D
· InnerStorySheetMapShortSide13D
· InnerStorySheetMapShortSide23D
· GableEndSheetMapShortSide13D
· GableEndSheetMapShortSide23D

Sheathing_Capacity_Gable_Truncation_Fix_8_20.m
Description:
· This function is used by MAIN_DRIVER to assign the probabilistic capacity of failure for the roof sheathing panels on the house. Output is a matrix that contains the probabilistically assigned capacity of the individual sheathing panels.
Input:
· rating = scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3 (strong)
· Number_of_Rows = scalar = indicates the number of rows of sheathing on one face of the roof.
· Number_of_Sheathing_Row = scalar = Indicates the number of sheathing along the eave of the roof.
· Length = scalar = the longer of the linear dimensions of the rectangular roof area (ft) Units are ft.
Output:
· capacity_sheathing = Matrix = contains the randomly assigned capacity of each of the sheathing panels on the roof. Size depends on the determined dimensions of the roof area and is equal to that of the Length and Width of sheathing matrices outputted from the roof layout codes.Units are psf.
· sheathing_fail = Scalar = Value of the mean capacity of the sheathing used for outputting in the ‘Header’

Sheathing_Capacity_Hip_Truncation_Fix_8_20.m
Description:
· This function is used by MAIN_DRIVER to assign the probabilistic capacity of failure for the roof sheathing panels on the house. Output is a matrix that contains the probabilistically assigned capacity of the individual sheathing panels.
Input:
· Rating = scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3 (strong)
· Number_of_Rows = scalar = indicates the number of rows of sheathing on one face of the roof.
· Number_of_Rows_Hip = scalar = indicates the number of rows of sheathing on one face of the roof.
· Number_of_Sheathing_Eave = scalar = Indicates the number of sheathing along the eave of the roof Main Roof Region.
· Number_of_Sheathing_Ridge = scalar = Indicates the number of sheathing along the ridge of the roof Main Roof Region.
Output:
· capacity_sheathing_Hip_# = Matrix = contains the randomly assigned capacity of each of the sheathing panels in the hip regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows_Hip by Number_of_Rows_Hip. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf.
· capacity_sheathing_Main_# = Matrix = contains the randomly assigned capacity of each of the sheathing panels in the main roof regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows by Number_of_Sheathing_Eave. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf.
· sheathing_fail = Scalar = Value of the mean capacity of the sheathing used for outputting in the ‘Header’

r2w_Capacity_Gable.m
Description:
· This function is used by MAIN_DRIVER to assign the probabilistic capacity of failure for the roof-to-wall (r2w) connections on the house. Output is a matrix that contains the probabilistically assigned capacity of the individual r2w connection.
Input:
· Rating = scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3 (strong)
· Number_of_Trusses_Row = scalar = Indicates the number of r2w connections along the eave of the roof.
Output:
· r2w_cap	= Matrix contains the randomly assigned capacity of each of the r2w connection. The size of the matrix depends on the number of trusses and is equal to 2 by Number_of_Trusses_Row (one row for each roof face). Units are lbs.
· mean_resist	= A scalar value representing the mean resistance of the r2w connection after the FS is applied.

r2w_Capacity_Hip.m
Description:
· This function is used by MAIN_DRIVER to assign the probabilistic capacity of failure for the roof-to-wall (r2w) connections on the house. Output is a matrix that contains the probabilistically assigned capacity of the individual r2w connection. Two capacity matrices are produced: one pertaining to the trusses in the hip regions at the ends of the building and other pertaining to the main roof region along the length of the building.
Input:
· Rating = scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3 (strong). Variable is used to select the mean capacity of the roof components.
· Number_of_Trusses_Row = scalar = Indicates the number of r2w connections along the eave of the Main Roof Region.
· Number_of_Trusses_Row_Hip = scalar = Indicates the number of r2w connections along the eave of the Hip Region.
Output:
· r2w_cap_Hip = Matrix contains the randomly assigned capacity of each of the r2w connection in the hip regions . The size of the matrix depends on the number of trusses in the hip region and is equal to 2 by Number_of_Trusses_Row_Hip (one row for each Hip Region). Units are psf
· r2w_cap_Main = Matrix contains the randomly assigned capacity of each of the r2w connection in the main roof regions. The size of the matrix depends on the number of trusses in the main roof region and is equal to 2 by Number_of_Trusses_Row (one row for each Main Roof Region). Units are psf.
· mean_resist	= A scalar value representing the mean resistance of the r2w connection after the FS is applied.

MissilePhysParam.m
Description: This calculates the missile model physical parameters necessary to calculate the variables A, B, and D.
Input:
· NA = a scalar number representing the number of available missiles.
· Mean:	= A scalar number representing mean value of the shingle capacity, shingle density, shingle thickness, shingle length, I variable, force coefficient, J variable, shingle width and momentum resistance of the glazing, respectively.
· mn_shinglecapacity
· mn_shingledensity
· mn_thickness
· mn_I
· mn_CF
· mn_J
· mn_ShingleLength
· mn_ShingleWidth
· mn_mom_resistance
· Coefficient of Variation:	= A scalar number representing mean value of the shingle capacity, shingle density, shingle thickness, shingle length, I variable, force coefficient, J variable, shingle width and momentum resistance of the glazing, respectively.
· COV_shinglecapacity
· COV_shingledensity
· COV_thickness
· COV_I
· COV_CF
· COV_J
· COV_ShingleLength
· COV_ShingleWidth
· COV_mom_resistance
· Standard Deviation:	= A scalar number representing mean value of the shingle capacity, shingle density, shingle thickness, shingle length, I variable, force coefficient, J variable, shingle width and momentum resistance of the glazing, respectively.
· STDEV_shinglecapacity
· STDEV_shingledensity
· STDEV_thickness
· STDEV_I
· STDEV_CF
· STDEV_J
· STDEV_ShingleLength
· STDEV_ShingleWidth
· STDEV_mom_resistance
Output:
· ShingleCapacityImpactModule= A vector of randomized shingle capacities.
· ShingleDensity: = A vector of randomized shingle densities
· Thickness:= A vector of randomized shingle thicknesses
· I:= A vector of randomized of values of variable I (fixing strength parameter)
· CF:= A vector of randomized of values of variable CF (Force Coefficient)
· J:= A vector of randomized of values of variable J (the fraction of the wind velocity that the debris can achieve before striking an object or hitting the ground)
· ShingleLength:= A vector of randomized shingle lengths
· ShingleWidth:	= A vector of randomized shingle widths
· mom_resistance:= A vector of randomized moment resistance of the glazing

Sheathing_Loading_Failure_Gable_New_Approach.m
Description:
· This function is used by MAIN_DRIVER to assign the probabilistic loading for the sheathing panels on the house. Capacities of the roof cover are compared to the randomized loading values. Through this comparison, failure to the sheathing panels can be determined.
Input:
· Length = scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
· Width = scalar = the shorter of the linear dimensions of the rectangular roof area. Units are ft.
· RoofSlope	= scalar = pitch of the roof from the eave to the ridge (example: 6/12)
· EnclosureCondition = indicator of the enclosure of the building (‘O’ for Open, ‘P’ for Partially Enclosed and ‘E’ Fully Enclosed, which essentially effects the interior pressure coefficient for the building)
· Velocity = Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof height. Units in mph.
· direction_i = scalar = indicates orientation of the wind (direction: 1-8)
· Areas = Matrix = Matrix identifying the total area of each sheathing panel on the Main Roof Regions. Units are ft^2.
· Areas_Hip	= Matrix = Matrix identifying the total area of each sheathing panel on the Hip Regions. Units are ft^2.
· Area_zone# = Matrix = Summation of the respective zone matrices (Main roof area + Overhang, where # = 1-3) Units are ft^2.
· Area_Zone_#_Sheathing_Hip_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
· Area_Zone_#_Sheathing_Overhang Hip_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
· Area_Zone_#_Sheathing_Main_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
· Area_Zone_#_Sheathing_Overhang_Main_## = Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
· m	=Scalar = index for the Velocity vector.
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof
· Number_of_Rows_Hip = scalar = indicates the number of rows of sheathing on one face of the roof
· Number_of_Sheathing_Eave = scalar = Indicates the number of sheathing along the eave of the roof Main Roof Region.
· Number_of_Sheathing_Ridge = scalar = Indicates the number of sheathing along the ridge of the roof Main Roof Region.
· Sheathing_per_Row = Vector = Indicates the number of sheathing panels present in a specific row in the main roof regions.
· Sheathing_per_Row_Hip = Vector = Indicates the number of sheathing panels present in a specific row in the hip regions. 		
· Width_of_Sheathing_Main = Vector = Indicates the width of sheathing panels present in a specific row in the main roof regions. Units are ft.
· Width_of_Sheathing_Hip = Vector = Indicates the width of sheathing panels present in a specific row in the hip regions. Units are ft.
· capacity_sheathing_Hip_# = Matrix = contains the randomly assigned capacity of each of the sheathing panels in the hip regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows_Hip by Number_of_Rows_Hip. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf.
· capacity_sheathing_Main_# = Matrix = contains the randomly assigned capacity of each of the sheathing panels in the main roof regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows by Number_of_Sheathing_Eave. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf.
Output:
· percent_damage_Sheathing = Scalar = Output of the total percentage of sheathing loss from the roof due to the wind event.
· percent_damage_Sheathing_Overhang = Scalar = Output of the percentage of sheathing loss from the eave of roof due to the wind event.
· percent_damage_Sheathing_Interior = Scalar = Output of the percentage of sheathing loss from interior region of the roof. Interior sheathing panels refer to sheathing that is not along the eave of the roof.
· Failure_Ident_Sheathing_Hip_# = Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Ident_Sheathing_Main_# = Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
· Failure_Load_Sheathing_Hip_# = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading. (# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Load_Sheathing_Main_# = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading.(# = 1 or 2 is used in the identification of the particular Main Roof Region)

Sheathing_Loading_Failure_Hip_New_Approach.m
Description:
· This function is used by MAIN_DRIVER to assign the probabilistic loading for the sheathing panels on the house. Capacities of the roof cover are compared to the randomized loading values. Through this comparison, failure to the sheathing panels can be determined.
Input:
· Length = scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
· Width = scalar = the shorter of the linear dimensions of the rectangular roof area. Units are ft.
· RoofSlope	= scalar = pitch of the roof from the eave to the ridge (example: 6/12)
· EnclosureCondition = indicator of the enclosure of the building (‘O’ for Open, ‘P’ for Partially Enclosed and ‘E’ Fully Enclosed, which essentially effects the interior pressure coefficient for the building)
· Velocity = Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof height. Units in mph.
· direction_i = scalar = indicates orientation of the wind (direction: 1-8)
· Areas = Matrix = Matrix identifying the total area of each sheathing panel on the Main Roof Regions. Units are ft^2.
· Areas_Hip	= Matrix = Matrix identifying the total area of each sheathing panel on the Hip Regions. Units are ft^2.
· Area_zone# = Matrix = Summation of the respective zone matrices (Main roof area + Overhang, where # = 1-3) Units are ft^2.
· Area_Zone_#_Sheathing_Hip_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
· Area_Zone_#_Sheathing_Overhang Hip_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
· Area_Zone_#_Sheathing_Main_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
· Area_Zone_#_Sheathing_Overhang_Main_## = Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
· m =Scalar = index for the Velocity vector.
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof.
· Number_of_Rows_Hip = Scalar = indicates the number of rows of sheathing on one face of the roof.
· Number_of_Sheathing_Eave = scalar = Indicates the number of sheathing along the eave of the roof Main Roof Region.
· Number_of_Sheathing_Ridge = scalar = Indicates the number of sheathing along the ridge of the roofMain Roof Region.
· Sheathing_per_Row = Vector = Indicates the number of sheathing panels present in a specific rowin the main roof regions
· Sheathing_per_Row_Hip = Vector = Indicates the number of sheathing panels present in a specific row in the hip regions.	
· Width_of_Sheathing_Main = Vector = Indicates the width of sheathing panels present in a specific row in the main roof regions. Units are ft.
· Width_of_Sheathing_Hip = Vector = Indicates the width of sheathing panels present in a specific row in the hip regions. Units are ft.
· capacity_sheathing_Hip_# = Matrix = contains the randomly assigned capacity of each of the sheathing panels in the hip regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows_Hip by Number_of_Rows_Hip. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf.
· capacity_sheathing_Main_# = Matrix = contains the randomly assigned capacity of each of the sheathing panels in the main roof regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows by Number_of_Sheathing_Eave. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf.
Output:
· percent_damage_Sheathing = Scalar = Output of the total percentage of sheathing loss from the roof due to the wind event.
· percent_damage_Sheathing_Overhang = Scalar = Output of the percentage of sheathing loss from the eave of roof due to the wind event.
· percent_damage_Sheathing_Interior = Scalar = Output of the percentage of sheathing loss from interior region of the roof. Interior sheathing panels refer to sheathing that is not along the eave of the roof.
· Failure_Ident_Sheathing_Hip_# = Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Ident_Sheathing_Main_# = Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
· Failure_Load_Sheathing_Hip_# = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading.(# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Load_Sheathing_Main_# = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading.(# = 1 or 2 is used in the identification of the particular Main Roof Region)

r2w_Loading_Failure_Gable_New_Approach.m
Description:
· This function is used by MAIN_DRIVER to assign the probabilistic loading for the roof to wall connections on the house. Capacities of the roof sheathing are compared to the randomized loading values. Through this comparison, failure to the sheathing panels can be determined.
Input:
· Length = scalar = the longer of the horizontal linear dimensions of the rectangular roof area. Units are ft.
· Width = scalar = the shorter of the horizontal linear dimensions of the rectangular roof area. Units are ft.
· RoofSlope	= scalar = pitch of the roof from the eave to the ridge line. (example: 6/12)
· EnclosureCondition = indicator of the enclosure of the building (‘O’ for Open, ‘P’ for Partially Enclosed and ‘E’ Fully Enclosed, which essentially effects the interior pressure coefficient for the building)
· Velocity = Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof height. Units in mph.
· direction_i = scalar = indicates orientation of the wind (direction: 1-8)
· Area_Zone_#_r2w= Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone) Units are ft^2. (Area_Zone_2_r2w : Area of each panel that lies in Zone 2 boundary)
· Area_Zone_#_r2w_Overhang = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone) Units are ft^2. (Area_Zone_3_r2w_Overhang : Area of each panel that lies in Zone 3 Overhang boundary)
· m	=Scalar = index for the Velocity vector.
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof
· Number_of_Trusses_Row = scalar = Indicates the number of r2w connections along the eave of the roof.
· Number_of_Trusses_Row_Hip= scalar = Indicates the number of r2w connections along the ridge of the roof.
· Width_of_Sheathing = Vector = Indicates the width of sheathing panels present in a specific row (Length of the vector is equal to the 2*Number_of_Rows)
· Failure_Ident_Sheathing= Matrix = Identifies the sheathing panels that have failed with a value of 1. (initially a zeroes matrix which is the same size as the Length_of_Sheathing matrix)
· Failure_Load_Sheathing= Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading
· Tributary_Width = Vector = Indicates the width of the roof area that the r2w connection is influenced by. Units are ft.
· Sheathing_Equiv = Matrix = Values indicate which number of sheathing in a particular row, counting from left to right, is attached to the truss. The column location of the matrix identifies the truss being analyzed. Matrix is 2*Number_of_Rows by Number_of_Trusses_Row in size.
· r2w_cap = Matrix contains the randomly assigned capacity of each of the r2w connection in the hip regions). The size of the matrix depends on the number of trusses in the hip region and is equal to 2 by Number_of_Trusses_Row (one row for each Hip Region). Units are psf.
Output:
· Failure_Ident_Trusses= Matrix = Identifies the sheathing panels that have failed with a value of 1.
· percent_damage_r2w = Scalar = Output of the total percentage of r2w failures due to the wind event.
· Percent_Sheathing_Loss_Truss_1 = Vector = Vector identifying the number of sheathing lost along the length of each truss on Side 1 of the roof area (left side of the roof region)
· Percent_Sheathing_Loss_Truss_2 = Vector = Vector identifying the number of sheathing lost along the length of each truss on Side 2 of the roof area (right side of the roof region)

r2w_Loading_Failure_Hip_New_Approach.m
Description:
· This function is used by MAIN_DRIVER to assign the probabilistic loading for the roof to wall connections on the house. Capacities of the roof sheathing are compared to the randomized loading values. Through this comparison, failure to the sheathing panels can be determined.
Input:
· Length = scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
· Width = scalar = the shorter of the linear dimensions of the rectangular roof area. Units are ft.
· RoofSlope	= scalar = pitch of the roof from the eave to the ridge (example: 6/12)
· EnclosureCondition = indicator of the enclosure of the building (‘O’ for Open, ‘P’ for Partially Enclosed and ‘E’ Fully Enclosed, which essentially effects the interior pressure coefficient for the building)
· Velocity = Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof height. Units in mph.
· direction_i = scalar = indicates orientation of the wind (direction: 1-8)
· Area_Zone_#_r2w_Hip_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2. (Area_Zone_2_r2w_Hip_1: Area of each panel that lies in Zone 2 boundary on hip region #1)
· Area_Zone_#_r2w_Overhang Hip_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
· Area_Zone_#_r2w_Main_## = Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2. (Area_Zone_2_r2w_Main_1: Area of each panel that lies in Zone 2 boundary on main roof region #1)
· Area_Zone_#_r2w_Overhang_Main_## = Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2. (Area_Zone_3_r2w_Overhang _Main_2: Area of each panel that lies in Zone 3 Overhang boundary on main roof region #2)
· M =Scalar = index for the Velocity vector.
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof
· Number_of_Trusses_Row_Hip= Scalar = Indicates the number of r2w connections along the ridge of the Hip Region.
· Number_of_Trusses_Row = Scalar = Indicates the number of r2w connections along the eave of the Main Roof Region.
· Number_of_Rows_Hip = Scalar = indicates the number of rows of sheathing on one face of the roof
· Number_of_Sheathing_Eave = Scalar = Indicates the number of sheathing along the eave of the roof Main Roof Region.
· Number_of_Sheathing_Ridge = Scalar = Indicates the number of sheathing along the ridge of the roof Main Roof Region.
· Sheathing_per_Row = Vector = Indicates the number of sheathing panels present in a specific row in the main roof regions.
· Sheathing_per_Row_Hip = Vector = Indicates the number of sheathing panels present in a specific row in the hip regions 	
· Width_of_Sheathing = Vector = Indicates the width of sheathing panels present in a specific row in the main roof regions
· Width_of_Sheathing_Hip = Vector = Indicates the width of sheathing panels present in a specific row in the hip regions
· Failure_Ident_Sheathing_Hip_# = Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Ident_Sheathing_Main_# = Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
· Failure_Load_Sheathing_Hip_# = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Load_Sheathing_Main_# = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Main Roof Region)
· Tributary_Width = Vector = Indicates the width of the roof area that the r2w connection is influenced by on the main roof regions. Units are ft.
· Tributary_Width _Hip = Vector = Indicates the width of the roof area that the r2w connection is influenced by on the hip regions. Units are ft.
· Sheathing_Equiv= Matrix = Values indicate which number of sheathing in a particular row, counting from left to right, is attached to the truss on the Main Roof Region. The column location of the matrix identifies the truss being analyzed. Matrix is Number_of_Rows by Number_of_Trusses_Row in size.
· Sheathing_Equiv _Hip= Matrix = Values indicate which number of sheathing in a particular row, counting from left to right, is attached to the truss on the Hip Region. Matrix is Number_of_Rows_Hip by Number_of_Trusses_Row_Hip in size.	
· r2w_cap_Hip = Matrix contains the randomly assigned capacity of each of the r2w connection in the hip regions . The size of the matrix depends on the number of trusses in the hip region and is equal to 2 by Number_of_Trusses_Row_Hip (one row for each Hip Region). Units are psf.
· r2w_cap_Main = Matrix contains the randomly assigned capacity of each of the r2w connection in the main roof regions. The size of the matrix depends on the number of trusses in the main roof region and is equal to 2 by Number_of_Trusses_Row (one row for each Main Roof Region). Units are psf.
Output:
· percent_damage_r2w = Scalar = Output of the total percentage of r2w failures due to the wind event.

WALLSWINDSPEEDRANDOMIZED.m
Description:
· This function randomizes the mean wind speeds (those that were converted from a height of 10 meters to the height of every story) for the two types of wall sheathing, those located in the main story space and those located in the inner story space.
Input:
· Velocity = a scalar describing the current speed being analyzed.
· Mean Wind Speeds = matrices containing the mean wind speed at the height that the matrix index maps to the building’s face. These values are converted from the wind speed measured at a height of 10 meters (33 feet).
· WindSpeeds_mean_MainStory (matrix size = # of stories by 1)
· WindSpeeds_mean_InnerStory (matrix size = # of stories by 1)
· WindSpeeds_mean_GableEnd (matrix size = 1 by # of sheathing panels that horizontally fit in the gable end)
· WindSpeeds_mean_MeanRoofHeight (a scalar)
· COV_ WindSpeeds = a scalar describing the coefficient of variation for the wind speeds, a scalar defined by the user.
· TotalNumberofStories = a scalar describing the total number of stories in the building.
· NoofWindSpeeds = a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· sheetsinGableEnd = a scalar describing the number of sheathing panels that would fit in the gable end if it had no openings.
· RoofType = a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
Output:
· Randomized Wind Speeds = matrices containing the randomized wind speeds acting at the height of the particular components they are affecting (matrix size = # of stories by 1).
· WindSpeeds_MainStory_Walls
· WindSpeeds_InnerStory_Walls
· WindSpeeds_GableEnd_Walls
· WindSpeeds_MeanRoofHeight

WALL_GCpe_MINUS_GCpi.m
Description: This function determines the value for the superimposed external and internal pressure coefficients for the walls and gable ends of the building. The external pressure coefficients are functions of the wind direction and the location of the wall (i.e. windward walls have positive external pressure coefficients, while leeward or side walls have negative pressure coefficients). The superimposed values obtained will later be randomized.
Input:
· direction_i = scalar = indicates orientation of the wind (direction: 1-8)
· RoofType :		= Identifies the type of roof system used, “Gable” or “Hip” Roof.
· sheetsinLongSide:	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide:	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· SheathingPanelsHorizontallyAcrossGableEnd:	= the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
· SheathingPanelsVerticallyAcrossGableEnd:	= the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
· TotalNumberofStories:	= a scalar describing the total number of stories present in a building.
· GCpi: = A vector whose length is equal to the number of floors of the building. The internal pressure is determined by the opening created by wall sheathing and window damages.
· GCpi_Attic: = A scalar indicating the internal pressure of the attic space
· Weighted External Pressure Coefficients:	= a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
· LongSideWeighted_GCp_POSITIVE_INNER
· LongSideWeighted_GCp_NEGATIVE_INNER
· LongSideWeighted_GCp_POSITIVE_MAIN
· LongSideWeighted_GCp_NEGATIVE_MAIN
· ShortSideWeighted_GCp_POSITIVE_INNER
· ShortSideWeighted_GCp_NEGATIVE_INNER
· ShortSideWeighted_GCp_POSITIVE_MAIN
· ShortSideWeighted_GCp_NEGATIVE_MAIN
· ShortSideWeighted_GCp_POSITIVE_GABLEEND
· ShortSideWeighted_GCp_NEGATIVE_GABLEEND
Output:
· Resultant Pressure Coefficient: 	= a matrix containing the resultant (external + internal) pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
· GCpcombinedintandextMAINLongSide1
· GCpcombinedintandextMAINLongSide2
· GCpcombinedintandextINNERLongSide1
· GCpcombinedintandextINNERLongSide2
· GCpcombinedintandextMAINShortSide1
· GCpcombinedintandextMAINShortSide2
· GCpcombinedintandextINNERShortSide1
· GCpcombinedintandextINNERShortSide2
· GCpcombinedintandextGABLEENDShortSide1
· GCpcombinedintandextGABLEENDShortSide2
· External Pressure Coefficients:	= a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
· ShortSideWeighted_GCp_NEGATIVE_GABLEEND3D
· ShortSideWeighted_GCp_POSITIVE_GABLEEND3D

WALLSHEETPRESSURECOEFFICIENTSRANDOMIZED.m
Description:
· This function randomizes the superimposed, weighted pressure coefficients and stores them in matrices corresponding to particular faces of the building. The indexes of entries in the matrices map the locations (horizontal and vertical location) of particular randomized pressure coefficients in a given wall face.
Input:
· RoofType = a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
· SheathingPanelsHorizontallyAcrossGableEnd:	= the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
· SheathingPanelsVerticallyAcrossGableEnd:	= the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
· sheetsinLongSide:	= the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide:	= the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· TotalNumberofStories:	= a scalar.
· NoofWindSpeeds:	= a scalar, it is the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· COV_GCpsWalls:	= a scalar
· Resulting Pressure Coefficient Matrices:	= the matrices containing the superimposed values for the external and internal pressure coefficients (matrix size = # of stories by # of wall sheathing panels on that wall).
· GCpcombinedintandextMAINLongSide
· GCpcombinedintandextINNERLongSide
· GCpcombinedintandextMAINShortSide
· GCpcombinedintandextINNERShortSide
· GCpcombinedintandextGABLEENDShortSide
Output:
· Final Pressure Coefficients:	= a matrix containing the final superimposed pressure coefficients for every sheathing panel in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
· GCpFinalMainStoryLongSide
· GCpFinalMainStoryShortSide
· GCpFinalInnerStoryLongSide
· GCpFinalInnerStoryShortSide
· GCpFinalGableEndShortSide

EXTONLYWALLSHEETPRESSURECOEFFICIENTSRANDOMIZED.m
Description: this function randomizes the superimposed, weighted pressure coefficients and stores them in matrices corresponding to particular faces of the building. The indexes of entries in the matrices map the locations (horizontal and vertical location) of particular randomized pressure coefficients in a given wall face.
Input:	
· RoofType: = a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
· sheetsinLongSide:	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide:	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· SheathingPanelsHorizontallyAcrossGableEnd:	= the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
· SheathingPanelsVerticallyAcrossGableEnd:	= the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
· TotalNumberofStories:	= a scalar describing the total number of stories in a building.
· COV_GCpsWalls:	= a scalar describing the coefficient of variation for the pressure coefficients.
· Weighted External Pressure Coefficients:	= a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
· LongSideWeighted_GCp_POSITIVE_INNER
· LongSideWeighted_GCp_NEGATIVE_INNER
· LongSideWeighted_GCp_POSITIVE_MAIN
· LongSideWeighted_GCp_NEGATIVE_MAIN
· ShortSideWeighted_GCp_POSITIVE_INNER
· ShortSideWeighted_GCp_NEGATIVE_INNER
· ShortSideWeighted_GCp_POSITIVE_MAIN
· ShortSideWeighted_GCp_NEGATIVE_MAIN
· ShortSideWeighted_GCp_POSITIVE_GABLEEND
· ShortSideWeighted_GCp_NEGATIVE_GABLEEND
Output:
· Final External Pressure Coefficients:	= a matrix containing the final external pressure coefficients for every sheathing panel in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
· GCpExternalFinalMainStoryLongSide
· GCpExternalFinalInnerStoryLongSide
· GCpExternalFinalMainStoryShortSide
· GCpExternalFinalInnerStoryShortSide
· GCpExternalFinalGableEndShortSide

WINDOWLOADER.m
Description:
· This function calculates the loads on the glazed components throughout the building's height for every wall. It uses the randomized final pressure coefficient values and wind speeds at the corresponding story height to determine the pressure on the corresponding glazed component. The code does not model any glazed components in the gable end zone, glazed components are only modeled in the individual stories. It is assumed that the centroid of the window coincides with the centroid of the main story zone.
Input:
· NoofWindSpeeds = a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· sheetsinLongSide	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· Final Pressure Coefficients = a matrix containing the final superimposed pressure coefficients for every location in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
· GCpFinalMainStoryLongSide
· GCpFinalMainStoryShortSide
· GCpFinalInnerStoryLongSide
· GCpFinalInnerStoryShortSide
· GCpFinalGableEndShortSide
· Randomized Wind Speeds = matrices containing the randomized wind speeds acting at the height of the particular components they are affecting (matrix size = # of stories by 1).
· WindSpeeds_MainStory_Walls
· Glazed Component Mappers = matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
· EntryDoorMapLongSide13D
· EntryDoorMapLongSide23D
· EntryDoorMapShortSide13D
· EntryDoorMapShortSide23D
· SlidingDoorMapLongSide13D
· SlidingDoorMapLongSide23D
· SlidingDoorMapShortSide13D
· SlidingDoorMapShortSide23D
· WindowMapLongSide13D
· WindowMapLongSide23D
· WindowMapShortSide13D
· WindowMapShortSide23D
Output:
· Load Matrices = matrices containing the loading (in psf) for each window on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· Load_EntryDoors_LongSide1
· Load_EntryDoors_LongSide2
· Load_EntryDoors_ShortSide1
· Load_EntryDoors_ShortSide2
· Load_SlidingDoors_LongSide1
· Load_SlidingDoors_LongSide2
· Load_SlidingDoors_ShortSide1
· Load_SlidingDoors_ShortSide2
· Load_Windows_LongSide1
· Load_Windows_LongSide2
· Load_Windows_ShortSide1
· Load_Windows_ShortSide2

DAMAGECOUNTERWINDOWS.m
Description:
· This function calculates which glazed components are damaged due to pressure overload, and it maps them to a matrix. The matrix’s dimensions correspond to the number of stories (the rows) and the number of glazed components along that particular wall (the columns) in the building. The maps of damaged glazed components are initialized to contain only zeros (zeros denote no damage) and wherever damage occurs the zero is replaced by a one (ones denote a damaged section). This function also outputs an updated map of the glazed components in the building. This map is a matrix whose entries contain a one if the glazed component corresponding to that entry is still present or a zero if that component has failed. There is a matrix for each type of glazed component.
Input:
· Capacity Matrices = matrices containing the randomized capacities (in psf) for each glazed component on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· EntryDoorsLongSide1Capacity3D
· EntryDoorsLongSide2Capacity3D
· EntryDoorsShortSide1Capacity3D
· EntryDoorsShortSide2Capacity3D
· SlidingDoorsLongSide1Capacity3D
· SlidingDoorsLongSide2Capacity3D
· SlidingDoorsShortSide1Capacity3D
· SlidingDoorsShortSide2Capacity3D
· WindowsLongSide1Capacity3D
· WindowsLongSide2Capacity3D
· WindowsShortSide1Capacity3D
· WindowsShortSide2Capacity3D
· Load Matrices = matrices containing the loading (in psf) for each window on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· Load_EntryDoors_LongSide1
· Load_EntryDoors_LongSide2
· Load_EntryDoors_ShortSide1
· Load_EntryDoors_ShortSide2
· Load_SlidingDoors_LongSide1
· Load_SlidingDoors_LongSide2
· Load_SlidingDoors_ShortSide1
· Load_SlidingDoors_ShortSide2
· Load_Windows_LongSide1
· Load_Windows_LongSide2
· Load_Windows_ShortSide1
· Load_Windows_ShortSide2
· Glazed Component Mappers = matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a panel while a 0 denotes the absence of one.
· EntryDoorMapLongSide13D
· EntryDoorMapLongSide23D
· EntryDoorMapShortSide13D
· EntryDoorMapShortSide23D
· SlidingDoorMapLongSide13D
· SlidingDoorMapLongSide23D
· SlidingDoorMapShortSide13D
· SlidingDoorMapShortSide23D
· WindowMapLongSide13D
· WindowMapLongSide23D
· WindowMapShortSide13D
· WindowMapShortSide23D
· Glazed Component Damage Mappers = matrices identifying the damage of the glazed component (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes a damaged panel while a 0 denotes an undamaged one.
· MapofImpactDamagedEntryDoorsLongSide1
· MapofImpactDamagedEntryDoorsLongSide2
· MapofImpactDamagedEntryDoorsShortSide1
· MapofImpactDamagedEntryDoorsShortSide2
· MapofImpactDamagedSLDoorsLongSide1
· MapofImpactDamagedSLDoorsLongSide2
· MapofImpactDamagedSLDoorsShortSide1
· MapofImpactDamagedSLDoorsShortSide2
· MapofImpactDamagedWindowsLongSide1
· MapofImpactDamagedWindowsLongSide2
· MapofImpactDamagedWindowsShortSide1
· MapofImpactDamagedWindowsShortSide2
Output:
· Glazed Component Mappers = the output is the input after updating.
· Glazed Component Damage Mappers	= the output is the input after updating.

Variables_A_B_D_Bakers.m
Description: this function calculates the variables A, B, and D for the missile model and stores which shingles ended up not failing so that they become the ones subject to wind in the subsequent wave of loading.
Input:
· ShingleCapacityImpactModule:	= A vector of randomized shingle capacities
· AtempSurvivingShingles: = A scalar of the number of shingles still attached to roof for subsequent damage analysis ran during the iterative damage loop.
· mn_GCp_roof: = A scalar of the mean roof pressure value
· COV_GCpsRoof: = A scalar of the coefficient of variation of the roof pressure
· Hurr_Red_Factor: = A scalar of the density reduction factor of air density for hurricanes
· ShingleDensity:	= A vector of randomized shingle densities
· Thickness:	= A vector of randomized shingle thicknesses
· I:	= A vector of randomized of values of variable I (fixing strength parameter)
· CF:	= A vector of randomized of values of variable CF (Force Coefficient)
· Gravity: = A scalar value representing the gravitational constant
· AirDensity: = A scalar value of the air density during a hurricane event
· J:	= A vector of randomized of values of variable J (the fraction of the wind velocity that the debris can achieve before striking an object or hitting the ground)
· Req_Travel:	= A scalar value identifying the distance required for the debris to strike the building
· ShingleLength:	= A vector of randomized shingle lengths
· ShingleWidth:	= A vector of randomized shingle widths
· mom_resistance:	= A vector of randomized moment resistance of the glazing
· direction_i:	= a scalar describing the wind’s direction of approach, it can be any integer between 1 and 8. A cornering wind is denoted by 2, 4, 6 or 8, wind hitting the short side of the building is denoted by 3 or 7, while wind hitting the building’s long side is denoted by 1 or 5.
· Velocity: 	= A scalar describing the current speed being analyzed.
· WindSpeeds_mean_MeanRoofHeight: = Amatrices containing the mean wind speed at the height that the matrix index maps to the building’s face. These values are converted from the wind speed measured at a height of 10 meters (33 feet).
· COV_ WindSpeeds:	= A scalar describing the coefficient of variation for the wind speeds, a scalar defined by the user.
· MeanRoofHeight: = A scalar representing the height above ground level at their respective positions
Output:
· Avar:	= a scalar, the number of potential missile objects that have become airborne.
· Bvar:	= a scalar, the fraction of the airborne missiles that actually hit the building.
· Dvar:	= a scalar, the fraction of the missile that hit the house that have enough momentum to cause damage.
· AtempSurvivingShingles: = A scalar of the number of shingles still attached to roof for subsequent damage analysis ran during the iterative damage loop

WINDOWSPROBABILITYOFIMPACTFAILURE.m
Description:
· This function is related to the modeling of debris impacts. This function generates the matrices that contain the probability of debris damaging a glazed component. The matrices map the glazed components throughout the building; the rows denote the story in which the glazed component is located and the columns denote the horizontal position of the component across every story. An alternate way to think of the probability of debris damaging a glazed component is to see it as the ‘impact load’ imparted on the component. When the code performs the check for the damage it looks for the components for which the probability of debris damage exceeds the probability of not being damaged, thus, one can think of the probability of debris damage as the load and of the probability of not being damaged as the capacity.

The probability of debris damaging a glazed component is a function of wind speed, and the variables A, B, C, D and NA. This probability is expressed assuming rare and unrelated discrete events, as follows:

where is the probability of debris damaging a glazed component, is the wind speed, and A, B, C, D and NA are the impact model parameters.
Input:
· direction_i:		 	= scalar values that indicates the current orientation of the wind (direction: 1-8) being analyzed.
· TotalNumberofStories:	= a scalar describing the total number of stories in the building.
· NoofWindSpeeds:	= a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· sheetsinLongSide:	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide:	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· Glazed Component Mappers:	= matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
· EntryDoorMapLongSide13D
· EntryDoorMapLongSide23D
· EntryDoorMapShortSide13D
· EntryDoorMapShortSide23D
· SlidingDoorMapLongSide13D
· SlidingDoorMapLongSide23D
· SlidingDoorMapShortSide13D
· SlidingDoorMapShortSide23D
· WindowMapLongSide13D
· WindowMapLongSide23D
· WindowMapShortSide13D
· WindowMapShortSide23D
· Impact Model Parameters
· Avar:	= a scalar, the number of potential missile objects that have become airborne.
· Bvar:	= a scalar, the fraction of the airborne missiles that actually hit the building.
· The C Matrices:	= the matrices containing the fraction of area of glazing at a particular location (mapped by the matrix to a corresponding wall location) of the total wall area.
· CLongSide1Windows
· CLongSide2Windows
· CShortSide1Windows
· CShortSide2Windows
· CLongSide1SLDoor
· CLongSide2SLDoor
· CShortSide1SLDoor
· CShortSide2SLDoor
· CLongSide1EntryDoor
· CLongSide2EntryDoor
· CShortSide1EntryDoor
· CShortSide2EntryDoor
· Dvar:	= a scalar, the fraction of the missile that hit the house that have enough momentum to cause damage.
· NA:	= the number of available potential missile objects, a scalar, it is a function of the density of the neighborhood.
Output:
· Probability that debris damage a component subjected to impact analysis:	= matrices (size = # of stories by # of wall sheathing panels that could fit on the corresponding wall face).
· P_DamageWindowLongSide1
· P_DamageWindowLongSide2
· P_DamageWindowShortSide1
· P_DamageWindowShortSide2
· P_DamageEntryDoorLongSide1
· P_DamageEntryDoorLongSide2
· P_DamageEntryDoorShortSide1
· P_DamageEntryDoorShortSide2
· P_DamageSlidingDoorLongSide1
· P_DamageSlidingDoorLongSide2
· P_DamageSlidingDoorShortSide1
· P_DamageSlidingDoorShortSide2

DAMAGECOUNTERIMPACTWINDOWS.m
Description:
· This function is related to the modeling of debris impacts. This function calculates which glazed components are damaged due to impact on all the walls and it maps them to a matrix. The matrix’s dimensions correspond to the number of stories (the rows) and the number of sheathing panels along that particular wall (the columns) in the building. This function is able to determine whether or not there is glazing present at a particular location and whether that location is shared between glazing and wall sheathing. The maps of damaged glazing components are initialized to contain only zeros (zeros denote no damage or no glazing component present initially) and wherever damage occurs the zero is replaced by a one (a one denotes a damaged glazing component). This function also outputs updated maps of the glazing components in the building, which contain 1’s for glazing components that are still there and 0’s for broken or missing glazing components.
Input:
· Impact Capacity Matrices = matrices containing the randomized impact capacities for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· EntryDoorLongSide1ImpactCapacity3D
· EntryDoorLongSide2ImpactCapacity3D
· EntryDoorShortSide1ImpactCapacity3D
· EntryDoorShortSide2ImpactCapacity3D
· SlidingDoorLongSide1ImpactCapacity3D
· SlidingDoorLongSide2ImpactCapacity3D
· SlidingDoorShortSide1ImpactCapacity3D
· SlidingDoorShortSide2ImpactCapacity3D
· WindowsLongSide1ImpactCapacity3D
· WindowsLongSide2ImpactCapacity3D
· WindowsShortSide1ImpactCapacity3D
· WindowsShortSide2ImpactCapacity3D
· Impact Load Matrices = matrices containing the loading for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· P_DamageEntryDoorLongSide1
· P_DamageEntryDoorLongSide2
· P_DamageEntryDoorShortSide1
· P_DamageEntryDoorShortSide2
· P_DamageSlidingDoorLongSide1
· P_DamageSlidingDoorLongSide2
· P_DamageSlidingDoorShortSide1
· P_DamageSlidingDoorShortSide2
· P_DamageWindowLongSide1
· P_DamageWindowLongSide2
· P_DamageWindowShortSide1
· P_DamageWindowShortSide2
· Glazed Component Mappers = matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a panel while a 0 denotes the absence of one.
· EntryDoorMapLongSide13D
· EntryDoorMapLongSide23D
· EntryDoorMapShortSide13D
· EntryDoorMapShortSide23D
· SlidingDoorMapLongSide13D
· SlidingDoorMapLongSide23D
· SlidingDoorMapShortSide13D
· SlidingDoorMapShortSide23D
· WindowMapLongSide13D
· WindowMapLongSide23D
· WindowMapShortSide13D
· WindowMapShortSide23D
· Glazed Component Damage Mappers = matrices identifying the damage of the glazed component (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes a damaged panel while a 0 denotes an undamaged one.
· MapofImpactDamagedEntryDoorsLongSide1
· MapofImpactDamagedEntryDoorsLongSide2
· MapofImpactDamagedEntryDoorsShortSide1
· MapofImpactDamagedEntryDoorsShortSide2
· MapofImpactDamagedSLDoorsLongSide1
· MapofImpactDamagedSLDoorsLongSide2
· MapofImpactDamagedSLDoorsShortSide1
· MapofImpactDamagedSLDoorsShortSide2
· MapofImpactDamagedWindowsLongSide1
· MapofImpactDamagedWindowsLongSide2
· MapofImpactDamagedWindowsShortSide1
· MapofImpactDamagedWindowsShortSide2
· Output:
· Glazed Component Mappers = the output is the input after updating
· Glazed Component Damage Mappers = the output is the input after updating

WALLLOADER.m
Description:
· This function calculates and maps the loads on the wall sheathing panels throughout the building's height for every face of the building. It uses the randomized final pressure coefficient values and the wind speed at the corresponding story height to determine the pressure load on the corresponding panel.
Input:
· RoofType	= a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
· sheetsinLongSide	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· sheetsinGableEnd	= a scalar describing the number of sheathing panels that would fit in the gable end if it had no openings, a scalar.
· NoofWindSpeeds	= a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· Velocity = a scalar describing the current speed being analyzed.
· Final Pressure Coefficients = a matrix containing the final superimposed pressure coefficients for every sheathing panel in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
· GCpFinalMainStoryLongSide
· GCpFinalMainStoryShortSide
· GCpFinalInnerStoryLongSide
· GCpFinalInnerStoryShortSide
· GCpFinalGableEndShortSide
· Randomized Wind Speeds = matrices containing the randomized wind speeds acting at the height of the particular components they are affecting (matrix size = # of stories by 1).
· WindSpeeds_MainStory_Walls
· WindSpeeds_InnerStory_Walls
· WindSpeeds_GableEnd_Walls
· Wall Sheathing Panel Mappers = matrices identifying the presence or absence of a wall sheathing panels at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
· MainStorySheetMapLongSide13D
· MainStorySheetMapLongSide23D
· InnerStorySheetMapLongSide13D
· InnerStorySheetMapLongSide23D
· MainStorySheetMapShortSide13D
· MainStorySheetMapShortSide23D
· InnerStorySheetMapShortSide13D
· InnerStorySheetMapShortSide23D
· GableEndSheetMapShortSide13D
· GableEndSheetMapShortSide23D
Output:
· Load Matrices = matrices containing the loading (in psf) for each wall sheathing panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· Load_MainStorySheets_LongSide1
· Load_MainStorySheets_LongSide2
· Load_InnerStorySheets_LongSide1
· Load_InnerStorySheets_LongSide2
· Load_MainStorySheets_ShortSide1
· Load_MainStorySheets_ShortSide2
· Load_InnerStorySheets_ShortSide1
· Load_InnerStorySheets_ShortSide2
· Load_GableEndSheets_ShortSide1
· Load_GableEndSheets_ShortSide2

DAMAGECOUNTERWALLSHEETS.m:
Description:
· This function calculates which sheathing panels are damaged on all the walls, and it maps them to a matrix. The matrix’s dimensions correspond to the number of stories (the rows) and the number of sheathing panels along that particular wall (the columns) in the building. The maps of damaged sheathing panels are initialized to contain only zeros (zeros denote no damage) and wherever damage occurs the zero is replaced by a one (ones denote a damaged panel). This function also outputs an updated map of the sheathing panels in the building (A matrix containing ones for sheathing panels still present at a given location or a zero for sheathing panels that have failed). This function also removes any wall cover located wherever wall sheathing panels have failed.
Input:
· RoofType = a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
· Capacity Matrices = matrices containing the randomized capacities (in psf) for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· MainWallSheetsLongSide1SheetCapacity3D
· MainWallSheetsLongSide2SheetCapacity3D
· InnerWallSheetsLongSide1SheetCapacity3D
· InnerWallSheetsLongSide2SheetCapacity3D
· MainWallSheetsShortSide1SheetCapacity3D
· MainWallSheetsShortSide2SheetCapacity3D
· InnerWallSheetsShortSide1SheetCapacity3D
· InnerWallSheetsShortSide2SheetCapacity3D
· GableEndWallSheetsShortSide1SheetCapacity3D
· GableEndWallSheetsShortSide2SheetCapacity3D
· Load Matrices = matrices containing the loading (in psf) for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· Load_MainStorySheets_LongSide2
· Load_InnerStorySheets_LongSide1
· Load_InnerStorySheets_LongSide2
· Load_MainStorySheets_ShortSide1
· Load_MainStorySheets_ShortSide2
· Load_InnerStorySheets_ShortSide1
· Load_InnerStorySheets_ShortSide2
· Load_GableEndSheets_ShortSide1
· Load_GableEndSheets_ShortSide2
· Component Mappers = matrices identifying the presence or absence of a component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a component while a 0 denotes the absence of one.
· Wall Cover Sections:
· MainStoryWallCoverMapLongSide13D
· MainStoryWallCoverMapLongSide23D
· InnerStoryWallCoverMapLongSide13D
· InnerStoryWallCoverMapLongSide23D
· MainStoryWallCoverMapShortSide13D
· MainStoryWallCoverMapShortSide23D
· InnerStoryWallCoverMapShortSide13D
· InnerStoryWallCoverMapShortSide23D
· GableEndWallCoverMapShortSide13D
· GableEndWallCoverMapShortSide23D
· Wall Sheathing Panels:
· MainStorySheetMapLongSide13D
· MainStorySheetMapLongSide23D
· InnerStorySheetMapLongSide13D
· InnerStorySheetMapLongSide23D
· MainStorySheetMapShortSide13D
· MainStorySheetMapShortSide23D
· InnerStorySheetMapShortSide13D
· InnerStorySheetMapShortSide23D
· GableEndSheetMapShortSide13D
· GableEndSheetMapShortSide23D
· Component Damage Mappers = matrices identifying the damage of components (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes a damaged component while a 0 denotes an undamaged one.
· Wall Cover Sections:
· MapofDamagedWallCover_MainWallsLongSide1
· MapofDamagedWallCover_MainWallsLongSide2
· MapofDamagedWallCover_InnerWallsLongSide1
· MapofDamagedWallCover_InnerWallsLongSide2
· MapofDamagedWallCover_MainWallsShortSide1
· MapofDamagedWallCover_MainWallsShortSide2
· MapofDamagedWallCover_InnerWallsShortSide1
· MapofDamagedWallCover_InnerWallsShortSide2
· MapofDamagedWallCover_GableEndWallsShortSide1
· MapofDamagedWallCover_GableEndWallsShortSide2
· Wall Sheathing Panels:
· MapofDamagedSheets_MainWallsLongSide1
· MapofDamagedSheets_MainWallsLongSide2
· MapofDamagedSheets_InnerWallsLongSide1
· MapofDamagedSheets_InnerWallsLongSide2
· MapofDamagedSheets_MainWallsShortSide1
· MapofDamagedSheets_MainWallsShortSide2
· MapofDamagedSheets_InnerWallsShortSide1
· MapofDamagedSheets_InnerWallsShortSide2
· MapofDamagedSheets_GableEndWallsShortSide1
· MapofDamagedSheets_GableEndWallsShortSide2
Output:
· Component Mappers = the output is the input after updating
· Component Damage Mappers = the output is the input after updating

WALLCOVERLOADER.m
Description:
· This function calculates and maps the loads on the wall cover throughout the building's height for every face of the building. It uses the randomized final pressure coefficient values and the wind speed at the corresponding story height to determine the pressure load on the corresponding wall cover section.
Input:
· RoofType	= a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
· sheetsinLongSide	= a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
· sheetsinShortSide 	= a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
· sheetsinGableEnd	= a scalar describing the number of sheathing panels that would fit in the gable end if it had no openings, a scalar.
· NoofWindSpeeds = a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
· Velocity = a scalar describing the current speed being analyzed.
· Final External Pressure Coefficients = a matrix containing the final external pressure coefficients for every location in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
· GCpExternalFinalMainStoryLongSide
· GCpExternalFinalInnerStoryLongSide
· GCpExternalFinalMainStoryShortSide
· GCpExternalFinalInnerStoryShortSide
· GCpExternalFinalGableEndShortSide
· Randomized Wind Speeds = matrices containing the randomized wind speeds acting at the height of the particular components they are affecting (matrix size = # of stories by 1).
· WindSpeeds_MainStory_Walls
· WindSpeeds_InnerStory_Walls
· WindSpeeds_GableEnd_Walls
· Wall Covering Mappers = matrices identifying the presence or absence of a wall cover section at a particular location on its corresponding wall (matrix size = # of stories by # of wall cover sections on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a cover section while a 0’s denote the absence of one).
· MainStoryWallCoverMapLongSide13D
· MainStoryWallCoverMapLongSide23D
· InnerStoryWallCoverMapLongSide13D
· InnerStoryWallCoverMapLongSide23D
· MainStoryWallCoverMapShortSide13D
· MainStoryWallCoverMapShortSide23D
· InnerStoryWallCoverMapShortSide13D
· InnerStoryWallCoverMapShortSide23D
· GableEndWallCoverMapShortSide13D
· GableEndWallCoverMapShortSide23D
Output:
· Load Matrices = matrices containing the loading (in psf) for each wall cover section on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· Load_MainStoryWallCover_LongSide1
· Load_MainStoryWallCover_LongSide2
· Load_InnerStoryWallCover_LongSide1
· Load_InnerStoryWallCover_LongSide2
· Load_MainStoryWallCover_ShortSide1
· Load_MainStoryWallCover_ShortSide2
· Load_InnerStoryWallCover_ShortSide1
· Load_InnerStoryWallCover_ShortSide2
· Load_GableEndWallCover_ShortSide1
· Load_GableEndWallCover_ShortSide2

DAMAGECOUNTERWALLCOVER.m
Description:
· This function calculates which sections of wall cover are damaged on all the walls, and it maps them to a matrix. The matrix’s dimensions correspond to the number of stories (the rows) and the number of sheets along that particular wall (the columns) in the building. The maps of damaged wall cover sections are initialized to contain only zeros (zeros denote no damage) and wherever damage occurs the zero is replaced by a one (ones denote a damaged section). This function also outputs an updated map of the wall cover sections in the building. This map is a matrix whose entries contain a one if the section corresponding to that entry is still present or a zero if that section has failed.
Input:
· RoofType = a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
· Capacity Matrices = matrices containing the randomized capacities (in psf) for each wall cover section on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· MainWallCoverLongSide1Capacity3D
· MainWallCoverLongSide2Capacity3D
· InnerWallCoverLongSide1Capacity3D
· InnerWallCoverLongSide2Capacity3D
· MainWallCoverShortSide1Capacity3D
· MainWallCoverShortSide2Capacity3D
· InnerWallCoverShortSide1Capacity3D
· InnerWallCoverShortSide2Capacity3D
· GableEndWallCoverShortSide1Capacity3D
· GableEndWallCoverShortSide2Capacity3D
· Load Matrices = matrices containing the loading (in psf) for each wall cover section on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· Load_MainStoryWallCover_LongSide1
· Load_MainStoryWallCover_LongSide2
· Load_InnerStoryWallCover_LongSide1
· Load_InnerStoryWallCover_LongSide2
· Load_MainStoryWallCover_ShortSide1
· Load_MainStoryWallCover_ShortSide2
· Load_InnerStoryWallCover_ShortSide1
· Load_InnerStoryWallCover_ShortSide2
· Load_GableEndWallCover_ShortSide1
· Load_GableEndWallCover_ShortSide2
· Wall Covering Mappers = matrices identifying the presence or absence of a wall cover section at a particular location on its corresponding wall (matrix size = # of stories by # of wall cover sections on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a cover section while a 0 denotes the absence of one.
· MainStoryWallCoverMapLongSide13D
· MainStoryWallCoverMapLongSide23D
· InnerStoryWallCoverMapLongSide13D
· InnerStoryWallCoverMapLongSide23D
· MainStoryWallCoverMapShortSide13D
· MainStoryWallCoverMapShortSide23D
· InnerStoryWallCoverMapShortSide13D
· InnerStoryWallCoverMapShortSide23D
· GableEndWallCoverMapShortSide13D
· GableEndWallCoverMapShortSide23D
· Wall Cover Damage Mappers = matrices identifying the damage of the wall cover sections (matrix size = # of stories by # of wall cover sections on that wall). There is one matrix for each story section and for each wall, and a 1 denotes a damaged or missing section while a 0 denotes an undamaged one.
· MapofDamagedWallCover_MainWallsLongSide1
· MapofDamagedWallCover_MainWallsLongSide2
· MapofDamagedWallCover_InnerWallsLongSide1
· MapofDamagedWallCover_InnerWallsLongSide2
· MapofDamagedWallCover_MainWallsShortSide1
· MapofDamagedWallCover_MainWallsShortSide2
· MapofDamagedWallCover_InnerWallsShortSide1
· MapofDamagedWallCover_InnerWallsShortSide2
· MapofDamagedWallCover_GableEndWallsShortSide1
· MapofDamagedWallCover_GableEndWallsShortSide2
Output:
· Wall Covering Mappers = the output is the input after updating
· Wall Cover Damage Mappers = the output is the input after updating

ENCLOSURECONDITIONUPDATER_GABLE.m
Description: This function uses ASCE 7-05 conditions for the building enclosure to determine the type of enclosure for a particular story and attic of a gable roof structure. It calculates the open area for each story and for the attic and determines the type of enclosure. It is initially assumed that every story and the attic are enclosed (there is no breach) and as the analysis progresses the enclosure condition for each story and attic is updated. A given story or the attic can be enclosed ‘E’, partially enclosed ‘P’, or open ‘O’.
Input:
· direction_i:	= a scalar describing the wind’s direction of approach, it can be any integer between 1 and 8. A cornering wind is denoted by 2, 4, 6 or 8, wind hitting the short side of the building is denoted by 3 or 7, while wind hitting the building’s long side is denoted by 1 or 5.
· Building Properties:	= parameters describing the building properties.
· RoofType:	= a string array describing the geometry of the roof, it can be ‘Gable’ or ‘Hip’.
· RoofSlope:	= a scalar describing the roof slope
· EaveHeight:	= a scalar describing the height of the roof at the eave in feet.
· LengthFLR: = a scalar describing the building’s re-assigned floor plan length in feet.
· WidthFLR: = a scalar describing the building’s re-assigned floor plan width in feet.
· TotalNumberofStories:	= a scalar describing the total number of stories present in a building.
· EnclosureConditionAttic: = a string array containing an initial condition for the enclosure condition of the attic; it can be ‘E’, ‘P’, or ‘O’.
· EnclosureConditionAllFloors: = a matrix (rows = TotalNumberofStories, cols = 1), containing the enclosure condition (‘E’, ‘P’, or ‘O’) for every story.
· Component Area Maps:	= matrices containing the area occupied by a component in a location of a wall mapped by the matrix indexes (matrix size = # of stories by # of wall sheathing panels on that wall).
· EntryDoorAreaLongSide1
· EntryDoorAreaLongSide2
· EntryDoorAreaShortSide1
· EntryDoorAreaShortSide2
· SlidingDoorAreaLongSide1
· SlidingDoorAreaLongSide2
· SlidingDoorAreaShortSide1
· SlidingDoorAreaShortSide2
· WindowsAreaLongSide1
· WindowsAreaShortSide1
· WindowsAreaLongSide2
· WindowsAreaShortSide2
· MainAreaWallsLongSide1
· MainAreaWallsLongSide2
· InnerAreaWallsLongSide1
· InnerAreaWallsLongSide2
· MainAreaWallsShortSide1
· MainAreaWallsShortSide2
· InnerAreaWallsShortSide1
· InnerAreaWallsShortSide2
· GableEndAreaWallsShortSide1
· GableEndAreaWallsShortSide2
· Component Damage Mappers:	= matrices identifying the damage of particular components for a given wall (matrix size = # of stories by # of wall sheathing panels on that wall). A 1 denotes a damaged component while a 0 denotes an undamaged one.
· Pressure Damage:
· MapofPressureDamagedEntryDoorsLongSide1
· MapofPressureDamagedEntryDoorsLongSide2
· MapofPressureDamagedEntryDoorsShortSide1
· MapofPressureDamagedEntryDoorsShortSide2
· MapofPressureDamagedSLDoorsLongSide1
· MapofPressureDamagedSLDoorsLongSide2
· MapofPressureDamagedSLDoorsShortSide1
· MapofPressureDamagedSLDoorsShortSide2
· MapofPressureDamagedWindowsLongSide1
· MapofPressureDamagedWindowsLongSide2
· MapofPressureDamagedWindowsShortSide1
· MapofPressureDamagedWindowsShortSide2
· MapofDamagedSheets_MainWallsLongSide1
· MapofDamagedSheets_MainWallsLongSide2
· MapofDamagedSheets_InnerWallsLongSide1
· MapofDamagedSheets_InnerWallsLongSide2
· MapofDamagedSheets_MainWallsShortSide1
· MapofDamagedSheets_MainWallsShortSide2
· MapofDamagedSheets_InnerWallsShortSide1
· MapofDamagedSheets_InnerWallsShortSide2
· MapofDamagedSheets_GableEndWallsShortSide1
· MapofDamagedSheets_GableEndWallsShortSide2
· Impact Damage:
· MapofImpactDamagedEntryDoorsLongSide1
· MapofImpactDamagedEntryDoorsLongSide2
· MapofImpactDamagedEntryDoorsShortSide1
· MapofImpactDamagedEntryDoorsShortSide2
· MapofImpactDamagedSLDoorsLongSide1
· MapofImpactDamagedSLDoorsLongSide2
· MapofImpactDamagedSLDoorsShortSide1
· MapofImpactDamagedSLDoorsShortSide2
· MapofImpactDamagedWindowsLongSide1
· MapofImpactDamagedWindowsLongSide2
· MapofImpactDamagedWindowsShortSide1
· MapofImpactDamagedWindowsShortSide2
· Roof Sheathing Damages:
· Failure_Load_Sheathing_Hip_1
· Failure_Load_Sheathing_Hip_2
· Failure_Load_Sheathing_Main_1
· Failure_Load_Sheathing_Main_2
· Location Identification of Damaged Sheathing:
· Failure_Ident_Sheathing_Hip_1
· Failure_Ident_Sheathing_Hip_2
· Failure_Ident_Sheathing_Main_1
· Failure_Ident_Sheathing_Main_2
· External Pressure Coefficient Possibilities:	= scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the wind.
· GCp_zone4_POSITIVE
· GCp_zone4_NEGATIVE
· Failure_Ident_Sheathing: = Matrix = Identifies the sheathing panels that have failed with a value of 1.
· Failure_Load_Sheathing: = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading
· Area_of_Sheathing:	= a matrix comprising the area of each sheathing panel on the roof
· External Pressure Coefficients:	= a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
· ShortSideWeighted_GCp_NEGATIVE_GABLEEND3D
· ShortSideWeighted_GCp_POSITIVE_GABLEEND3D
Output:
· GCpi: = A vector whose length is equal to the number of floors of the building. The internal pressure is determined by the opening created by wall sheathing and window damages.
· GCpi_Attic: = A scalar indicating the internal pressure of the attic space.

ENCLOSURECONDITIONUPDATER_HIP.m
Description: This function uses ASCE 7-05 conditions for the building enclosure to determine the type of enclosure for a particular story and attic of a hip roof structure. It calculates the open area for each story and for the attic and determines the type of enclosure. It is initially assumed that every story and the attic are enclosed (there is no breach) and as the analysis progresses the enclosure condition for each story and attic is updated. A given story or the attic can be enclosed ‘E’, partially enclosed ‘P’, or open ‘O’.
Input:
· direction_i:	= a scalar describing the wind’s direction of approach, it can be any integer between 1 and 8. A cornering wind is denoted by 2, 4, 6 or 8, wind hitting the short side of the building is denoted by 3 or 7, while wind hitting the building’s long side is denoted by 1 or 5.
· Failure_Ident_Sheathing_Hip_# = Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Ident_Sheathing_Main_# = Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
· Failure_Load_Sheathing_Hip_# = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Load_Sheathing_Main_# = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Main Roof Region)
· Areas		= Matrix = Matrix identifying the total area of each sheathing panel on the			Main Roof Regions. Units are ft^2
· Areas_Hip	= Matrix = Matrix identifying the total area of each sheathing panel on the			Hip Regions. Units are ft^2
· Building Properties:	= parameters describing the building properties.
· RoofType:	= a string array describing the geometry of the roof, it can be ‘Gable’ or ‘Hip’.
· RoofSlope:	= a scalar describing the roof slope
· EaveHeight:	= a scalar describing the height of the roof at the eave in feet.
· LengthFLR: = a scalar describing the building’s re-assigned floor plan length in feet.
· WidthFLR: = a scalar describing the building’s re-assigned floor plan width in feet.
· TotalNumberofStories:	= a scalar describing the total number of stories present in a building.
· EnclosureConditionAttic: = a string array containing an initial condition for the enclosure condition of the attic; it can be ‘E’, ‘P’, or ‘O’.
· EnclosureConditionAllFloors: = a matrix (rows = TotalNumberofStories, cols = 1), containing the enclosure condition (‘E’, ‘P’, or ‘O’) for every story.
· Component Area Maps:	= matrices containing the area occupied by a component in a location of a wall mapped by the matrix indexes (matrix size = # of stories by # of wall sheathing panels on that wall).
· EntryDoorAreaLongSide1
· EntryDoorAreaLongSide2
· EntryDoorAreaShortSide1
· EntryDoorAreaShortSide2
· SlidingDoorAreaLongSide1
· SlidingDoorAreaLongSide2
· SlidingDoorAreaShortSide1
· SlidingDoorAreaShortSide2
· WindowsAreaLongSide1
· WindowsAreaShortSide1
· WindowsAreaLongSide2
· WindowsAreaShortSide2
· MainAreaWallsLongSide1
· MainAreaWallsLongSide2
· InnerAreaWallsLongSide1
· InnerAreaWallsLongSide2
· MainAreaWallsShortSide1
· MainAreaWallsShortSide2
· InnerAreaWallsShortSide1
· InnerAreaWallsShortSide2
· GableEndAreaWallsShortSide1
· GableEndAreaWallsShortSide2
· Component Damage Mappers:	= matrices identifying the damage of particular components for a given wall (matrix size = # of stories by # of wall sheathing panels on that wall). A 1 denotes a damaged component while a 0 denotes an undamaged one.
· Pressure Damage:
· MapofPressureDamagedEntryDoorsLongSide1
· MapofPressureDamagedEntryDoorsLongSide2
· MapofPressureDamagedEntryDoorsShortSide1
· MapofPressureDamagedEntryDoorsShortSide2
· MapofPressureDamagedSLDoorsLongSide1
· MapofPressureDamagedSLDoorsLongSide2
· MapofPressureDamagedSLDoorsShortSide1
· MapofPressureDamagedSLDoorsShortSide2
· MapofPressureDamagedWindowsLongSide1
· MapofPressureDamagedWindowsLongSide2
· MapofPressureDamagedWindowsShortSide1
· MapofPressureDamagedWindowsShortSide2
· MapofDamagedSheets_MainWallsLongSide1
· MapofDamagedSheets_MainWallsLongSide2
· MapofDamagedSheets_InnerWallsLongSide1
· MapofDamagedSheets_InnerWallsLongSide2
· MapofDamagedSheets_MainWallsShortSide1
· MapofDamagedSheets_MainWallsShortSide2
· MapofDamagedSheets_InnerWallsShortSide1
· MapofDamagedSheets_InnerWallsShortSide2
· MapofDamagedSheets_GableEndWallsShortSide1
· MapofDamagedSheets_GableEndWallsShortSide2
· Impact Damage:
· MapofImpactDamagedEntryDoorsLongSide1
· MapofImpactDamagedEntryDoorsLongSide2
· MapofImpactDamagedEntryDoorsShortSide1
· MapofImpactDamagedEntryDoorsShortSide2
· MapofImpactDamagedSLDoorsLongSide1
· MapofImpactDamagedSLDoorsLongSide2
· MapofImpactDamagedSLDoorsShortSide1
· MapofImpactDamagedSLDoorsShortSide2
· MapofImpactDamagedWindowsLongSide1
· MapofImpactDamagedWindowsLongSide2
· MapofImpactDamagedWindowsShortSide1
· MapofImpactDamagedWindowsShortSide2
· Roof Sheathing Damages:
· Failure_Load_Sheathing_Hip_1
· Failure_Load_Sheathing_Hip_2
· Failure_Load_Sheathing_Main_1
· Failure_Load_Sheathing_Main_2
· Location Identification of Damaged Sheathing:
· Failure_Ident_Sheathing_Hip_1
· Failure_Ident_Sheathing_Hip_2
· Failure_Ident_Sheathing_Main_1
· Failure_Ident_Sheathing_Main_2
· External Pressure Coefficient Possibilities:	= scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the wind.
· GCp_zone4_POSITIVE
· GCp_zone4_NEGATIVE
· Failure_Ident_Sheathing: = Matrix = Identifies the sheathing panels that have failed with a value of 1.
· Failure_Load_Sheathing: = Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading
· Area_of_Sheathing:	= a matrix comprising the area of each sheathing panel on the roof
· External Pressure Coefficients:	= a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
· ShortSideWeighted_GCp_NEGATIVE_GABLEEND3D
· ShortSideWeighted_GCp_POSITIVE_GABLEEND3D
Output:
· GCpi: = A vector whose length is equal to the number of floors of the building. The internal pressure is determined by the opening created by wall sheathing and window damages.
· GCpi_Attic: = A scalar indicating the internal pressure of the attic space.

WINDOWCAPACITIESUPDATER.m
Description:
· This function updates the glazed component’s capacities of the building at the end of the initial damage check. It zeros out the capacities of the glazed components that have failed and keeps the capacities of those components that have survived the first check.
Input:
· Glazed Component Mappers = matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
· EntryDoorMapLongSide13D
· EntryDoorMapLongSide23D
· EntryDoorMapShortSide13D
· EntryDoorMapShortSide23D
· SlidingDoorMapLongSide13D
· SlidingDoorMapLongSide23D
· SlidingDoorMapShortSide13D
· SlidingDoorMapShortSide23D
· WindowMapLongSide13D
· WindowMapLongSide23D
· WindowMapShortSide13D
· WindowMapShortSide23D
· Capacity Matrices = matrices containing the randomized capacities for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· EntryDoorLongSide1Capacity3D
· EntryDoorLongSide2Capacity3D
· EntryDoorShortSide1Capacity3D
· EntryDoorShortSide2Capacity3D
· SlidingDoorLongSide1Capacity3D
· SlidingDoorLongSide2Capacity3D
· SlidingDoorShortSide1Capacity3D
· SlidingDoorShortSide2Capacity3D
· WindowsLongSide1Capacity3D
· WindowsLongSide2Capacity3D
· WindowsShortSide1Capacity3D
· WindowsShortSide2Capacity3D
Output:
· Capacity Matrices = the output is the input after updating

WALLSHEETCAPACITIESUPDATER.m
Description:
· This function updates the capacities of the wall sheathing panels and the wall cover sections of the building at the end of the initial damage check. It zeros out the capacities of the components that have failed and keeps the capacities of those components that survived the first damage check.
Input:
· Roof Type: the building’s roof type, it could be either ‘Hipped Roof’ or ‘Gabled Roof’.
· Component Mappers = matrices identifying the presence or absence of a component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a component while 0’s denote the absence of one).
· Wall Cover Sections:
· MainStoryWallCoverMapLongSide13D
· MainStoryWallCoverMapLongSide23D
· InnerStoryWallCoverMapLongSide13D
· InnerStoryWallCoverMapLongSide23D
· MainStoryWallCoverMapShortSide13D
· MainStoryWallCoverMapShortSide23D
· InnerStoryWallCoverMapShortSide13D
· InnerStoryWallCoverMapShortSide23D
· GableEndWallCoverMapShortSide13D
· GableEndWallCoverMapShortSide23D
· Wall Sheathing Panels:
· MainStorySheetMapLongSide13D
· MainStorySheetMapLongSide23D
· InnerStorySheetMapLongSide13D
· InnerStorySheetMapLongSide23D
· MainStorySheetMapShortSide13D
· MainStorySheetMapShortSide23D
· InnerStorySheetMapShortSide13D
· InnerStorySheetMapShortSide23D
· GableEndSheetMapShortSide13D
· GableEndSheetMapShortSide23D
· Capacity Matrices = matrices containing the randomized capacities (in psf) for each component on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
· Wall Cover Sections:
· MainWallCoverLongSide1Capacity3D
· MainWallCoverLongSide2Capacity3D
· InnerWallCoverLongSide1Capacity3D
· InnerWallCoverLongSide2Capacity3D
· MainWallCoverShortSide1Capacity3D
· MainWallCoverShortSide2Capacity3D
· InnerWallCoverShortSide1Capacity3D
· InnerWallCoverShortSide2Capacity3D
· GableEndWallCoverShortSide1Capacity3D
· GableEndWallCoverShortSide2Capacity3D
· Wall Sheathing Panels:
· MainWallSheetsLongSide1SheetCapacity3D
· MainWallSheetsLongSide2SheetCapacity3D
· InnerWallSheetsLongSide1SheetCapacity3D
· InnerWallSheetsLongSide2SheetCapacity3D
· MainWallSheetsShortSide1SheetCapacity3D
· MainWallSheetsShortSide2SheetCapacity3D
· InnerWallSheetsShortSide1SheetCapacity3D
· InnerWallSheetsShortSide2SheetCapacity3D
· GableEndWallSheetsShortSide1SheetCapacity3D
· GableEndWallSheetsShortSide2SheetCapacity3D
Output:
· Capacity Matrices = the output is the input variable after updating

Sheathing_R2W_Interface.m
Description: This function determines truss collapse based on the loss of sheathing on gable end roofed structures. Progressive truss collapse is dependent on the collapse of the gables end trusses.
Input:
· Length	= scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
· Number_of_Sheathing_Row = Scalar = Indicates the number of sheathing along the eave of the roof
· Number_of_Rows = Scalar = indicates the number of rows of sheathing on one face of the roof
· Sheathing_Equiv= Matrix = Values indicate which number of sheathing in a particular row, starting from 1 from left to right, is attached to the truss on the Main Roof Region. The column location of the matrix identifies the truss being analyzed. Matrix is Number_of_Rows by Number_of_Trusses_Row in size.
· Failure_Ident_Sheathing= Matrix = Identifies the sheathing panels that have failed with a value of 1. (initially a zeroes matrix which is the same size as the Length_of_Sheathing matrix)
· Failure_Load_Sheathing= Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading
· Number_of_Trusses_Row = scalar = Indicates the number of r2w connections along the eave of the Main Roof Region.
· Length_of_Sheathing = Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions. Units are ft.
Output:
· percent_damage_Sheathing = scalar = percent damage of all roof sheathing after taking into consideration the effects of truss collapse
· percent_damage_Sheathing_Overhang = scalar = percent damage of overhang roof sheathing after taking into consideration the effects of truss collapse
· percent_damage_Sheathing_Interior = scalar = percent damage of interior roof sheathing after taking into consideration the effects of truss collapse
· percent_damage_r2w = scalar = percent damage of all roof to wall connections after taking into consideration the effects of truss collapse

Roof_Cover_Loss_Gable_Truncation_Fix_8_20.m
Description: This function is used by MAIN_DRIVER to assign the probabilistic capacity of failure for the roof cover on the house. Capacities of the roof cover are compared to the randomized loading values, which are dependent pressure coefficients for the individual zones. Through this comparison, failure to the roof cover can be determined. This function takes into consideration two forms of failure: roof cover loss due to sheathing failure and roof cover failure due to wind pressures.
Input:
· Area_zone#	= Matrix = Summation of the respective zone matrices (Main roof area + Overhang,
· where # = 1-3) Units are ft^2.
· Velocity 	= Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof
· height. Units are mph.
· direction_i 	= Scalar = indicates orientation of the wind (direction: 1-8)
· Failure_Ident_Sheathing= Matrix = Identifies the sheathing panels that have failed with a value
· of 1. (initially a zeroes matrix which is the same size as the Length_of_Sheathing matrix)
· Area_Zone_#_Sheathing= Matrix = the Area contribution of the pressure coefficients on each
· sheathing panel (where # is 1, 2 or 3, depending on the zone) Units are ft^2. (Area_Zone_2_r2w : Area of each panel that lies in Zone 2 boundary)
· Area_Zone_#_Sheathing_Overhang = Matrix = the Area contribution of the pressure
· coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone) Units are ft^2. (Area_Zone_3_r2w_Overhang: Area of each panel that lies in Zone 3 Overhang boundary)
· m		=Scalar = index for the Velocity vector.
· rating		= Scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3
· (strong)
· RoofSlope	= Scalar = pitch of the roof from the eave to the ridge (example: 6/12)
· mnshinglecapacity = a scalar describing the mean capacity of the shingles. It is 51 psf, 56 psf, or 70 psf for a weak, medium or strong construction quality, respectively.
· COV_shinglecapacity = a scalar describing the coefficient of variation. It decreases as the construction quality increases.
Output:
· Percent_Roof_Cover_Loss = scalar = Indicates the percentage of the roof covering that was lost.
· Number_of_shingles = scalar = the total number of shingles based on the roof area and average shingle size.
· cover_fail =scalar = Value of the mean capacity of the roof cover used for outputting in the ‘Header’

Roof_Cover_Loss_Hip_Truncation_Fix_8_20.m
Description: This function is used by MAIN_DRIVER to assign the probabilistic capacity of failure for the roof cover on the house. Capacities of the roof cover are compared to the randomized loading values, which are dependent pressure coefficients for the individual zones. Through this comparison, failure to the roof cover can be determined. This function takes into consideration two forms of failure: roof cover loss due to sheathing failure and roof cover failure due to wind pressures.
Input:
· Area_zone#	= Matrix = Summation of the respective zone matrices (Main roof area + Overhang,
· where # = 1-3) Units are ft^2.
· Velocity 	= Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof
· height. Units in mph.
· direction_i 	= scalar = indicates orientation of the wind (direction: 1-8)
· Failure_Ident_Sheathing_Hip_# = Matrix = Identifies the sheathing panels that have failed with a value
· of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
· Failure_Ident_Sheathing_Main_# = Matrix = Identifies the sheathing panels that have failed with a value
· of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
· Area_Zone_#_Sheathing_Hip_## = Matrix = the Area contribution of the pressure coefficients on each
· sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
· Area_Zone_#_Sheathing_Overhang Hip_## = Matrix = the Area contribution of the pressure
· coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
· Area_Zone_#_Sheathing_Main_## = Matrix = the Area contribution of the pressure coefficients on each
· sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
· Area_Zone_#_Sheathing_Overhang_Main_## = Matrix = the Area contribution of the pressure
· coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
· m		=Scalar = index for the Velocity vector.
· rating		= Scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3 (strong)
Output:
· Percent_Roof_Cover_Loss = scalar = Indicates the percentage of the roof covering that was lost.
· Number_of_shingles = scalar = the total number of shingles based on the roof area and average shingle size.
· cover_fail =scalar = Value of the mean capacity of the roof cover used for outputting in the ‘Header’

redist_uplift.m
Description:
· This function is used to transfer the loads previously carried by r2w connections that have failed. The failed r2w connections cannot carry any load, so the load is redistributed to the neighboring connections that are still intact with this function. Once the redistribution is finished, the remaining r2w connections are tested for failure under the new loads. If used by a MAIN_DRIVER with a hip roof, this function is used for all r2w connections. Input includes the current capacity of each connection, the uplift in each connection, an index pointing to which connections have failed, and the number of r2w connections along one gable end. Output includes an index pointing to which connections have failed, the number of failed connections, a matrix with the newly calculated capacities of the connections, and a matrix with the adjusted uplift load in each intact r2w connection.
Input:
· r2w_cap = a 2 column matrix that contains the capacity of each r2w connection, one long end per column. If a particular r2w has already failed, its capacity has been set to zero. This is both input and output.
· Uplift = a 2 column matrix containing the uplift load (lbs.) in each r2w connection, one long end per column. This is both input and output.
· r2w_indx = a vector that contains an index to each r2w connection within ‘r2w_cap’that has failed
· num_r2w_connections = scalar = # of r2w connections along one long end
Output:
· new_r2w_indx = a vector that contain an index to each r2w connection that has failed after the redistribution of loads
· new_failed_r2w = scalar that contains the number of r2w connections that have failed
· r2w_cap = a 2 column matrix that contains the capacity of each r2w connection, one long end per column. If a particular r2w has already failed, its capacity has been set to zero. This can have different values from its input version if more connections fail due to the load redistribution.
· uplift = a 2 column matrix containing the uplift load (lbs.) in each r2w connection, one long end per column. This is both input and output.

MCS-MHB
The MHMCS is implemented in MATLAB as the latter provides a suitable environment for making operations on vectors and matrices. A description of the program files of the MCS-MHB is as follows:

Model_Control_for_Mid_High_Model_February_1_2009.m
Description: This program automates the use of Mid_High_Opening_Analysis_Driver_February_1_2009.m to run multiple simulations as a batch operation.
Input:
· MissileOnly: missile model check, i.e. 0 for only missile check, 1 for both pressure and impact
· No_of_Simulations: number of simulations to be performed
· All_Bldg_Types: all available building types, i.e, {‘Exterior Stairway’, ‘Interior Stairway’}
· All_Unit_Locations: unit locations, i.e. {‘Middle’,’Corner’}
· All_Shutter_Protection_Types: shutter protection types, i.e, ‘None’, ‘Plywood’, ‘Steel’, or ‘Engineered’
· All_Glazing_Types: glazing types {‘Normal Glass’, ‘Impact Resistant Glass’, ‘Laminated Glass’}
· All_MissileExpsoure_Types: missile exposure type, i.e, ‘Urban’, ‘Suburban’, or ‘Open’
· Unit_Zone: zone selection, i.e. ‘Zone_1’, ‘Zone_2’, or ‘Zone_3’
Output:
· The output of Mid_High_Opening_Analysis_Driver_February_1_2009.m

Mid_High_Opening_Analysis_Driver_February_1_2009.m
Description: This program produces the Monte Carlo simulation results for mid-/high-rise buildings
Input:
· No_of_Simulations: number of simulations to perform
· Unit_Location: unit location, i.e., ‘Middle’ or ‘Corner’
· Bldg_Type: building type, i.e., ‘Exterior Stairway’, or ‘Interior Stairway’
· Unit_Ext_Lengths: the dimension of a unit along the side with a neighboring unit, i.e., 40 for Exterior Stairway, 46 for Interior Stairway
· Unit_Int_Widths: the dimension of the inut along the side without a neighboring unit, i.e., 25 for both Exterior Stairway and Interior Stairway
· ShutterProtection: shutter protection type, i.e , ‘noSh', or 'Shl'
· ImpactResistance: impact resistance type, i.e ‘NG' for Normal Glass, 'LG' for Laminated Glass, or 'IRG' for Impact Resistance Glass
· MissileExposureType: missile exposure type, i.e., ‘Urb, ‘Sub’, or ‘Opn’
· ColumnOrder
· MissileOnly: missile model check , i.e. 0 for only missile check, 1 for both pressure and impact
· Unit_Zone_Location: zone selection, i.e., ‘Z1’, ‘Z2’, or ‘Z3’
Output: four-dimensional matrix, in which each row is one particular simulation, and each column is the component analyzed; each width (the third dimension) denotes one wind speed; the fourth dimension denotes the direction of the wind.
· Col 1: window damage due to pressure loading
· Col 2: entry door damage due to pressure loading
· Col 3: sliding door damage due to pressure loading
· Col 4: window damage due to debris impact
· Col 5: entry door damage due to debris impact
· Col 6: sliding door damage due to debris impact

OPENINGCORRECTIONFACTOR.m
Description: This function determines the correction factor for the mean resistance of openings due to presence of protection systems and impact resistant materials; this correction factor is only to be applied to sliding doors and windows.
Input:
· ShutterProtection: shutter protection type, i.e 'None', 'Plywood', 'Steel', or 'Engineered'
· ImpactResistance: impact resistance type, i.e 'Normal Glass', 'Laminated Glass', or 'Impact Resistant Glass'
Output:
· CorrFactor: capacity correction factor:

adimcalculator.m
Description: This function calculates the ASCE ‘a’ dimension in accordance with ASCE 7-08. The ‘a’ dimension variable is sued throughout the calculations in the simulator.
Input:
· Height_Bldg: the mean roof height
· Width_Bldg: the re-assigned building width dimension
Output
· a: The ASCE 7-05 dimension ‘a’

Flowcharts for MCS-LB

[image: OPENINGCORRECTIONFACTOR Flow Chart]
Figure 4.2.8: Flowchart for OPENINGCORRECTIONFACTOR.m

[image: adimcalculator]
Figure 4.2.9: Flowchart for adimcalculator.m
[image: BUILDINGDIMREASSIGNER]
Figure 4.2.10: Flowchart for BUILDINGDIMREASSIGNER.m
[image: CONSTRUCTIONQLTYTOBLDGSTRENGTH]
Figure 4.2.11: Flowchart for CONSTRUCTIONQLTYTOBLDGSTRENGTH.m

[image: CVARIABLE]
Figure 4.2.12: Flowchart for CVARIABLE.m
[image: r2W_Capacity_Gable]
Figure 4.2.13: Flowchart for r2W_Capacity_Gable.m

[image: r2W_Capacity_Hip]
Figure 4.2.14: Flowchart for r2W_Capacity_Hip.m
[image: Sheathing_Capacity_Gable_Truncation_Fix_8_20]
Figure 4.2.15: Flowchart for Sheathing_Capacity_Gable_Truncation_Fix_8_20.m
[image: Sheathing_Capacity_Hip_Truncation_Fix_8_20]
Figure 4.2.16: Flowchart for Sheathing_Capacity_Hip_Truncation_Fix_8_20.m

[image: Sheathing_R2W_Interface]
Figure 4.2.17: Flowchart for Sheathing_R2W_Interface.m

[image: Truss_Layout_Gable_Reduced_Aug_20_2009]
Figure 4.2.18: Flowchart for Truss_Layout_Gable_Reduced_Aug_20_2009.m
[image: Truss_Layout_Hip_Reduced_Aug_20_2009]
Figure 4.2.19: Flowchart for Truss_Layout_Hip_Reduced_Aug_20_2009.m

Flowcharts for MCS-MHB

[image: MidHi Flowchart_1]
[image: MidHi Flowchart_2]
[image: MidHi Flowchart_3]
Figure 4.2.20: Flowchart for MCS-MHB
[bookmark: _Toc346555784]Data Flow

MCS-LB
[image: Data_flow.jpg]
[image: Data_flow1.jpg]
Figure 4.2.21: Data flow diagram for MCS-LB
MCS-MHB

Figure 4.2.22: Data flow diagram for MCS-MHB
[bookmark: _Toc346555785]Class Diagram

MCS-LB

Figure 4.2.23: Class diagram for MCS-LB
MCS-MHB
[image: MHMCS_ClassDiagram]
Figure 4.2.24: Class diagram for MCS-MHB

[bookmark: _Toc346555786]Glossary

MCS-LB

ENCLOSURECONDITIONUPDATER_GABLE.m

	Input Variables
	Descriptions
	Terms in Documentation

	direction i
	a scalar describing the wind’s direction of approach, it can be any integer between 1 and 8. A cornering wind is denoted by 2, 4, 6 or 8, wind hitting the short side of the building is denoted by 3 or 7, while wind hitting the building’s long side is denoted by 1 or 5.
	Enclosure Condition: the condition that describes the area of openings within a given building. For this model the enclosure condition is computed for every story and for the attic. The enclosure condition affects the internal pressure of the building and as a result the load intensities can change.

	RoofType
	a string array describing the geometry of the roof, it can be ‘Gable’ or ‘Hip’
	

	RoofSlope
	a string array describing the geometry of the roof, it can be ‘Gable’ or ‘Hip’.
	

	EaveHeight
	a scalar describing the height of the roof at the eave in feet.
	

	LengthFLR
	a scalar describing the building’s re-assigned floor plan length in feet.
	

	WidthFLR
	a scalar describing the building’s re-assigned floor plan width in feet.
	

	TotalNumberofStories
	a scalar describing the total number of stories present in a building.
	

	EnclosureConditionAttic
	a string array containing an initial condition for the enclosure condition of the attic; it can be ‘E’, ‘P’, or ‘O’.
	

	EnclosureConditionAllFloors
	a matrix (rows = TotalNumberofStories, cols = 1), containing the enclosure condition (‘E’, ‘P’, or ‘O’) for every story.
	

	Component Area Maps
	matrices containing the area occupied by a component in a location of a wall mapped by the matrix indexes (matrix size = # of stories by # of wall sheathing panels on that wall).
	

	Component Damage Mappers
	matrices identifying the damage of particular components for a given wall (matrix size = # of stories by # of wall sheathing panels on that wall). A 1 denotes a damaged component while a 0 denotes an undamaged one.
	

	External Pressure Coefficient Possibilities
	scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the wind.
	

	Failure_Ident_Sheathing
	Matrix = Identifies the sheathing panels that have failed with a value of 1.

	

	Failure_Load_Sheathing
	Matrix = The averaged pressure load on each sheathing panel, taking

	

	Area_of_Sheathing
	a matrix comprising the area of each sheathing panel on the roof

	

	External Pressure Coefficients
	a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
	

	
	
	

	Output Variables
	
	

	GCpi
	A vector whose length is equal to the number of floors of the building. The internal pressure is determined by the opening created by wall sheathing and window damages.
	

	GCpi_Attic
	A scalar indicating the internal pressure of the attic space.
	

ENCLOSURECONDITIONUPDATER_HIP.m

	Input Variables
	Descriptions
	Terms in Documentation

	direction_i
	a scalar describing the wind’s direction of approach, it can be any integer between 1 and 8. A cornering wind is denoted by 2, 4, 6 or 8, wind hitting the short side of the building is denoted by 3 or 7, while wind hitting the building’s long side is denoted by 1 or 5.
	Enclosure Condition: the condition that describes the area of openings within a given building. For this model the enclosure condition is computed for every story and for the attic. The enclosure condition affects the internal pressure of the building and as a result the load intensities can change.

	Failure_Ident_Sheathing_Hip_#
	Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
	

	Failure_Ident_Sheathing_Main_#
	Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
	

	Failure_Load_Sheathing_Hip_#
	Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Hip Region)
	

	Failure_Load_Sheathing_Main_#
	Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Main Roof Region)
	

	Areas
	Matrix = Matrix identifying the total area of each sheathing panel on the			Main Roof Regions. Units are ft^2
	

	Areas_Hip
	Matrix = Matrix identifying the total area of each sheathing panel on the			Hip Regions. Units are ft^2
	

	RoofType
	a string array describing the geometry of the roof, it can be ‘Gable’ or ‘Hip’.
	

	RoofSlope
	a scalar describing the roof slope
	

	EaveHeight
	a scalar describing the height of the roof at the eave in feet.
	

	LengthFLR
	a scalar describing the building’s re-assigned floor plan length in feet.
	

	WidthFLR
	a scalar describing the building’s re-assigned floor plan width in feet.
	

	TotalNumberofStories
	a scalar describing the total number of stories present in a building.
	

	EnclosureConditionAttic
	a string array containing an initial condition for the enclosure condition of the attic; it can be ‘E’, ‘P’, or ‘O’.
	

	EnclosureConditionAllFloors
	a matrix (rows = TotalNumberofStories, cols = 1), containing the enclosure condition (‘E’, ‘P’, or ‘O’) for every story.
	

	Component Area Maps
	matrices containing the area occupied by a component in a location of a wall mapped by the matrix indexes (matrix size = # of stories by # of wall sheathing panels on that wall).
	

	Component Damage Mappers
	matrices identifying the damage of particular components for a given wall (matrix size = # of stories by # of wall sheathing panels on that wall). A 1 denotes a damaged component while a 0 denotes an undamaged one.
	

	External Pressure Coefficient Possibilities
	scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the wind.
	

	Failure_Ident_Sheathing
	Matrix = Identifies the sheathing panels that have failed with a value of 1.
	

	Failure_Load_Sheathing
	Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading
	

	Area_of_Sheathing
	= a matrix comprising the area of each sheathing panel on the roof
	

	External Pressure Coefficients
	a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
	

	
	
	

	Output Variables
	
	

	GCpi
	A vector whose length is equal to the number of floors of the building. The internal pressure is determined by the opening created by wall sheathing and window damages.
	

	GCpi_Attic
	A scalar indicating the internal pressure of the attic space.	
	

	
	
	

*Model_Control.m

R2W_Capacity_Gable.m

	Input Variables
	Descriptions
	Terms in Documentation

	rating
	scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3 (strong)
	Roof sheathing: The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.

	Number_of_Trusses_Row
	scalar = Indicates the number of r2w connections along the
eave of the roof.

	

	
	
	

	Output Variables
	
	

	r2w_cap
	Matrix contains the randomly assigned capacity of each of the r2w connection. The size of the matrix depends on the number of trusses and is equal to 2 by Number_of_Trusses_Row (one row for each roof face). Units are lbs.
	

	mean_resist
	A scalar value representing the mean resistance of the r2w connection after the FS is applied.
	

R2W_Capacity_Hip.m

	Input Variables
	Descriptions
	Terms in Documentation

	rating
	scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium),
and 3 (strong). Variable is used to select the mean capacity of the roof components.
	Roof sheathing: The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.
Hip Region: Refers to the triangular roof areas of the roof on either end of a rectangular house.
(roof line runs along the shorter of the two dimension of the house)
Main Roof Region: Refers to the trapezoidal roof area of the roof on either side of a rectangular house. (roof line runs along the longer of the two dimensions of the house)

	Number_of_Trusses_Row
	scalar = Indicates the number of r2w connections along the eave of the
Main Roof Region.
	

	Number_of_Trusses_Row_Hip
	scalar = Indicates the number of r2w connections along the eave of the
Hip Region.
	

	
	
	

	Output Variables
	
	

	r2w_cap_Hip
	Matrix contains the randomly assigned capacity of each of the r2w connection in the hip regions. The size of the matrix depends on the number of trusses in the hip region and is equal to 2 by Number_of_Trusses_Row_Hip (one row for each Hip Region). Units are psf
	

	r2w_cap_Main
	Matrix contains the randomly assigned capacity of each of the r2w connection in the main roof regions. The size of the matrix depends on the number of trusses in the main roof region and is equal to 2 by Number_of_Trusses_Row (one row for each Main Roof Region). Units are psf

	

	mean_resist
	A scalar value representing the mean resistance of the r2w connection after the FS is applied.
	

r2w_Loading_Failure_Gable_New_Approach.m

	Input Variables
	Descriptions
	Terms in Documentation

	Length
	scalar = the longer of the horizontal linear dimensions of the rectangular roof area. Units
are ft.
	Roof sheathing: The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.

	Width
	scalar = the shorter of the horizontal linear dimensions of the rectangular roof area.
Units are ft.
	

	RoofSlope
	scalar = pitch of the roof from the eave to the ridge line. (example: 6/12)
	

	EnclosureCondition
	indicator of the enclosure of the building (‘O’ for Open, ‘P’ for Partially
Enclosed and ‘E’ Fully Enclosed, which essentially effects the interior pressure coefficient for the building)

	

	Velocity
	Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof
height. Units in mph.

	

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	m
	Scalar = index for the Velocity vector.
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Trusses_Row
	scalar = Indicates the number of r2w connections along the eave of the roof.
	

	Number_of_Trusses_Row_Hip
	scalar = Indicates the number of r2w connections along the ridge of the 		 roof.
	

	Width_of_Sheathing
	Vector = Indicates the width of sheathing panels present in a specific row
 		(Length of the vector is equal to the 2*Number_of_Rows)
	

	Failure_Ident_Sheathing
	Matrix = Identifies the sheathing panels that have failed with a value
of 1. (initially a zeroes matrix which is the same size as the Length_of_Sheathing matrix)
	

	Failure_Load_Sheathing
	Matrix = The averaged pressure load on each sheathing panel, taking
into consideration the contribution of each zone for each panel and their corresponding pressure loading
	

	Tributary_Width
	Vector = Indicates the width of the roof area that the r2w connection is influenced by.
Units are ft.
	

	Sheathing_Equiv
	Matrix = Values indicate which number of sheathing in a particular row, counting
from left to right, is attached to the truss. The column location of the matrix identifies the truss being analyzed. Matrix is 2*Number_of_Rows by Number_of_Trusses_Row in size.
	

	r2w_cap
	Matrix contains the randomly assigned capacity of each of the r2w connection in the hip regions). The size of the matrix depends on the number of trusses in the hip region and is equal to 2 by Number_of_Trusses_Row (one row for each Hip Region). Units are psf
	

	
	
	

	Output Variables
	
	

	Failure_Ident_Trusses
	Matrix = Identifies the sheathing panels that have failed with a value of 1.
	

	percent_damage_r2w
	Scalar = Output of the total percentage of r2w failures due to the wind event.
	

	Percent_Sheathing_Loss_Truss_1
	Vector = Vector identifying the number of sheathing lost along the length of each truss on Side 1 of the roof area (left side of the roof region)
	

	Percent_Sheathing_Loss_Truss_2
	Vector = Vector identifying the number of sheathing lost along the length of each truss on Side 2 of the roof area (right side of the roof region)
	

r2w_Loading_Failure_Hip.m

	Input Variables
	Descriptions
	Terms in Documentation

	Length
	scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
	Roof sheathing: The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.
Hip Region: Refers to the triangular sides of the roof on either end of a rectangular house.
(Running along the shorter of the two dimension of the house)
Main Roof Region: Refers to the trapezoidal sides of the roof on either end of a rectangular house.
(Running along the longer of the two dimensions of the house)

	Width
	scalar = the shorter of the linear dimensions of the rectangular roof area. Units are ft.
	

	RoofSlope
	scalar = pitch of the roof from the eave to the ridge (example: 6/12)
	

	EnclosureCondition
	indicator of the enclosure of the building (‘O’ for Open, ‘P’ for Partially
Enclosed and ‘E’ Fully Enclosed, which essentially effects the interior pressure coefficient for the building)
	

	Velocity
	Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof height. Units in mph.
	

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	Area_Zone_#_r2w_Hip_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2. (Area_Zone_2_r2w_Hip_1: Area of each panel that lies in Zone 2 boundary on hip region #1)
	

	Area_Zone_#_r2w_Overhang Hip_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
	

	Area_Zone_#_r2w_Main_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2. (Area_Zone_2_r2w_Main_1: Area of each panel that lies in Zone 2 boundary on main roof region #1)
	

	Area_Zone_#_r2w_Overhang_Main_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2. (Area_Zone_3_r2w_Overhang _Main_2: Area of each panel that lies in Zone 3 Overhang boundary on main roof region #2)
	

	m
	Scalar = index for the Velocity vector.
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Trusses_Row_Hip
	Scalar = Indicates the number of r2w connections along the ridge of the Hip Region.
	

	Number_of_Trusses_Row
	Scalar = Indicates the number of r2w connections along the eave of the
Main Roof Region.
	

	Number_of_Rows_Hip
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Sheathing_Eave
	Scalar = Indicates the number of sheathing along the eave of the roof
Main Roof Region.
	

	Number_of_Sheathing_Ridge
	Scalar = Indicates the number of sheathing along the ridge of the roof
Main Roof Region.
	

	Sheathing_per_Row
	Vector = Indicates the number of sheathing panels present in a specific row in the main roof regions.
	

	Sheathing_per_Row_Hip
	Vector = Indicates the number of sheathing panels present in a specific row in the hip regions
	

	Width_of_Sheathing
	Vector = Indicates the width of sheathing panels present in a specific row in the main roof regions
	

	Width_of_Sheathing_Hip
	Vector = Indicates the width of sheathing panels present in a specific row in the hip regions
	

	Failure_Ident_Sheathing_Hip_#
	Matrix = Identifies the sheathing panels that have failed with a value
of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
	

	Failure_Ident_Sheathing_Main_#
	Matrix = Identifies the sheathing panels that have failed with a value
of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
	

	Failure_Load_Sheathing_Hip_#
	Matrix = The averaged pressure load on each sheathing panel, taking
into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Hip Region)
	

	Failure_Load_Sheathing_Main_#
	Matrix = The averaged pressure load on each sheathing panel, taking
into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Main Roof Region)
	

	Tributary_Width
	Vector = Indicates the width of the roof area that the r2w connection is influenced by on the main roof regions. Units are ft.
	

	Tributary_Width _Hip
	Vector = Indicates the width of the roof area that the r2w connection is influenced by on the hip regions. Units are ft.
	

	Sheathing_Equiv
	Matrix = Values indicate which number of sheathing in a particular row, counting
from left to right, is attached to the truss on the Main Roof Region. The column location of the matrix identifies the truss being analyzed. Matrix is Number_of_Rows by Number_of_Trusses_Row in size.
	

	Sheathing_Equiv _Hip
	Matrix = Values indicate which number of sheathing in a particular row,
counting from left to right, is attached to the truss on the Hip Region. Matrix is Number_of_Rows_Hip by Number_of_Trusses_Row_Hip in size.
	

	r2w_cap_Hip
	Matrix contains the randomly assigned capacity of each of the r2w connection in the hip regions . The size of the matrix depends on the number of trusses in the hip region and is equal to 2 by Number_of_Trusses_Row_Hip (one row for each Hip Region). Units are psf
	

	r2w_cap_Main
	Matrix contains the randomly assigned capacity of each of the r2w connection in the main roof regions. The size of the matrix depends on the number of trusses in the main roof region and is equal to 2 by Number_of_Trusses_Row (one row for each Main Roof Region). Units are psf
	

	
	
	

	Output Variables
	
	

	percent_damage_r2w
	Scalar = Output of the total percentage of r2w failures due to the wind event.
	

Redist_uplift.m

	Input Variables
	Descriptions
	Terms in Documentation

	r2w_cap
	a 2 column matrix that contains the capacity of each r2w connection, one long end per column. If a particular r2w has already failed, its capacity has been set to zero. This is both input and output.
	

	uplift
	a 2 column matrix containing the uplift load (lbs.) in each r2w connection, one long end per column. This is both input and output.
	

	r2w_indx
	a vector that contains an index to each r2w connection within ‘r2w_cap’that has failed
	

	num_r2w_connections
	scalar = # of r2w connections along one long end
	

	
	
	

	Output Variables
	
	

	new_r2w_indx
	a vector that contain an index to each r2w connection that has failed after the
 redistribution of loads
	

	new_failed_r2w
	scalar that contains the number of r2w connections that have failed
	

	r2w_cap
	a 2 column matrix that contains the capacity of each r2w connection, one long end per column. If a particular r2w has already failed, its capacity has been set to zero. This can have different values from its input version if more connections fail due to the load redistribution.
	

	uplift
	a 2 column matrix containing the uplift load (lbs.) in each r2w connection, one long end per column. This is both input and output.
	

Roof_Cover_Loss_Gable_Truncation_Fix_8_20.m

	Input Variables
	Descriptions
	Terms in Documentation

	Area_zone#
	Matrix = Summation of the respective zone matrices (Main roof area + Overhang,
where # = 1-3) Units are ft^2.
	Roof sheathing:	 The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.

	Velocity
	Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof
height. Units are mph.
	

	direction_i
	Scalar = indicates orientation of the wind (direction: 1-8)
	

	Failure_Ident_Sheathing
	Matrix = Identifies the sheathing panels that have failed with a value
of 1. (initially a zeroes matrix which is the same size as the Length_of_Sheathing matrix)
	

	Area_Zone_#_Sheathing
	Matrix = the Area contribution of the pressure coefficients on each
sheathing panel (where # is 1, 2 or 3, depending on the zone) Units are ft^2. (Area_Zone_2_r2w : Area of each panel that lies in Zone 2 boundary)
	

	Area_Zone_#_Sheathing_Overhang
	Matrix = the Area contribution of the pressure
coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone) Units are ft^2. (Area_Zone_3_r2w_Overhang: Area of each panel that lies in Zone 3 Overhang boundary)
	

	m
	Scalar = index for the Velocity vector.
	

	rating
	Scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3
(strong)
	

	RoofSlope
	Scalar = pitch of the roof from the eave to the ridge (example: 6/12)
	

	mnshinglecapacity
	a scalar describing the mean capacity of the shingles. It is 51 psf, 56 psf, or 70 psf for a weak, medium or strong construction quality, respectively.
	

	COV_shinglecapacity
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

	
	
	

	Output Variables
	
	

	Percent_Roof_Cover_Loss
	scalar = Indicates the percentage of the roof covering that was lost.
	

	Number_of_shingles
	scalar = the total number of shingles based on the roof area and average shingle size.
	

	cover_fail
	scalar = Value of the mean capacity of the roof cover used for outputting in the ‘Header’
	

Roof_Cover_Loss_Hip_Truncation_Fix_8_20.m

	Input Variables
	Descriptions
	Terms in Documentation

	Area_zone#
	Matrix = Summation of the respective zone matrices (Main roof area + Overhang, where # = 1-3) Units are ft^2.
	Roof sheathing: The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.
Hip Region: Refers to the triangular sides of the roof on either end of a rectangular house.
(Running along the shorter of the two dimension of the house)
Main Roof Region: Refers to the trapezoidal sides of the roof on either end of a rectangular house.
(Running along the longer of the two dimensions of the house)

	Velocity
	Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof height. Units in mph.
	

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	Failure_Ident_Sheathing_Hip_#
	Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
	

	Failure_Ident_Sheathing_Main_#
	Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
	

	Area_Zone_#_Sheathing_Hip_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
	

	Area_Zone_#_Sheathing_Overhang Hip_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
	

	Area_Zone_#_Sheathing_Main_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
	

	Area_Zone_#_Sheathing_Overhang_Main_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
	

	m
	Scalar = index for the Velocity vector.
	

	rating
	Scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3
(strong)
	

	
	
	

	Output Variables
	
	

	Percent_Roof_Cover_Loss
	scalar = Indicates the percentage of the roof covering that was lost.
	

	Number_of_shingles
	scalar = the total number of shingles based on the roof area and average shingle size.
	

	cover_fail
	scalar = Value of the mean capacity of the roof cover used for outputting in the ‘Header’
	

Sheathing_Capacity_Gable.m

	Input Variables
	Descriptions
	Terms in Documentation

	rating
	scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3
(strong)
	Roof sheathing:	 The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roofcover.

	Number_of_Rows
	scalar = indicates the number of rows of sheathing on one face of the roof.
	

	Number_of_Sheathing_Row
	scalar = Indicates the number of sheathing along the eave of the roof.
	

	Length
	scalar = the longer of the linear dimensions of the rectangular roof area (ft) Units are ft.
	

	
	
	

	Output Variables
	
	

	capacity_sheathing
	Matrix = contains the randomly assigned capacity of each of the sheathing panels on the roof. Size depends on the determined dimensions of the roof area and is equal to that of the Length and Width of sheathing matrices outputted from the roof layout codes.
		Units are psf.
	

	sheathing_fail
	Scalar = Value of the mean capacity of the sheathing used for outputting in the ‘Header’
	

Sheathing_Capacity_Hip.m

	Input Variables
	Descriptions
	Terms in Documentation

	rating
	scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium),
and 3 (strong)
	Roof sheathing:	 The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roofcover.
Hip Region: Refers to the triangular sides of the roof on either end of a rectangular house.
(Running along the shorter of the two dimension of the house)
Main Roof Region: Refers to the trapezoidal sides of the roof on either end of a rectangular house.
(Running along the longer of the two dimensions of the house)

	Number_of_Rows
	scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Rows_Hip
	scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Sheathing_Eave
	scalar = Indicates the number of sheathing along the eave of the roof
Main Roof Region.
	

	Number_of_Sheathing_Ridge
	scalar = Indicates the number of sheathing along the ridge of the roof
Main Roof Region.
	

	
	
	

	Output Variables
	
	

	capacity_sheathing_Hip_#
	Matrix = contains the randomly assigned capacity of each of the sheathing panels in the hip regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows_Hip by Number_of_Rows_Hip. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf
	

	capacity_sheathing_Main_#
	Matrix = contains the randomly assigned capacity of each of the sheathing panels in the main roof regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows by Number_of_Sheathing_Eave. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf
	

	sheathing_fail
	Scalar = Value of the mean capacity of the sheathing used for outputting in the ‘Header’
	

Sheathing_Layout_Gable_Nov_2009.m

	Input Variables
	Descriptions
	Terms in Documentation

	Length
	scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
	

	Width
	scalar = the shorter of the linear dimensions of the rectangular roof area. Units are ft.
	

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	a
	scalar = Width of the pressure coefficient zone. Units are ft.
	

	RoofSlope
	scalar = pitch of the roof from the eave to the ridge (example: 6/12)
	

	
	
	

	Output Variables
	
	

	Area_Zone_#_Sheathing
	Matrix = the Area contribution of the pressure coefficients on each sheathing element (where # is 1, 2 or 3, depending on the zone)
	

	Area_Zone_#_Sheathing_Overhang
	Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone)
	

	Area_zone#
	Matrix = Summation of the respective zone matrices (Main roof area + Overhang)
	

	Total_Area
	Matrix = Summation of the contributing zones for each sheathing element. The values should equal the total area of each sheet. Units are ft^2.
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Sheathing_Row
	Scalar = Indicates the number of sheathing along the eave of the roof
	

	Length_of_Sheathing
	Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions. Units are ft.
	

	Width_of_Sheathing
	Matrix = Indicates the length of the individual sheathing running parallel to the shorter of the two roof dimensions. Units are ft.
	

	l
	Vector = Vector indicating a count of the number of sheathing in each row
	

Sheathing_Layout_Hip.m

	Input Variables
	Descriptions
	Terms in Documentation

	a
	scalar = Width of the pressure coefficient zone (ft.)
	Roof sheathing:	 The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.
Hip Region: Refers to the triangular sides of the roof on either end of a rectangular house.
(Running along the shorter of the two dimension of the house)
Main Roof Region:	Refers to the trapezoidal sides of the roof on either end of a rectangular house.
(Running along the longer of the two dimensions of the house)

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	Length
	scalar = the longer of the linear dimensions of the rectangular roof area (ft)
	

	RoofSlope
	scalar = pitch of the roof from the eave to the ridge (example: 6/12)
	

	Width
	scalar = the shorter of the linear dimensions of the rectangular roof area (ft)
	

	
	
	

	Output Variables
	
	

	Areas
	Matrix = Matrix identifying the total area of each sheathing panel on the Main Roof
Regions. Units are ft^2
	

	Areas_Hip
	Matrix = Matrix identifying the total area of each sheathing panel on the Hip Regions.
Units are ft^2
	

	Area_Zone_#_Sheathing_Hip_##
	Matrix = the Area contribution of the pressure coefficients on each
sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region)
	

	Area_Zone_#_Sheathing_Overhang Hip_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region)
	

	Area_Zone_#_Sheathing_Main_##
	Matrix = the Area contribution of the pressure coefficients on each
sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region)
	

	Area_Zone_#_Sheathing_Overhang_Main_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region)
	

	Area_zone#
	Matrix = Summation of the respective zone matrices (Main roof area + Overhang,
where # = 1-3)
	

	Length_of_Sheathing
	Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions.
	

	Length_of_Sheathing_Hip
	Matrix = Indicates the length of the individual sheathing running parallel to
The shorter of the two roof dimensions.
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Rows_Hip
	scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Sheathing_Eave
	scalar = Indicates the number of sheathing along the eave of the roof
Main Roof Region.
	

	Number_of_Sheathing_Ridge
	scalar = Indicates the number of sheathing along the ridge of the roof
Main Roof Region.
	

	Sheathing_per_Row
	Vector = Indicates the number of sheathing panels present in a specific row in the main roof regions
	

	Sheathing_per_Row_Hip
	Vector = Indicates the number of sheathing panels present in a specific row in the hip regions
	

	Total_Area
	Matrix = Summation of the contributing zones for each sheathing element. The values should equal the total area of each sheet.
	

	Width_of_Sheathing_Main
	Vector = Indicates the width of sheathing panels present in a specific row in the main roof regions
	

	Width_of_Sheathing_Hip
	Vector = Indicates the width of sheathing panels present in a specific row in the hip regions
	

Sheathing_Loading_Failure_Hip.m

	Input Variables
	Descriptions
	Terms in Documentation

	Length
	scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
	Roof sheathing:	 The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.
Hip Region: Refers to the triangular sides of the roof on either end of a rectangular house.
(Running along the shorter of the two dimension of the house)
Main Roof Region: Refers to the trapezoidal sides of the roof on either end of a rectangular house.
(Running along the longer of the two dimensions of the house)

	Width
	scalar = the shorter of the linear dimensions of the rectangular roof area. Units are ft.
	

	RoofSlope
	scalar = pitch of the roof from the eave to the ridge (example: 6/12)
	

	EnclosureCondition
	indicator of the enclosure of the building (‘O’ for Open, ‘P’ for Partially
Enclosed and ‘E’ Fully Enclosed, which essentially effects the interior pressure coefficient for the building)
	

	Velocity
	Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof height. Units in mph.
	

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	Areas
	Matrix = Matrix identifying the total area of each sheathing panel on the Main Roof
Regions. Units are ft^2
	

	Areas_Hip
	Matrix = Matrix identifying the total area of each sheathing panel on the Hip Regions.
Units are ft^2
	

	Area_zone#
	Matrix = Summation of the respective zone matrices (Main roof area + Overhang, where # = 1-3) Units are ft^2.
	

	Area_Zone_#_Sheathing_Hip_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
	

	Area_Zone_#_Sheathing_Overhang Hip_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Hip Region) Units are ft^2.
	

	Area_Zone_#_Sheathing_Main_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
	

	Area_Zone_#_Sheathing_Overhang_Main_##
	Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone and ## is a 1 or 2 and is used in the identification of the particular Main Roof Region) Units are ft^2.
	

	m
	Scalar = index for the Velocity vector.
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Rows_Hip
	scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Sheathing_Eave
	scalar = Indicates the number of sheathing along the eave of the roof
Main Roof Region.
	

	Number_of_Sheathing_Ridge
	scalar = Indicates the number of sheathing along the ridge of the roof
Main Roof Region.
	

	Sheathing_per_Row
	Vector = Indicates the number of sheathing panels present in a specific row in the main roof regions
	

	Sheathing_per_Row_Hip
	Vector = Indicates the number of sheathing panels present in a specific row in the hip regions
	

	Width_of_Sheathing_Main
	Vector = Indicates the width of sheathing panels present in a specific row in the main roof regions. Units are ft.
	

	Width_of_Sheathing_Hip
	Vector = Indicates the width of sheathing panels present in a specific row in the hip regions. Units are ft.
	

	capacity_sheathing_Hip_#
	Matrix = contains the randomly assigned capacity of each of the sheathing panels in the hip regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows_Hip by Number_of_Rows_Hip. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf
	

	capacity_sheathing_Main_#
	Matrix = contains the randomly assigned capacity of each of the sheathing panels in the main roof regions (# = 1 or 2 for the separation of the roof surfaces). The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows by Number_of_Sheathing_Eave. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf
	

	
	
	

	Output Variables
	
	

	percent_damage_Sheathing
	Scalar = Output of the total percentage of sheathing loss from the roof due to the wind event.
	

	percent_damage_Sheathing_Overhang
	Scalar = Output of the percentage of sheathing loss from the eave of roof due to the wind event.
	

	percent_damage_Sheathing_Interior
	Scalar = Output of the percentage of sheathing loss from interior region of the roof. Interior sheathing panels refer to sheathing that is not along the eave of the roof.
	

	Failure_Ident_Sheathing_Hip_#
	Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Hip Region)
	

	Failure_Ident_Sheathing_Main_#
	Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region)
	

	Failure_Load_Sheathing_Hip_#
	Matrix = The averaged pressure load on each sheathing panel, taking
into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Hip Region)
	

	Failure_Load_Sheathing_Main_#
	Matrix = The averaged pressure load on each sheathing panel, taking
into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Main Roof Region)
	

Truss_Layout_Gable_Reduced_Aug_20_2009.m

	Input Variables
	Descriptions
	Terms in Documentation

	a
	scalar = Width of the pressure coefficient zone. Units are ft.
	

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	Length
	scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
	

	Length_of_Sheathing
	Matrix = Indicates the length of the individual sheathing running parallel to the
longer of the two roof dimensions. Units are ft.
	

	RoofSlope
	scalar = pitch of the roof from the eave to the ridge (example: 6/12)
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Sheathing_Row
	Scalar = Indicates the number of sheathing along the eave of the roof
	

	Length_of_Sheathing
	Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions. Units are ft.
	

	Width
	scalar = the shorter of the linear dimensions of the rectangular roof area. Units are ft.
	

	l
	vector = Indicates the number of sheathing found in each row, where each entry represents a different row.
	

	
	
	

	Output Variables
	
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Trusses_Row
	scalar = Indicates the number of r2w connections along the eave of the
Main Roof Region.
	

	Tributary_Width
	Vector = Indicates the width of the roof area that the r2w connection is influenced by on the main roof regions. Units are ft.
	

	Sheathing_Equiv
	Matrix = Values indicate which number of sheathing in a particular row, starting from
1 from left to right, is attached to the truss on the Main Roof Region. The column location of the matrix identifies the truss being analyzed. Matrix is Number_of_Rows by Number_of_Trusses_Row in size.
	

Truss_Layout_Hip_Reduced_Aug_20_2009.m

	Input Variables
	Descriptions
	Terms in Documentation

	a
	scalar = Width of the pressure coefficient zone (ft.)
	

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	Length
	scalar = the longer of the linear dimensions of the rectangular roof area (ft)
	

	Length_of_Sheathing
	Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions.
	

	Length_of_Sheathing_Hip
	Matrix = Indicates the length of the individual sheathing running parallel to the shorter of the two roof dimensions.
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Rows_Hip
	scalar = indicates the number of rows of sheathing on one face of the roof
	

	Length_of_Sheathing
	Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions.
	

	Length_of_Sheathing_Hip
	Matrix = Indicates the length of the individual sheathing running parallel to the shorter of the two roof dimensions.
	

	Sheathing_per_Row
	Vector = Indicates the number of sheathing panels present in a specific row
		in the main roof regions
	

	Sheathing_per_Row_Hip
	Vector = Indicates the number of sheathing panels present in a specific row
		in the hip regions
	

	Width
	scalar = the shorter of the linear dimensions of the rectangular roof area (ft)
	

	Width_of_Sheathing
	Vector = Indicates the width of sheathing panels present in a specific row
		in the main roof regions
	

	Width_of_Sheathing_Hip
	Vector = Indicates the width of sheathing panels present in a specific row
		in the hip regions

	

	
	
	

	Output Variables
	
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Trusses_Row
	scalar = Indicates the number of r2w connections along the eave of the
Main Roof Region.
	

	Number_of_Trusses_Row_Hip
	scalar = Indicates the number of r2w connections along the ridge of the 		 Main Roof Region.
	

	Tributary_Width
	Vector = Indicates the width of the roof area that the r2w connection is influenced by on the main roof regions. Units are ft.
	

	Tributary_Width _Hip
	Vector = Indicates the width of the roof area that the r2w connection is influenced by on the hip regions. Units are ft.
	

	Sheathing_Equiv
	Matrix = Values indicate which number of sheathing in a particular row, starting from 1 from left to right, is attached to the truss on the Main Roof Region. The column location of the matrix identifies the truss being analyzed. Matrix is Number_of_Rows by Number_of_Trusses_Row in size.
	

	Sheathing_Equiv _Hip
	Matrix = Values indicate which number of sheathing in a particular row, starting from 1 from left to right, is attached to the truss on the Hip Region. Matrix is Number_of_Rows_Hip by Number_of_Trusses_Row_Hip in size.	
	

adimcalculator.m

	Input Variables
	Descriptions
	Terms in Documentation

	Height
	a scalar describing the building’s mean roof height in feet.
	ASCE 7-05: the standard used to determine the design loads on a building.

Loading Zones: ASCE 7-05 divides the roof and walls of a building into different loading zones. The pressure loading varies throughout the building because as the wind flows through the body it behaves differently from zone to zone. The zones are 1, 2, and 3 on the roof and 4 and 5 on the wall faces; zone 3 has the strongest loads but is the smallest zone, zones 2 and 5 have the medium loads and are the 2nd largest zones, while zones 1 and 4 have the weakest loads and are the largest zones. The different loading zones are shown in Figure 1: “ASCE 7-05 ‘a’ dimension and loading zones”.

a: the dimension that specifies the size and locations of the loading zones. ‘a’ is a function of the building’s dimensions. The ‘a’ dimension is shown in Figure 1: “ASCE 7-05 ‘a’ dimension and loading zones”.

	Width
	a scalar describing the re-assigned building’s roof plan width dimension in feet.
	

	
	
	

	Output Variables
	
	

	a
	a scalar describing the ASCE ‘a’ dimension in feet.
	

BUILDINGDIMREASSIGNER.m

	Input Variables
	Descriptions
	Terms in Documentation

	LengthFLR
	a scalar describing the building’s initial floor plan length in feet as inputted by the user.
	Length and Width: the dimensions of the plan view of the building. The width is the smaller dimension; the roof plan dimensions are greater than the floor plan dimensions by 4 feet because the roof has an overhang of 2 feet on each side.

Roof Overhang: a roof extension beyond the edge of the exterior walls of the building.

	WidthFLR
	a scalar describing the building’s initial floor plan width in feet as inputted by the user.
	

	
	
	

	Output Variables
	
	

	LengthFLR
	a scalar describing the building’s re-assigned floor plan length in feet.
	

	WidthFLR
	a scalar describing the building’s re-assigned floor plan width in feet.
	

	Length
	a scalar describing the building’s roof plan length in feet.
	

	Width
	a scalar describing the building’s roof floor plan width in feet.
	

CONSTRUCTIONQLTYTOBLDGSTRENGTH.m

	Input Variables
	Descriptions
	Terms in Documentation

	ConstructionQuality
	a string describing the construction quality of the building; it could be ‘Weak’, ‘Medium’, or ‘Strong’.
	Glazing: openings in the building envelope, they could be windows, sliding doors, or entry doors. Glazing is usually made of glass; however, entry doors will also be part of this category because they also cover an opening.

	
	
	

	Output Variables
	
	

	mnshinglecapacity
	a scalar describing the mean capacity of the shingles. It is 51 psf, 56 psf, or 70 psf for a weak, medium or strong construction quality, respectively.
	

	COV_shinglecapacity
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

	mnroofsheathing
	a scalar describing the mean capacity of the roof sheathing. It is 55 psf, 103 psf, or 181.9 psf for a weak, medium or strong construction quality, respectively.
	

	COV_roofsheathing
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

	mnr2w
	a scalar describing the mean capacity of the shingles.There are two different capacities for each strength level and is based on the materials that the wall is made out of. R2W connections attached to masonry walls typically have a higher resistance than a timber framed building. It is 700 lbs, 1065 lbs, or 1240 lbs for a weak, medium or strong construction quality, respectively for a masonry building.
	

	COV_r2w
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

	mncapacitywallcover
	a scalar describing the mean capacity of the wall cover. It is 25 psf, 72 psf, or 88 psf for a weak, medium or strong construction quality, respectively.
	

	COV_wallcovercapacity
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

	mncapacitywallsheets
	a scalar describing the mean capacity of the wall sheathing panels. It is 55 psf, 103 psf, or 181.9 psf for a weak, medium or strong construction quality, respectively.
	

	COV_wallsheetscapacity
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

	mncapacitywindow
	a scalar describing the mean capacity of the windows against pressure loading. It is 53 psf, 71 psf, or 164 psf for a weak, medium or strong construction quality, respectively.
	

	COV_windowscapacity
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

	mncapacitySlidingDoor
	a scalar describing the mean capacity of the sliding doors against pressure loading. It is 67.5 psf, 90 psf, or 173 psf for a weak, medium or strong construction quality, respectively.
	

	COV_SlidingDoorscapacity
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

	mncapacityEntryDoor
	a scalar describing the mean capacity of the entry doors against pressure loading. It is 73 psf, 90.5 psf, or 180 psf for a weak, medium or strong construction quality, respectively.
	

	COV_EntryDoorscapacity
	a scalar describing the coefficient of variation. It decreases as the construction quality increases.
	

CVARIABLE.m

	Input Variables
	Descriptions
	Terms in Documentation

	EaveHeight
	a scalar of height to eave
	C variable: The variable C is the fraction of the total area of the impacted wall that is a particular opening.

	LengthFLR
	a scalar of length of impacted wall
	

	WidthFLR
	a scalar of width of side wall
	

	
	
	

	Output Variables
	
	

	The C Matrices
	the matrices containing the fraction of area of glazing at a particular location (mapped by the matrix to a corresponding wall location) of the total wall area (matrix size = # of stories by # of wall sheathing panels that could fit on that wall).
	

DAMAGECOUNTERIMPACTWINDOWS.m

	Input Variables
	Descriptions
	Terms in Documentation

	Impact Capacity Matrices
	matrices containing the randomized impact capacities for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	Glazed components’ impact resistance: the randomized capacity that a component that covers an opening (such as entry doors, windows, and sliding doors) has against impact.

Impact loading: the randomized impact load imparted on a component during an impact event.

Glazed component map matrices: the matrices mapping the glazed components to the walls.

Glazed component damage map matrices: the matrices mapping the damaged glazed components to the walls.

	Impact Load Matrices
	matrices containing the loading for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	Glazed Component Mappers
	matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a panel while a 0 denotes the absence of one.
	

	Glazed Component Damage Mappers
	matrices identifying the damage of the glazed component (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes a damaged panel while a 0 denotes an undamaged one.
	

	
	
	

	Output Variables
	
	

	Glazed Component Mappers
	the output is the input after updating
	

	Glazed Component Damage Mappers
	the output is the input after updating
	

DAMAGECOUNTERWALLCOVER.m

	Input Variables
	Descriptions
	Terms in Documentation

	RoofType
	a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
	Roof Type: the building’s roof type, it could be either ‘Hipped Roof’ or ‘Gabled Roof’.

Wall Covers’ resistance: the randomized capacities for each section of wall cover.

Loading: the pressure loading imparted on the building’s faces as a result of it being in the trajectory of a wind field.

The G Matrix: the limit state condition (‘Resistance – Load’); whenever it is less than zero the load has exceeded the resistance of the component and the component has failed.

Wall Cover Map Matrices: the matrices mapping the wall cover sections to the walls.

Wall Cover Damage Map Matrices: the matrices mapping the damaged wall cover sections to the walls. The wall cover sections are placed on the wall sheathing panels and can be fixed to the panels in a variety of ways (some being stronger than others). Thus, whenever a wall sheathing panel fails, the wall cover corresponding to that panel automatically fails.

Main Story: the section of the walls that spans from the floor to the ceiling of every story.

Inner Story: the section of the walls that spans from the ceiling of one story to the floor of the story above it. The utilities are typically placed in this section.

	Capacity Matrices
	matrices containing the randomized capacities (in psf) for each wall cover section on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	Load Matrices
	matrices containing the loading (in psf) for each wall cover section on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	Wall Covering Mappers
	matrices identifying the presence or absence of a wall cover section at a particular location on its corresponding wall (matrix size = # of stories by # of wall cover sections on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a cover section while a 0 denotes the absence of one.
	

	Wall Cover Damage Mappers
	matrices identifying the damage of the wall cover sections (matrix size = # of stories by # of wall cover sections on that wall). There is one matrix for each story section and for each wall, and a 1 denotes a damaged or missing section while a 0 denotes an undamaged one.
	

	
	
	

	Output Variables
	
	

	Wall Covering Mappers
	the output is the input after updating
	

	Wall Cover Damage Mappers
	the output is the input after updating
	

DAMAGECOUNTERWALLSHEETS.m

	Input Variables
	Descriptions
	Terms in Documentation

	RoofType
	a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
	Roof Type: the building’s roof type, it could be either ‘Hipped Roof’ or ‘Gabled Roof’.

	Sheathings’ resistance: the randomized capacities of the wall sheathing panels.

Loading: the pressure loading imparted on the building’s faces as a result of it being in the trajectory of a wind field.

The G Matrix: the limit state condition (‘Resistance – Load’); whenever it is less than zero the load has exceeded the resistance of the component and the component has failed.

Wall Sheathing Map Matrices: the matrices mapping the wall sheathing panels to the walls.

Wall Cover Map Matrices: the matrices mapping the wall cover sections to the walls.

Wall Sheathing Damage Map Matrices: the matrices mapping the damaged wall sheathing panels to the walls. The wall sheathing panels are placed on the studs that support the structural frame of the building; they are usually nailed to the studs.

Wall Cover Damage Map Matrices: the matrices mapping the damaged wall cover to the walls. The wall cover is placed on the wall sheathing panels and can be fixed to the panels in a variety of ways (some being stronger than others). Thus, whenever a wall sheathing panel fails, the wall cover corresponding to that panel automatically fails.

Main Story: the section of the walls that spans from the floor to the ceiling of every story.

Inner Story: the section of the walls that spans from the ceiling of one story to the floor of the story above it. The utilities are typically placed in this section.

	Capacity Matrices
	matrices containing the randomized capacities (in psf) for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	Load Matrices
	matrices containing the loading (in psf) for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	Component Mappers
	matrices identifying the presence or absence of a component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a component while a 0 denotes the absence of one.
	

	Component Damage Mappers
	matrices identifying the damage of components (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes a damaged component while a 0 denotes an undamaged one.
	

	
	
	

	Output Variables
	
	

	Component Mappers
	the output is the input after updating
	

	Component Damage Mappers
	the output is the input after updating
	

DAMAGECOUNTERWINDOWS.m

	Input Variables
	Descriptions
	Terms in Documentation

	Capacity Matrices
	matrices containing the randomized capacities (in psf) for each glazed component on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	Glazed components’ resistance: the randomized capacity that a component that covering an opening has against pressure loads. Such components can be entry doors, windows, or sliding doors.

Loading: the pressure loading imparted on the building’s faces as a result of it being in the trajectory of a wind field.

Glazed component map matrices: the matrices mapping the glazed components to the walls.

Glazed component damage map matrices: the matrices mapping the damaged glazed components to the walls.

The G Matrix: the limit state condition (‘Resistance – Load’), whenever it is less than zero the load has exceeded the resistance of the component and the component has failed.

	Load Matrices
	matrices containing the loading (in psf) for each window on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	Glazed Component Mappers
	matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a panel while a 0 denotes the absence of one.
	

	Glazed Component Damage Mappers
	matrices identifying the damage of the glazed component (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes a damaged panel while a 0 denotes an undamaged one.
	

	
	
	

	Output Variables
	
	

	Glazed Component Mappers
	the output is the input after updating
	

	Glazed Component Damage Mappers
	the output is the input after updating
	

EXTONLYWALLSHEETPRESSURECOEFFICIENTSRANDOMIZED.m

	Input Variables
	Descriptions
	Terms in Documentation

	RoofType
	a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
	External Pressure Coefficient: the ASCE 7-05 coefficient that describes the variation of the pressure loads imparted to the building by the wind throughout a given location in the face. Provides the loads on external components such as wall cover or roof cover.

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	TotalNumberofStories
	a scalar describing the total number of stories in a building.
	

	COV_GCpsWalls
	a scalar describing the coefficient of variation for the pressure coefficients.
	

	Weighted External Pressure Coefficients
	a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
	

	
	
	

	Output Variables
	
	

	Final External Pressure Coefficients
	a matrix containing the final external pressure coefficients for every sheathing panel in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
	

MissilePhysParam.m

	Input Variables
	Descriptions
	Terms in Documentation

	NA
	A scalar number representing the number of available missiles
	

	Mean
	A scalar number representing mean value of the shingle capacity, shingle density, shingle thickness, shingle length, I variable, force coefficient, J variable, shingle width and momentum resistance of the glazing, respectively.
	

	Coefficient of Variation
	A scalar number representing mean value of the shingle capacity, shingle density, shingle thickness, shingle length, I variable, force coefficient, J variable, shingle width and momentum resistance of the glazing, respectively.
	

	Standard Deviation
	A scalar number representing mean value of the shingle capacity, shingle density, shingle thickness, shingle length, I variable, force coefficient, J variable, shingle width and momentum resistance of the glazing, respectively.
	

	
	
	

	Output Variables
	
	

	ShingleCapacityImpactModule
	A vector of randomized shingle capacities
	

	ShingleDensity
	A vector of randomized shingle densities
	

	Thickness
	A vector of randomized shingle thicknesses
	

	I
	A vector of randomized of values of variable I (fixing strength parameter)
	

	CF
	A vector of randomized of values of variable CF (Force Coefficient)
	

	J
	A vector of randomized of values of variable J (the fraction of the wind velocity that the debris can achieve before striking an object or hitting the ground)
	

	ShingleLength
	A vector of randomized shingle lengths
	

	ShingleWidth
	A vector of randomized shingle widths
	

	mom_resistance
	A vector of randomized moment resistance of the glazing
	

Numberofavailablemissileobjects.m

	Input Variables
	Descriptions
	Terms in Documentation

	MissileExposureType
	a string array describing the missile exposure type, it can be ‘open’, ‘treed’, ‘suburban’, or ‘urban’
	Missile Exposure Type: the density of the environment in which the building is located, this directly affects the number of available missile objects.

	Number_of_shingles
	a scalar describing the total number of shingles present in the roof of the building being analyzed.
	

	direction_i
	scalar values that indicates the current orientation of the wind (direction: 1-8) being analyzed.
	

	Suburban_DistMult
	Scalar multiplier that augments the distance between buildings to represent a typical Suburban spacing.
	

	Open_DistMult
	Scalar multiplier that augments the distance between buildings to represent a typical Suburban spacing.
	

	
	
	

	Output Variables
	
	

	NA
	a scalar describing the total number of available potential missile objects.
	

	Req_Travel
	a scalar value identifying the distance required for the debris to strike the building
	

OPENINGCORRECTIONFACTOR.m

	Input Variables
	Descriptions
	Terms in Documentation

	ShutterProtection
	a string array describing the type of protection present at the openings on a building, it can be ‘None’, ‘Plywood’, ‘Steel’, or ‘Engineered’. Determines the PFactor
	Shutter Protection: a type of protective system for openings used during wind events. They can be made of plywood, aluminum, steel, or can even be engineered. Although there are a variety of configurations for storm shutters (Storm Panels, Hurricane Screens, Accordion Shutters, Bahamas Shutters, Colonial Shutters, and Rolling Shutters, among others) the model only considers shutter’s material when determining the capacity correction factor.

Impact Resistance: the degree to which a material used to make a glazed component is resistant to windborne debris impact.

PFactor: an internal variable of this function; the shutter protection factor, it could be 1.00, 1.15, 1.25, or 1.50 depending on the type of protection present. PFactor accounts for the added resistance of some physical exterior protection installed over the glazed opening (i.e. a shutter)

MFactor: an internal variable of this function; the material’s resistance factor, could be 1.00, 1.50, or 2.00 depending on the material’s impact resistance. MFactor accounts for the added resistance of the window material itself, separate from any exterior physical protective shutter.

	ImpactResistance
	a string array describing the type of impact resistance that the glazed components have, it can be ‘Normal Windows’, ‘Laminated Windows’ or ‘Impact Resistant Windows’. Determines the MFactor
	

	
	
	

	Output Variables
	
	

	CorrFactor
	a scalar describing the correction that needs to be applied to the glazed components’ capacities, it is simply a multiplication of the PFactor and the MFactor. In this manner the protective properties of having both shutters and impact resistant material are accounted for. Factors are produced for the all three opening components, including window, sliding doors and entry doors.
	

Sheathing_Loading_Failure_Gable_New_Approach.m

	Input Variables
	Descriptions
	Terms in Documentation

	Length
	the longer of the linear dimensions of the rectangular roof area. Units are ft.
	Roof sheathing:	 The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover.
Hip Region: Refers to the triangular sides of the roof on either end of a rectangular house.
(Running along the shorter of the two dimension of the house)
Main Roof Region: Refers to the trapezoidal sides of the roof on either end of a rectangular house.
(Running along the longer of the two dimensions of the house)

	Width
	the shorter of the linear dimensions of the rectangular roof area. Units are ft.
	

	RoofSlope
	pitch of the roof from the eave to the ridge (example: 6/12)
	

	EnclosureCondition
	indicator of the enclosure of the building (‘O’ for Open, ‘P’ for Partially
Enclosed and ‘E’ Fully Enclosed, which essentially effects the interior pressure coefficient for the building)
	

	Velocity
	Vector = 1 x 41 vector representing the randomized wind speeds at the mean roof height. Units in mph.
	

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	Areas
	Matrix = Matrix identifying the total area of each sheathing panel on the Main Roof
Regions. Units are ft^2
	

	Areas_Hip
	Matrix = Matrix identifying the total area of each sheathing panel on the Hip Regions.
Units are ft^2
	

	Area_zone#
	Summation of the respective zone matrices (Main roof area + Overhang, where # = 1-3) Units are ft^2.
	

	Area_Zone_#_Sheathing_Main
	Matrix = the Area contribution of the pressure coefficients on each sheathing panel (where # is 1, 2 or 3, depending on the zone) Units are ft^2.
	

	Area_Zone_#_Sheathing_Overhang
	Matrix = the Area contribution of the pressure coefficients on each sheathing Element (where # is 2 or 3, depending on the particular overhang zone) Units are ft^2.
	

	m
	Scalar = index for the Velocity vector.
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Rows_Hip
	scalar = indicates the number of rows of sheathing on one face of the roof
	

	Number_of_Sheathing_Eave
	scalar = Indicates the number of sheathing along the eave of the roof Main Roof Region.
	

	Number_of_Sheathing_Ridge
	scalar = Indicates the number of sheathing along the ridge of the roof Main Roof Region.
	

	Sheathing_per_Row
	Vector = Indicates the number of sheathing panels present in a specific row in the main roof regions.
	

	Width_of_Sheathing
	Vector = Indicates the width of sheathing panels present in a specific row in the main roof regions. Units are ft.
	

	capacity_sheathing
	Matrix = contains the randomly assigned capacity of each of the sheathing panels. The size of the matrix depends on the determined dimensions of the hip region area and is equal to Number_of_Rows by Number_of_Sheathing_Eave. Cells within the matrix that do not represent a sheathing panel is represented by a zero. Units are psf
	

	
	
	

	Output Variables
	
	

	percent_damage_Sheathing
	Scalar = Output of the total percentage of sheathing loss from the roof due to the wind event.
	

	percent_damage_Sheathing_Overhang
	Scalar = Output of the percentage of sheathing loss from the eave of roof due to the wind event.
	

	percent_damage_Sheathing_Interior
	Scalar = Output of the percentage of sheathing loss from interior region of the roof. Interior sheathing panels refer to sheathing that is not along the eave of the roof.
	

	Failure_Ident_Sheathing
	Matrix = Identifies the sheathing panels that have failed with a value of 1.
	

	Failure_Load_Sheathing
	Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading
	

Sheathing_R2W_Interface.m

	Input Variables
	Descriptions
	Terms in Documentation

	Length
	scalar = the longer of the linear dimensions of the rectangular roof area. Units are ft.
	

	Number_of_Sheathing_Row
	Scalar = Indicates the number of sheathing along the eave of the roof
	

	Number_of_Rows
	Scalar = indicates the number of rows of sheathing on one face of the roof
	

	Sheathing_Equiv
	Matrix = Values indicate which number of sheathing in a particular row, starting from 1 from left to right, is attached to the truss on the Main Roof Region. The column location of the matrix identifies the truss being analyzed. Matrix is Number_of_Rows by Number_of_Trusses_Row in size.
	

	Failure_Ident_Sheathing
	Matrix = Identifies the sheathing panels that have failed with a value of 1. (initially a zeroes matrix which is the same size as the Length_of_Sheathing matrix)
	

	Failure_Load_Sheathing
	Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading
	

	Number_of_Trusses_Row
	scalar = Indicates the number of r2w connections along the eave of the Main Roof Region.
	

	Length_of_Sheathing
	Matrix = Indicates the length of the individual sheathing running parallel to the longer of the two roof dimensions. Units are ft.
	

	
	
	

	Output Variables
	
	

	percent_damage_Sheathing
	scalar = percent damage of all roof sheathing after taking into consideration the effects of truss collapse
	

	percent_damage_Sheathing_Overhang
	scalar = percent damage of overhang roof sheathing after taking into consideration the effects of truss collapse
	

	percent_damage_Sheathing_Interior
	scalar = percent damage of interior roof sheathing after taking into consideration the effects of truss collapse
	

	percent_damage_r2w
	scalar = percent damage of all roof to wall connections after taking into consideration the effects of truss collapse
	

Variables_A_B_D_Bakers.m

	Input Variables
	Descriptions
	Terms in Documentation

	ShingleCapacityImpactModule
	A vector of randomized shingle capacities
	

	AtempSurvivingShingles
	A scalar of the number of shingles still attached to roof for subsequent damage analysis ran during the iterative damage loop.
	

	mn_GCp_roof
	A scalar of the mean roof pressure value
	

	COV_GCpsRoof
	A scalar of the coefficient of variation of the roof pressure
	

	Hurr_Red_Factor
	A scalar of the density reduction factor of air density for hurricanes
	

	ShingleDensity
	A vector of randomized shingle densities
	

	Thickness
	A vector of randomized shingle thicknesses
	

	I
	A vector of randomized of values of variable I (fixing strength parameter)
	

	CF
	A vector of randomized of values of variable CF (Force Coefficient)
	

	Gravity
	A scalar value representing the gravitational constant
	

	AirDensity
	A scalar value of the air density during a hurricane event
	

	J
	A vector of randomized of values of variable J (the fraction of the wind velocity that the debris can achieve before striking an object or hitting the ground)
	

	Req_Travel
	A scalar value identifying the distance required for the debris to strike the building
	

	ShingleLength
	A vector of randomized shingle lengths
	

	ShingleWidth
	A vector of randomized shingle widths
	

	mom_resistance
	A vector of randomized moment resistance of the glazing
	

	direction_i
	a scalar describing the wind’s direction of approach, it can be any integer between 1 and 8. A cornering wind is denoted by 2, 4, 6 or 8, wind hitting the short side of the building is denoted by 3 or 7, while wind hitting the building’s long side is denoted by 1 or 5.
	

	Velocity
	A scalar describing the current speed being analyzed.
	

	WindSpeeds_mean_MeanRoofHeight
	Amatrices containing the mean wind speed at the height that the matrix index maps to the building’s face. These values are converted from the wind speed measured at a height of 10 meters (33 feet).
	

	COV_ WindSpeeds
	A scalar describing the coefficient of variation for the wind speeds, a scalar defined by the user.
	

	MeanRoofHeight
	A scalar representing the height above ground level at their respective positions
	

	
	
	

	Output Variables
	
	

	Avar
	a scalar, the number of potential missile objects that have become airborne.
	

	Bvar
	a scalar, the fraction of the airborne missiles that actually hit the building.
	

	Dvar
	a scalar, the fraction of the missile that hit the house that have enough momentum to cause damage.
	

	AtempSurvivingShingles
	A scalar of the number of shingles still attached to roof for subsequent damage analysis ran during the iterative damage loop.
	

WALL_GCpe_MINUS_GCpi.m

	Input Variables
	Descriptions
	Terms in Documentation

	direction_i
	scalar = indicates orientation of the wind (direction: 1-8)
	

	RoofType
	Identifies the type of roof system used, “Gable” or “Hip” Roof.
	

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	TotalNumberofStories
	a scalar describing the total number of stories present in a building.
	

	GCpi
	A vector whose length is equal to the number of floors of the building. The internal pressure is determined by the opening created by wall sheathing and window damages.
	

	GCpi_Attic
	A scalar indicating the internal pressure of the attic space.
	

	Weighted External Pressure Coefficients
	a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
	

	
	
	

	Output Variables
	
	

	Resultant Pressure Coefficient
	a matrix containing the resultant (external + internal) pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
	

	External Pressure Coefficients
	a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
	

WALLCOVERLOADER.m

	Input Variables
	Descriptions
	Terms in Documentation

	RoofType
	a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
	

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	sheetsinGableEnd
	a scalar describing the number of sheathing panels that would fit in the gable end if it had no openings, a scalar.
	

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	Velocity
	a scalar describing the current speed being analyzed.
	

	Final External Pressure Coefficients
	a matrix containing the final external pressure coefficients for every location in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
	

	Randomized Wind Speeds
	matrices containing the randomized wind speeds acting at the height of the particular components they are affecting (matrix size = # of stories by 1).
	

	Wall Covering Mappers
	matrices identifying the presence or absence of a wall cover section at a particular location on its corresponding wall (matrix size = # of stories by # of wall cover sections on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a cover section while a 0’s denote the absence of one).
	

	
	
	

	Output Variables
	
	

	Load Matrices
	matrices containing the loading (in psf) for each wall cover section on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

WALLLOADER.m

	Input Variables
	Descriptions
	Terms in Documentation

	RoofType
	a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
	

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	sheetsinGableEnd
	a scalar describing the number of sheathing panels that would fit in the gable end if it had no openings, a scalar.
	

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	Velocity
	a scalar describing the current speed being analyzed.
	

	Final Pressure Coefficients
	a matrix containing the final superimposed pressure coefficients for every sheathing panel in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
	

	Randomized Wind Speeds
	matrices containing the randomized wind speeds acting at the height of the particular components they are affecting (matrix size = # of stories by 1).
	

	Wall Sheathing Panel Mappers
	matrices identifying the presence or absence of a wall sheathing panels at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
	

	
	
	

	Output Variables
	
	

	Load Matrices
	matrices containing the loading (in psf) for each wall sheathing panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

WALLPRESSURECOEFFASCE.m

	Input Variables
	Descriptions
	Terms in Documentation

	WindEffectiveArea
	the area of the building that receives the wind. It is a scalar and varies as the winds’ direction of approach changes.
	

	
	
	

	Output Variables
	
	

	External Pressure Coefficient Possibilities
	scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the wind.
	

WINDSPEEDat10mtoSPEEDateverystorywalls.m

	Input Variables
	Descriptions
	Terms in Documentation

	z0
	a scalar = roughness length
	

	Height
	a scalar representing the height above ground level at their respective positions
	

	WindSpeeds_avg
	a vector of the 41 wind speeds of interesting, ranging from 50 to 250 mph in 5 mph increments
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	RoofType
	a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
	

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	
	
	

	Output Variables
	
	

	Mean Wind Speeds
	matrices containing the mean wind speed at the height that the matrix index maps to the building’s face. These values are converted from the wind speed measured at a height of 10 meters (33 feet).
	

WINDOWSRANDOMCAPACITIESMAPPED.m

	Input Variables
	Descriptions
	Terms in Documentation

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	TotalNumberofStories
	a scalar describing the total number of stories in the building.
	

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	mncapacitywindow
	a scalar describing the average resistance of a window. It depends on the construction quality and can be 110 psf for weak construction quality, 150 psf for medium, or 180 psf for strong.
	

	COV_windowscapacity
	a scalar describing the coefficient of variation of the resistances of the windows; it decreases as the construction quality increases.
	

	mncapacityEntryDoor
	a scalar describing the average resistance of an entry door. It depends on the construction quality and can be 110 psf for weak construction quality, 150 psf for medium, or 180 psf for strong.
	

	COV_ EntryDoorscapacity
	a scalar describing the coefficient of variation of the resistances of the entry doors; it decreases as the construction quality increases.
	

	mncapacitySlidingDoor
	a scalar describing the average resistance of a sliding glass door. It depends on the construction quality and can be 110 psf for weak construction quality, 150 psf for medium, or 180 psf for strong.
	

	COV_ SlidingDoorscapacity
	a scalar describing the coefficient of variation of the resistances of the sliding glass doors; it decreases as the construction quality increases.
	

	Glazed Component Mappers
	matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a panel while a 0 denotes the absence of one.
	

	
	
	

	Output Variables
	
	

	Capacity Matrices
	matrices containing the randomized capacities (in psf) for each glazed component on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

WINDOWSPROBABILITYOFIMPACTFAILURE.m

	Input Variables
	Descriptions
	Terms in Documentation

	direction_i
	scalar values that indicates the current orientation of the wind (direction: 1-8) being analyzed.
	

	TotalNumberofStories
	a scalar describing the total number of stories in the building.
	

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	Glazed Component Mappers
	matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
	

	Avar
	a scalar, the number of potential missile objects that have become airborne.
	

	Bvar
	a scalar, the fraction of the airborne missiles that actually hit the building.
	

	The C Matrices
	the matrices containing the fraction of area of glazing at a particular location (mapped by the matrix to a corresponding wall location) of the total wall area.
	

	Dvar
	a scalar, the fraction of the missile that hit the house that have enough momentum to cause damage.
	

	NA
	the number of available potential missile objects, a scalar, it is a function of the density of the neighborhood.
	

	
	
	

	Output Variables
	
	

	Probability that debris damage a component subjected to impact analysis
	matrices (size = # of stories by # of wall sheathing panels that could fit on the corresponding wall face).
	

WINDOWSIMPACTRANDOMCAPACITIESMAPPED.m

	Input Variables
	Descriptions
	Terms in Documentation

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	TotalNumberofStories
	a scalar describing the total number of stories in the building.
	

	CorrFactor
	a scalar describing the correction factor for the opening components’ capacities; a simple multiplication of the PFactor (protection factor) and the MFactor (material factor).
	

	Glazed Component Mappers
	matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
	

	
	
	

	Output Variables
	
	

	Impact Capacity Matrices
	matrices containing the randomized impact capacities for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

WINDOWSAREAANDHEIGHTMAP.m

	Input Variables
	Descriptions
	Terms in Documentation

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	LengthFLR
	a scalar describing the building’s floor plan length.
	

	WidthFLR
	a scalar, the building’s floor plan width.
	

	InnerStoryHeight
	a scalar, usually 2 ft.
	

	MainStoryHeight
	a scalar, usually 8, 9 or 10 ft.
	

	TotalNumberofStories
	a scalar describing the total number of stories in the building.
	

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings.
	

	FractionAreaGlazingperFloor
	a scalar describing the percentage of openings per floor calculated out of the wall surface area within a given floor.
	

	WindowLength
	a scalar, the model currently uses a 4 ft. long window.
	

	WindowHeight
	a scalar, the model currently uses a 5 ft. tall window.
	

	SLDoorLength
	a scalar, the model currently uses an 8 ft. long sliding door.
	

	SLDoorHeight
	a scalar, the model currently uses an 8 ft. tall sliding door.
	

	EntryDoorLength
	a scalar, the model currently uses a 4 ft. long entry door.
	

	EntryDoorHeight
	a scalar, the model currently uses an 8 ft. tall entry door.
	

	
	
	

	Output Variables
	
	

	SLdoorlocationindex
	a matrix mapping the location of the sliding doors (matrix size = # of stories by # of sliding doors per floor).
	

WINDOWLOADER.m

	Input Variables
	Descriptions
	Terms in Documentation

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	Final Pressure Coefficients
	a matrix containing the final superimposed pressure coefficients for every location in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
	

	Randomized Wind Speeds
	matrices containing the randomized wind speeds acting at the height of the particular components they are affecting (matrix size = # of stories by 1).
	

	Glazed Component Mappers
	matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
	

	
	
	

	Output Variables
	
	

	Load Matrices
	matrices containing the loading (in psf) for each window on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

WINDOWIMPACTCAPACITIESUPDATER.m

	Input Variables
	Descriptions
	Terms in Documentation

	Glazed Component Mappers
	matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
	

	Impact Capacity Matrices
	matrices containing the randomized impact capacities for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	
	
	

	Output Variables
	
	

	Impact Capacity Matrices
	the updated inputs.
	

WINDOWCAPACITIESUPDATER.m

	Input Variables
	Descriptions
	Terms in Documentation

	Glazed Component Mappers
	matrices identifying the presence or absence of a glazed component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a panel while 0’s denote the absence of one).
	

	Capacity Matrices
	matrices containing the randomized capacities for each panel on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	
	
	

	Output Variables
	
	

	Capacity Matrices
	the output is the input after updating
	

WINDEFFECTIVEAREAFINDER.m

	Input Variables
	Descriptions
	Terms in Documentation

	LengthFLR
	a scalar describing the building’s floor plan length.
	

	WidthFLR
	a scalar describing the building’s floor plan width.
	

	EaveHeight
	a scalar height to the roof eave in feet
	

	direction_i
	the wind’s direction of approach relative to the building front
	

	
	
	

	Output Variables
	
	

	WindEffectiveArea
	a scalar describing the area of the building that receives the wind. It varies as the wind’s direction of approach changes.
	

WEIGHTEDEXTERNALWALLPRESSURECOEFFICIENTS.m

	Input Variables
	Descriptions
	Terms in Documentation

	RoofSlope
	a scalar containing roof slope
	

	RoofType
	‘Gable’ or ‘Hip’.
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	sheetsinLongSide
	the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	a
	The ASCE ‘a’ dimension used to delineate different loading zones on building exterior
	

	InnerStoryHeight
	a scalar, usually 2 ft.
	

	MainStoryHeight
	a scalar, usually 8, 9 or 10 ft.
	

	SheathingPanelLength
	a scalar, the long dimension of a sheathing panel (commercially available 8 ft., 9 ft., 10 ft.).
	

	Sheathing PanelWidth
	a scalar, the short dimension of a sheathing panel (currently 4 ft.).
	

	PanelHeightLeft
	a matrix, contains the vertical dimension of the left side of each panel placed in the gable end.
	

	PanelHeightRight
	a matrix, contains the vertical dimension of the right side of each panel placed in the gable end.
	

	GableEndSheetMapShortSide1
	a matrix, identifies the presence or absence of a sheathing panel at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). A 1 denotes the presence of a panel while a 0 denotes the absence of one.
	

	External Pressure Coefficient Possibilities
	scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the wind.
	

	
	
	

	Output Variables
	
	

	Weighted External Pressure Coefficients
	a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall).
	

WALLSWINDSPEEDRANDOMIZED.m

	Input Variables
	Descriptions
	Terms in Documentation

	Velocity
	a scalar describing the current speed being analyzed.
	

	Mean Wind Speeds
	matrices containing the mean wind speed at the height that the matrix index maps to the building’s face. These values are converted from the wind speed measured at a height of 10 meters (33 feet).
	

	COV_ WindSpeeds
	a scalar describing the coefficient of variation for the wind speeds, a scalar defined by the user.
	

	TotalNumberofStories
	a scalar describing the total number of stories in the building.
	

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	RoofType
	a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
	

	
	
	

	Output Variables
	
	

	Randomized Wind Speeds
	matrices containing the randomized wind speeds acting at the height of the particular components they are affecting (matrix size = # of stories by 1).
	

WALLSSHEETHEIGHTMAP.m

	Input Variables
	Descriptions
	Terms in Documentation

	InnerStoryHeight
	a scalar, usually 2 ft.
	

	MainStoryHeight
	a scalar, usually 8, 9 or 10 ft.
	

	EaveHeight
	a scalar, the height at the roof’s eave in feet, measured from the ground.
	

	TotalNumberofStories
	a scalar, number of building stories
	

	RoofType
	‘Gable’ or ‘Hip’.
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	PanelHeightLeft
	a matrix, contains the vertical dimension of the left side of each panel placed in the gable end.
	

	PanelHeightRight
	a matrix, contains the vertical dimension of the right side of each panel placed in the gable end.
	

	SheathingPanelLength
	a scalar, the long dimension of a sheathing panel (commercially available 8 ft., 9 ft., 10 ft.).

	

	GableEndSheetMapShortSide1
	a matrix, identifies the presence or absence of a sheathing panel at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). A 1 denotes the presence of a panel while a 0 denotes the absence of one.
	

	
	
	

	Output Variables
	
	

	MainStoryHeights
	a matrix (size = # of stories by 1) containing the heights of the centroids of the sheathing panels located at the main story zone.
	

	InnerStoryHeights
	a matrix (size = # of stories by 1) containing the heights of the centroids of the sheathing panels located at the inner story zone.
	

	GableEndHeights
	a matrix (size = 1 by # of sheathing panels that horizontally fit in the gable end) containing the heights of the centroids of the sheathing panels located at the gable end zone.
	

WALLSHEETRANDOMCAPACITIESMAPPED.m

	Input Variables
	Descriptions
	Terms in Documentation

	RoofType
	a string array describing the geometry of the roof, it can be either ‘Gable’ or ‘Hip’.
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	sheetsinLongSide
	a scalar describing the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	a scalar describing the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	TotalNumberofStories
	a scalar describing the total number of stories in the building.
	

	NoofWindSpeeds
	a scalar describing the total number of wind speeds for which the analysis is performed.
	

	mncapacitywallcover
	a scalar describing the average capacity of the wall cover sections; it depends on the construction quality.
	

	mncapacitywallsheets
	a scalar describing the average capacity of the wall sheathing panels; it depends on the construction quality.
	

	COV_wallsheetscapacity
	a scalar describing the coefficient of variation for the resistance of the wall sheathing panels; it decreases as the construction quality increases.
	

	COV_wallcovercapacity
	a scalar describing the coefficient of variation for the resistance of the wall cover sections; it decreases as the construction quality increases.
	

	Component Mappers
	matrices identifying the presence or absence of a component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a component while 0’s denote the absence of one).
	

	
	
	

	Output Variables
	
	

	Capacity Matrices
	matrices containing the randomized capacities (in psf) for each component on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

WALLSHEETPRESSURECOEFFICIENTSRANDOMIZED.m

	Input Variables
	Descriptions
	Terms in Documentation

	RoofType
	‘Gable’ or ‘Hip’.
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	sheetsinLongSide
	the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	TotalNumberofStories
	a scalar.
	

	NoofWindSpeeds
	a scalar, it is the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	COV_GCpsWalls
	a scalar.
	

	Resulting Pressure Coefficient Matrices
	the matrices containing the superimposed values for the external and internal pressure coefficients (matrix size = # of stories by # of wall sheathing panels on that wall).
	

	
	
	

	Output Variables
	
	

	Final Pressure Coefficients
	a matrix containing the final superimposed pressure coefficients for every sheathing panel in a given wall of the building (matrix size = # of stories by # of wall sheathing panels fitting on that wall).
	

WALLSHEETCAPACITIESUPDATER.m

	Input Variables
	Descriptions
	Terms in Documentation

	Roof Type
	the building’s roof type, it could be either ‘Hipped Roof’ or ‘Gabled Roof’.
	

	Component Mappers
	matrices identifying the presence or absence of a component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall (1’s denote the presence of a component while 0’s denote the absence of one).
	

	Capacity Matrices
	matrices containing the randomized capacities (in psf) for each component on that wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall.
	

	
	
	

	Output Variables
	
	

	Capacity Matrices
	the output is the input variable after updating
	

WALLSHEETAREAMAP.m

	Input Variables
	Descriptions
	Terms in Documentation

	SLdoorlocationindex
	a matrix mapping the location of the sliding doors (matrix size = # of stories by # of sliding doors per floor).
	Sheathing Panels: The panels that are placed on the studs to cover the frame (skeleton of the building) are called sheathing panels. Common construction practices indicate that 4 ft. wide by 8 ft., 9 ft., or 10 ft. long plywood sheathing panels are available. It will be assumed that the panels are placed vertically and side by side (with the 4 ft. dimension horizontally).

Main Story Height: the space between the top of the floor slab and the ring beam supporting the slab of the floor above created by placing sheathing panels vertically and side by side (with the 4 ft. dimension horizontally). Construction techniques usually put a ring beam at the bottom of the joists to support the floor slabs.

Inner Story Height: the space between the ring beam and the top of the floor slab; the sheathing panels are also placed with the 4 ft. dimension horizontally in this area.

The “Main and Inner Story Heights” can actually be anything the user inputs, however the program will assume that the sheets used are 4 ft. wide by “Main Story Height” or “Inner Story Height”, depending on the location of the sheathing panel. The 4 ft. by 8 ft., 9 ft., or 10 ft. plywood sheathing panels are not the only ones commercially available, they are simply more common, thus in this function any size of plywood panels could be used. However, the width of the sheathing panels has been set to 4 ft. The wall cover sections simply go on the sheathing panels.

	SLDoorLength
	a scalar, the model currently uses an 8 ft. long sliding door.
	

	SLDoorHeight
	a scalar, the model currently uses an 8 ft. tall sliding door.
	

	NoofWindSpeeds
	a scalar, it is the total number of wind speeds for which the analysis is performed, it can be specified by the user and it currently is 51 wind speeds (0 to 250 mph with 5 mph intervals).
	

	TotalNumberofStories
	a scalar, number of building stories
	

	SheathingPanelsHorizontallyAcrossGableEnd
	the number of sheathing panels that would fit horizontally in the gable end if it had no openings, a scalar.
	

	SheathingPanelsVerticallyAcrossGableEnd
	the number of sheathing panels that would fit vertically in the gable end if it had no openings, a scalar.
	

	sheetsinLongSide
	the number of sheathing panels that would fit in the long side if it had no openings, a scalar.
	

	sheetsinShortSide
	the number of sheathing panels that would fit in the short side if it had no openings, a scalar.
	

	SheathingPanelLength
	a scalar, the long dimension of a sheathing panel (commercially available 8 ft., 9 ft., 10 ft.).
	

	Sheathing PanelWidth
	a scalar, the short dimension of a sheathing panel (currently 4 ft.).
	

	GableEndHeight
	a scalar, the height of the gable end, measured from the eave to the highest point in the roof.
	

	MainStoryHeight
	a scalar, usually 8, 9 or 10 ft.
	

	InnerStoryHeight
	a scalar, usually 2 ft.
	

	RoofType
	‘Gable’ or ‘Hip’.
	

	RoofSlope
	a scalar.
	

	Glazed Component Area Maps
	matrices containing the areas of a particular component mapped to a particular location (identified by the indexes of its location in the matrix) in a given wall. Each component has a matrix for each wall.
	

	
	
	

	Output Variables
	
	

	PanelHeightLeft
	a matrix, contains the vertical dimension of the left side of each panel placed in the gable end.
	

	PanelHeightRight
	a matrix, contains the vertical dimension of the right side of each panel placed in the gable end.
	

	TotalGableEndWallCoverArea
	a scalar, the total area occupied by the wall cover in the gable ends.
	

	TotalWallCoverAreaforaFloor
	a scalar, the total area occupied by the wall cover per floor.
	

	TotalGableEndWallSheatingArea
	a scalar, the total area occupied by wall sheathing in the gable ends.
	

	TotalWallSheatingAreaforaFloor
	a scalar, the total area occupied by wall sheathing per floor.
	

	Component Mappers (Originals)
	matrices identifying the presence or absence of a component at a particular location on its corresponding wall (matrix size = # of stories by # of wall sheathing panels on that wall). There is one matrix for each story section and for each wall, and a 1 denotes the presence of a component while a 0 denotes the absence of one.
	

	Component Area Maps
	matrices containing the area occupied by a component in a location of a wall mapped by the matrix indexes (matrix size = # of stories by # of wall sheathing panels on that wall).
	

Z_Pressure_First_MAIN_DRIVER.m

	Input Variables
	Descriptions
	Terms in Documentation

	ConstructionQuality
	The quality of the individual components. Variable is
assigned as “Weak”, “Medium” or “Strong”, depending on the level of resilience of the components. Selection of capacities are based on this input.
	

	NoofSimulations
	Total number of simulation to be ran for every wind speed, and at eight directions.
	

	ShutterProtection
	Identifies whether or not Shutter Protection is available for the
windows. There are four selectable options: “ None” which signifies that no additional protection was used. An input of “Plywood”, “Steel” or “Engineered” indicates the use of shutter protection and including the type. Window capacity is multiplied by a factor, depending on the selection.
	

	RoofType
	Identifies the type of roof system used, “Gable” or “Hip” Roof.
	

	TotalNumberofStories
	Identifies the number of stories the building has. (1, 2 or 3 stories)
	

	LengthFLR
	The longer of the two footprint dimensions.
	

	WidthFLR
	The shorter of the two footprint dimensions.
	

	
	
	

	Output Variables
	
	

	Output
	The four dimensional damage matrix, containing the desired
output data. Size of the matrix is dependent on the number of iterations, output data, wind speeds and orientations. (Example: NoofSimulations = 1000, Output data = 30 variables, Velocity = 50:5:250 (41 values) and Orientation = 0:45:315 (8 values) ……Size is equal to 1000*30*41*8)
	

	Header
	List of input and model information, such as: dimensions, materials and other information particular to the model that was ran.
	

MCS-MHB

Model_Control_for_Mid_High_Model_February_1_2009.m

	Input Variables
	Descriptions
	Terms in Documentation

	No_of_Simulations
	Number of simulations to be performed
	Input variables for the model. See Design Requirements Section.

	All_Bldg_Types
	Lists available building types: “Exterior Stairway” and “Interior Stairway”
	

	All_Unit_Locations
	Lists available unit locations: “Middle” and “Corner”
	

	All_Shutter_Protection_Types
	Lists available shutter protection types: “None”, “Plywood”, “Steel”, and “Engineered”
	

	All_Glazing_Types
	Lists available glazing types: “Normal Glass”, “Impact Resistant Glass”, and “Laminated Glass”
	

	All_MissileExposure_Types
	Missile exposure types, i.e. the density of the surrounding area.
Available values are: “Urban”, “Suburban”, and “Open”
	

	Unit_Zone
	Zone selection, i.e. the zone that the unit is within
Available values: “Zone_1”, “Zone_2”, and “Zone_3”
	

	Unit_Int_Widths
	The dimension of a unit along the side with a neighboring unit
	

	Unit_Ext_Lengths
	The dimension of a unit along the side without a neighboring unit
	

Mid_High_Opening_Analysis_Driver_February_1_2009.m

	Input Variables
	Description
	Terms in Documentation

	No_of_Simulations
	Total number of simulation to be ran for every wind speed, within ever orientation
	Input variables for the model. See Design Requirements Section.

	ShutterProtection
	Identifies whether or not Shutter Protection is available for the windows. There are four selectable options: “ None” which signifies that no additional protection was used. An input of “Plywood”, “Steel” or “Engineered” indicates the use of shutter protection and including the type. Window capacity is multiplied by a factor, depending on the selection. [Factor = 1 (“None”), 1.1 (“Plywood”), 1.25 (“Steel”) and 1.5(“Engineered”)]
	

	MissleExposureType
	Identifies the surrounding area of the building. (Input ‘Urban’, 'Suburban', 'Open', or 'Treed')
	

	Unit_Location
	Identifies the location of the unit within the building (‘Corner Unit’ or ‘Middle Unit’)
	

	Bldg_Type
	Identifies the type of building in which the unit is located (‘Closed corridor building’ or ‘Open corridor building’)
	

	Unit_Ext_Lengths
	Dimension of the unit wall along the exterior of the building. Unit are in ft
	

	Unit_Int_Widths
	Dimension of the unit wall along shared by adjacent units. Unit are in ft
	

	Output Variables
	
	

	Output
	The four dimensional damage matrix, containing the desired output data. Size of the matrix is dependent on the number of iterations, output data, wind speeds and orientations. (Example: NoofSimulations = 1000, Output data = 6 variables, Velocity = 50:5:250 (41 values) and Orientation = 0:45:315 (8 values) ……Size is equal to 1000*30*41*8)
	Output of the model. See Design Requirements Section.

	Header
	Matrix which contains information pertaining to the model that was ran. (i.e. Number of Windows, Size of Windows…etc.)
	

	Total_No_of_Windows
	identifies the total number of windows belonging to a unit.
	

adimcalculator.m

	Input Variables
	Description
	Terms in Documentation

	Height_Bldg
	A scalar describing the building’s mean roof height in feet
	ASCE 7-05: the standard used to determine the design loads on a building.

Loading Zones: ASCE 7-05 divides the roof and walls of a building into different loading zones. The pressure loading varies throughout the building because as the wind flows through the body it behaves differently from zone to zone. The zones are 1, 2, and 3 on the roof and 4 and 5 on the wall faces; zone 3 has the strongest loads but is the smallest zone, zones 2 and 5 have the medium loads and are the 2nd largest zones, while zones 1 and 4 have the weakest loads and are the largest zones. The different loading zones are shown in Figure 1: “ASCE 7-05 ‘a’ dimension and loading zones”.

a: the dimension that specifies the size and locations of the loading zones. ‘a’ is a function of the building’s dimensions. The ‘a’ dimension is shown in Figure 1: “ASCE 7-05 ‘a’ dimension and loading zones”.

	Width_Bldg
	A scalar describing the re-assigned building’s roof plan width dimension
	

	Output Variables
	Description
	

	a
	‘a’ dimension
	

OPENINGCORRECTIONFACTOR.m

	Input Variables
	Description
	Terms in Documentation

	ShutterProtection
	A string array describing the type of protection present at the openings on a building, it can be ‘None’, ‘Plywood’, ‘Steel’, or ‘Engineered’. Determines the PFactor
	Shutter Protection: a type of protective system for openings used during wind events. They can be made of plywood, aluminum, steel, or can even be engineered. Although there are a variety of configurations for storm shutters (Storm Panels, Hurricane Screens, Accordion Shutters, Bahamas Shutters, Colonial Shutters, and Rolling Shutters, among others) the model only considers shutter’s material when determining the capacity correction factor.

Impact Resistance: the degree to which a material used to make a glazed component is resistant to windborne debris impact.

PFactor: an internal variable of this function; the shutter protection factor, it could be 1.00, 1.15, 1.25, or 1.50 depending on the type of protection present. PFactor accounts for the added resistance of some physical exterior protection installed over the glazed opening (i.e. a shutter)

MFactor: an internal variable of this function; the material’s resistance factor, could be 1.00, 1.50, or 2.00 depending on the material’s impact resistance. MFactor accounts for the added resistance of the window material itself, separate from any exterior physical protective shutter

	ImpactResistance
	A string array describing the type of impact resistance that the glazed components have, it can be ‘Normal Windows’, ‘Laminated Windows’ or ‘Impact Resistant Windows’. Determines the MFactor
	

	Output Variables
	Description
	

	CorrFactor
	A scalar describing the correction that needs to be applied to the glazed components’ capacities, it is simply a multiplication of the PFactor and the MFactor. In this manner the protective properties of having both shutters and impact resistant material are accounted for. Factors are produced for the all three opening components, including window, sliding doors and entry doors
	

[bookmark: _Toc346555787]Vulnerability and Fragility for Residential and Manufactured Homes (VFRMH) Use Case III

[bookmark: _Toc346555788]General Description of VFRMH

The VFRMH, short for vulnerability and fragility for residential and manufactured homes, is the use case that completes the Damage Estimation module. The main purpose of the VFRMH is to (a) combine the exterior and interior damage provided by the MCS (Monte Carlo Simulations) model to estimate building and content vulnerability matrices, (b) estimate additional living expenses, and (c) estimate appurtenant structure vulnerability. In addition, the VFRMH produces vulnerability, and fragility curves for visualization. Both curves are used as an indicator of the ability of a specific structure to withstand hurricane induced forces. The vulnerability curve is calculated using the damage distribution for each wind speed. It is used to estimate the performance of the structure. On the other hand, the fragility curve is used to predict the likelihood that structural damage will meet or exceed a certain threshold at a particular wind speed [1].

In addition, this use case aims to create a weighted version of all the vulnerability matrices using statistical data to describe the distribution of homes in Florida. As a result this use case produces masonry, timber, and ‘other’ matrix that account for each region and sub region home distribution. These weighted matrices give the ability to assess the vulnerability of a type of house knowing only the zip code it belongs to, and its ISO classification. When the year built is not available for the house the system will create age weighted vulnerability matrices. Finally this use case is able to produce weighted vulnerability and fragility curves as a function of wind speed (type 1), and vulnerability curves as a function of building damage for the Contents and ALE weighted matrices (type 2). The resulting weighted matrices will be later used by the actuarial model for the computation of losses. This use case is capable of generating results for site-built (residential), manufactured, and appurtenant structures.

[bookmark: _Toc346555789]Technical Description

BUILDING MODELS

Site-Built Home Models

In addition to a classification of building by structural types (wood or masonry walls, hip or gable roof), it was also necessary to classify the buildings by relative strength to reflect changes in construction practice over many years. The vulnerability team has developed strong, medium, and weak strength models for each site-built structural type to represent relative quality of original construction as well as post-construction mitigation. The weak and medium models have additional variants that reflect historical building practices, roof retrofits, and reroofing of existing structures as mandated by the newer building standards. The strong model has two variants to delineate code requirements that are regionally dependent. One strong variant reflects inland and wind-borne debris region (WBDR) construction, and another (stronger) variant reflects construction in the high velocity hurricane zone (HVHZ).

The three strength categories are based on the same model framework, in which strength is represented by the capacities assigned to the modeled building components. For example, the strong models differ from the weak models by stronger assigned capacities for roof-to-wall (r2w) and stud to sill connections, garage pressure capacity, cracking capacity of masonry walls, gable end walls, decking and shingle capacities. The medium models differ from the weak models by increasing the strength of the roof-to-wall connections (toe nails vs. clips), roof decking capacity (nailing schedule), and masonry wall strength (un-reinforced vs. reinforced).

Any given strong, medium, or weak model may be altered by additional mitigation or retrofit measures individually or in combination. For example, from the base weak model, additional models were derived to represent historical building practices and mitigation techniques. The modified weak W10 model accounts for the use of tongue-and-groove plank decking in pre-1960s buildings. These buildings tend to exhibit higher deck strength capacities than the buildings with the plywood decking implemented in the base weak model, referred to as W00 (Shanmugam et al., 2009).

A modified medium model M10 was adopted that reflects the use of oriented strand board (OSB) decking with staples in the 1980s and pre-Andrew 1990s. This was considered an adequate alternative to nailed plywood at the time. It was, however, weaker in terms of wind resistance and was assigned a weaker deck attachment capacity than the standard medium model.

Additionally, retrofitted weak W01 and medium M01 models were derived from the base weak and medium models. They represent the case in which a structure has been reroofed and the decking re-nailed according to current code requirements. On the basis of the average lifespan of a roof, reroofing would be required periodically throughout the structure’s lifetime and would result in an increase in the deck attachment capacity and shingle ratings to meet current building code requirements. The deck attachment capacities of these models were therefore upgraded to produce the retrofitted weak W01 and medium M01 cases. The roof cover was also upgraded to rated shingles.

The base, retrofitted and modified versions of the weak and medium models were developed in order to provide a fine model resolution of quality of construction for homes constructed prior to 1994 and a portion of the homes prior to 2002. Weak and medium models represent approximately 80% of the existing single-family residential inventory in Florida, and are described in Table 4.3.1.

Two basic variations of the strong model represent construction quality for the remaining approximately 20% of the single-family residential inventory. The base strong model, S00, represents modern construction in locations inland, as well as the WBDR that is not overlapping the HVHZ. The difference in strong models between inland, S00, and WBDR, S00-OP, is due to the presence of metal shutters in WBDR. This base strong model incorporates modern requirements for nailing schedules, roof to wall connection products, masonry reinforcing, and roof shingle products and installation methods. The second strong model, S01, has upgrades to the capacity for roof cover, roof decking and roof to wall connections to reflect additional code requirements for HVHZ construction. The strong models are described in Table 4.3.2.

All models may be run without opening protection, with plywood opening protection, or with metal panel shutter opening protection installed, with increasing protection respectively.

The distribution of the weak, medium and strong model variations with respect to year built will be presented later in Table 4.3.5 and in the discussion of the models’ distribution in time.

[bookmark: _Ref345782162]Table 4.3.1. Weak and Medium Models
	
	Weak
	Medium

	
	W00
(base)
	W01
(retrofitted*)
	W10
(modified**)
	M00
(base)
	M01
(retrofitted*)
	M10
(modified***)

	Roof to wall
	Weak
	Weak
	Weak
	Medium
	Medium
	Medium

	Stud to sill
	Weak
	Weak
	Weak
	Medium
	Medium
	Medium

	Roof cover
	Weak
	Strong
	Weak
	Weak
	Strong
	Weak

	Roof deck
	Weak
	Strong
	Strong
	Medium
	Strong
	Weak

	Wall
	Weak
	Weak
	Weak
	Medium
	Medium
	Medium

	Gable end
	Weak
	Weak
	Weak
	Weak
	Weak
	Weak

	Garage
	Weak
	Weak
	Weak
	Weak
	Weak
	Weak

	*retrofitted refers to re-roof and re-nailed decking, occurring post-1993 for HVHZ and Monroe, and post-2001 for everywhere else. No other retrofits are included.
**modified weak refers to the base weak model with stronger decking to reflect the use of plank decking
***modified medium refers to the base medium model with weak decking to reflect the use of staples and/or OSB

[bookmark: _Ref345782191]Table 4.3.2. Strong Models
	
	Strong – inland S00
Strong - inland
	Strong –WBDR S00-OP
Strong –WBDR
	Strong – HVHZ – S01
Strong – HVHZ

	Roof to wall
	Strong
	Strong
	Upgraded Strong

	Stud to sill
	Strong
	Strong
	Strong

	Roof cover
	Strong
	Strong
	Upgraded Strong

	Roof deck
	Strong
	Strong
	Upgraded Strong

	Wall
	Strong
	Strong
	Strong

	Gable end
	Strong
	Strong
	Strong

	Garage
	Strong
	Strong
	Strong

	Shutters
	 no shutters
	 metal
	metal

Manufactured Homes Model

On the basis of the exposure study, it was decided to model four manufactured home (MH) types: (1) pre-1994—fully tied down, (2) pre-1994—not tied down, (3) post-1994—Housing and Urban Development (HUD) Zone II, and (4) post-1994—HUD Zone III. The partially tied-down homes are assumed to have a vulnerability that is an average of the vulnerabilities of fully tied-down and not tied-down homes. Because little information is available regarding the distribution of manufactured home types by size or geometry, it is assumed that all model types are single-wide manufactured homes. The modeled single-wide manufactured homes are 56 ft x 13 ft, have gable roofs, eight windows, a front entrance door, and a sliding-glass back door.

VULNERABILITY MATRICES

The MCS’s estimates of total building damage result in the formulation of vulnerability matrices for each modeled building type. The flowchart in Figure 4.3.1 summarizes the procedure used to convert the Monte Carlo simulations of physical external damage into a vulnerability matrix.

[image:]
[bookmark: _Ref294695437]Figure 4.3.1: Procedure to create vulnerability matrix
For each Monte Carlo model, 5000 simulations are performed at 8 different wind angles and 41 different wind speeds. This is 5000 x 8 x 41 = 1,640,000 simulations of external damage per model, which are then expanded to cover interior, utilities, and contents damage, plus ALE, as explained above.

Knowing the components of a home and the typical square footage, the cost of repairing all damaged components is estimated using cost estimation resources [e.g., RSMeans Residential Cost Data and Construction Estimating Institute (Langedyk and Ticola 2002)] and expert advice. These resources provide cost data from actual jobs based on estimates and represent typical conditions. Un-modeled nonstructural interior, plumbing, mechanical, and electrical utilities make up a significant portion of repair costs for a home.

Replacement cost ratios provide a link between modeled physical damage and the corresponding monetary losses. They can be defined as the cost of replacing a damaged component or assembly of a home divided by the cost of constructing a completely new home of the same type. The sum of the replacement cost ratios for all the components of a home is greater than 100% because the replacement costs include the additional costs of removal, repair, and remodeling.

An explicit procedure is used to convert physical damage of the modeled components to monetary damage. Since the replacement ratio of each modeled component is known, the monetary damage resulting from damage to a component expressed as a percentage of the home’s value can be obtained by multiplying the damaged percentage of the component by the component’s replacement ratio. For example, if 30% of the roof cover is damaged, and for this particular home type the replacement ratio of roof cover is 14%, the value of the home lost as a result of the damaged roof cover would be 0.30 x 0.14 = 4.2%. If the value of this home were, say, $150,000, the cost to replace 30% of the roof would be $150,000 x 0.042 = $6,300. In addition, the costs will be adjusted as necessary because of certain requirements of the Florida building code that might result in an increase of the repair costs (for example, the code might require replacement of the entire roof if 30% or more is damaged).

After the simulation results have been translated into damage ratios, they are then transformed into vulnerability matrices. A total of 4356 matrices for site-built homes is created for different combinations of wall type (frame or masonry), region (North, Central, or South), subregion (high wind velocity zone, wind-borne debris region, or other), roof shape (gable or hip), roof cover (tile or shingle), window protection (shuttered or not shuttered), number of stories (one or two), and strength (base weak W00, modified weak W10, retrofitted weak W01, base medium M00, modified medium M10, retrofitted medium M01, or strong S).

The cells of a vulnerability matrix for a particular structural type represent the probability of a given damage ratio occurring at a given wind speed. The columns of the matrix represent three-second gust wind 10-m wind speeds from 50 mph to 250 mph in 5 mph bands. The rows of the matrix correspond to damage ratios (DR) in 2% increments up to 20%, and then in 4% increments up to 100%. If a damage ratio is DR= 15.3%, it is assigned to the interval 14%<DR<16% with a midpoint DR=15%. After all the simulations have been counted, the total number of instances in each damage interval is divided by the total number of simulations per wind speed to determine the percentage of simulations at any damage state occurring at each speed. These percentages are the conditional probabilities of occurrence of a level of damage, given a certain wind speed. A partial example of a vulnerability matrix is shown in Table 4.3.3.

[bookmark: _Ref294693171]Table 4.3.3: Partial example of vulnerability matrix
	Damage\Wind Speed (mph)
	47.5 to 52.5
	52.5 to 57.5
	57.5 to 62.5
	62.5 to 67.5
	67.5 to 72.5

	0% to 2%
	1
	0.99238
	0.91788
	0.77312
	0.61025

	2% to 4%
	0
	0.00725
	0.0806
	0.21937
	0.36138

	4% to 6%
	0
	0.00037
	0.001395
	0.007135
	0.0235

	6% to 8%
	0
	0
	0.000125
	0.000375
	0.0025

	8% to 10%
	0
	0
	0
	0
	0.000375

	10% to 12%
	0
	0
	0
	0
	0.000375

	12% to 14%
	0
	0
	0
	0
	0.000625

	14% to 16%
	0
	0
	0
	0
	0.0005

	16% to 18%
	0
	0
	0
	0
	0.000125

	18% to 20%
	0
	0
	0
	0
	0.00012

	20% to 24%
	0
	0
	0
	0
	0.00025

	24% to 28%
	0
	0
	0
	0
	0

One important plot derived from the vulnerability matrix is the vulnerability curve. The vulnerability curve for any structural type is the plot of the mean damage ratio vs. wind speed. The model can also generate fragility curves (the probability of exceedance of any given damage level as a function of the wind speed) for each vulnerability matrix, although these curves are not used in the model.

Similar vulnerability matrices and vulnerability curves are developed for contents and ALE, one for each structural type. The whole process is also applied to manufactured homes.

Weighted Vulnerability Matrices

Building vulnerability matrices were created for every combination of region (Keys, South, Central, and North), construction type (masonry, wood, or other), roof shape (gable or hip), roof cover (tile or shingle), number of stories (one or two), shutters (with or without), and subregion (inland, wind-borne debris region, or high velocity zone). However, in general, there is little information available in an insurance portfolio file regarding the structural characteristics and the wind resistance of the insured property. Instead, insurance companies rely on the ISO fire resistance classification. Portfolio files have information on ZIP Code and year built. The ISO classification is used to determine if the home is constructed of masonry, timber, or other. The ZIP Code is used to define the region and subregion. The year the home was built is used to assist in defining whether a home should be considered weak, medium, or strong.

Region, subregion, construction type, and year built are determined from the insurance files, This leaves the roof shape, roof cover, and shutter options undefined. From the exposure study of the 33 Florida counties, the distribution of number of stories, roof shapes, and roof cover by age per region can be extrapolated. For each age group, we define a weighted matrix for each construction type in each region and subregion. The weighted matrices are the sum of the corresponding vulnerability model matrices weighted on the basis of their statistical distribution. For example, consider a masonry home built in the wind-borne debris region of central Florida in 1990. The exposure study indicates that 66% of such homes have gable roofs, 85% have shingle roof cover, and 20% have window shutters. Weight factors can be computed for each model matrix based on these statistics. For example, the Central Florida, gable, tile, no shutters, masonry matrix would have a weight factor of 66% (masonry percent gable) x 15% (percent tile) x 80% (percent without shutters) = 7.9%; this is the percentage of that home type that would be expected in this region, for that year built. Each model matrix is multiplied by its weight factor, and the results are summed. The final result is a weighted matrix that is a combination of all the model matrices and can be applied to an insurance policy if only the ZIP Code, year built, and ISO classification are known. As a result, for each subregion (standard, wind-borne debris region, and high velocity hurricane zone) of each region (Keys, South, Central, and North), there will be sets of weighted matrices (masonry, wood, and others) for weak, medium, and strong structures.

Age-Weighted Matrices

The year built or year of last upgrade of a structure in a portfolio might not be available when performing a portfolio analysis to estimate hurricane losses in a certain region. In that case, it becomes necessary to assume a certain distribution of ages in the region to develop an average vulnerability by combining weak, medium, and strong.

The tax appraisers’ databases include effective year of construction and thus provide guidance as to how to weigh the combined weak, medium, and strong model results when year built information is not available in other portfolio files. In each region, the data were analyzed to provide the age statistics. These statistics were used to weigh the average of weak, medium, and strong vulnerabilities in each region. The results are shown in Figure 4.3.2 for the wind-borne debris zone in the Central region. The different weighted vulnerability curves are shown for the weak, medium, and strong models, superimposed with the age-weighted vulnerability curve.

[image:]
[bookmark: _Ref294695457]Figure 4.3.2: Weighted masonry structure vulnerabilities in the Central wind-borne debris region
Mapping of Insurance Policies to Vulnerability Matrices

The FPHLM processes insurance portfolios from many different insurance companies. Since there is no universal way to classify building characteristics, each company assigns different names or classifications to the building variables. In many cases most of the building structural information in a portfolio is unknown since, in general, detailed records of building characteristics are missing. In a minority of cases, parameters are known, but they do not match any value in the library of the FPHLM.

In this case these parameters are classified as “other.” For example, the FPHLM models only timber or masonry residential single-family homes. A steel structure would be classified as other. This makes the mapping of existing portfolio policies to available vulnerability matrices challenging. The engineering team designed a mapping tool that can be used to read a policy and assign building characteristics, if unknown or other, on the basis of building population statistics and year built, where the year built serves as a proxy for the strength of the building. Once all the unknown parameters in the policy have been defined, an unweighted vulnerability matrix based on the corresponding combination of parameters can then be assigned. If the number of unknown parameters exceeds a certain threshold defined by the user of the program, he or she always has the choice of using a weighted matrix or age-weighted matrix instead.

In the few cases in which a policy in a portfolio has a combination of parameters that would result in a vulnerability matrix different than any of the existing matrices in the library of the FPHLM, the program assigns to the policy a so-called “other” weighted matrix. The “other” matrices are an average of timber and masonry matrices.

Table 4.3.4: Assignment of vulnerability matrix depending on data availability in insurance portfolios
	Data in Insurance Portfolio
	Year Built
	Exterior Wall
	No. of Story
	Roof Shape
	Roof Cover
	Opening Protection
	Vulnerability Matrix

	Case 1
	known
	known
	known
	known
	known
	known
	Use unweighted vulnerability matrix

	Case 2
	known
	Known or unknown
	Any combination of the four parameters is either unknown or other
	use weighted matrix
or
replace all unknown and others randomly based on stats and use unweighted vulnerability matrix

	Case 3
	known
	other
	Any combination of the four parameters is either unknown or other
	use the “other” weighted matrix

	Case 4
	unknown
	known
	Any combination of the four parameters is either unknown or other
	use age weighted matrix
or
replace all unknown and others randomly based on stats and use unweighted vulnerability matrix

	Case 5
	unknown
	other
	Any combination of the four parameters is either unknown or other
	Use age weighted matrices for “other”

MODELS’ DISTRIBUTION IN TIME

Over time the codes used for construction in Florida have evolved to reduce wind damage vulnerability. The weak W00, modified weak W10, retrofitted weak W01; medium M00, modified medium M10, retrofitted medium M01; and strong models represent this evolution in time of relative quality of construction in Florida. Each model is representative of the prevalent building type for a certain historical period. However, the assignment of a building strength (its relative vulnerability to wind damage) based on its year of construction is not a straightforward task. The appropriate relationship between age and strength is a function of location within Florida, code in place in that location, and code enforcement policy (also regional). It is therefore important to define the cut-off date between the different periods since the overall aggregate losses in any region are determined as a mixture of homes of various strengths (ages). The cut-off dates are based on both the evolution of the building code and the prevailing local builder/community code enforcement standards in each era.

Given the importance of these issues in the estimation of wind damage vulnerability, a brief history of codes and enforcement is presented next.

Construction practice in South Florida recognized the importance of truss-to-wall connection as early as the 1950s, when it became common to use clips rather than toe nails. The clips were not as strong as modern straps, but they were an improvement over nails. North Florida has fewer historical occurrences of severe hurricane impact, resulting in weaker construction in general than in the south within the same given era. The use of clips became relatively standard statewide by the mid 1980s. The use of improved shingle products and resistant garage doors became more common after Andrew.

The issue of code enforcement has also evolved over time. The State of Florida took an active role in uniform enforcement only recently. Prior to Andrew, a given county may have built to standards that were worse than or exceeded the code in place at the time. Following consultation with building code development experts, which included the director of the Miami-Dade building department, the president of an engineering consulting firm and consultant to the South Florida Building Code, and others, the consensus was that the issue was not only the contents of the code, but also enforcement of the code.

In an attempt to standardize construction, some cities and counties in Florida adopted building codes, some of the earliest being Clearwater, which adopted a draft of the Standard Building Code (SBC) in 1945 (Cox, 1962 and SPT, 1945); Daytona Beach in 1946 (TMJ, 1946); Bradenton and Manatee counties by 1950; Sarasota County in 1956 (SJ, 1956), and Riviera Beach in Palm Beach County in 1957 (PBP, 1957). Miami-Dade and Broward counties adopted the South Florida Building Code (SFBC) in 1957 and 1961, respectively. The SFBC, one of the most stringent codes in the United States, had had some wind provisions since its inception. SBC made wind-load provisions mandatory in 1986. Modern wind design started in 1972 and improved considerably for low-rise construction in 1982 (Mehta, 2010). In addition, Florida’s construction boom of the 1970s led the state authorities to promote a statewide uniformity of building standards. The first attempt was Chapter 553, “Building Construction Standards,” of the Florida Statutes (F.S.), which was enacted in 1974 and required all counties to adopt a code by January 1st, 1975. The statute selected four allowable minimum codes as the pool from which jurisdictions needed to adopt their official building codes, namely: (1) SBC (SBCCI 1975), (2) the SFBC (SFBC 1957), (3) the One and Two Family Dwelling Code, (CABO) (ICC 1992) and (4) the EPCOT code (enforced in Walt Disney World and based on the SBC, SFBC, and Uniform Building Code) (RCID 2002). However, the responsibility for the administration and enforcement was left to the discretion of 400 local jurisdictions as diverse as local governments, local school boards, and state agencies (Governor’s Report 1996). The State allowed the jurisdictions to choose any code from the four allowed codes and granted them the authority to amend the code according to their needs, as long as the amendments resulted in more stringent requirements and the power to enforce it.

Problems in the Building Code System

After 1975, there were mainly two codes in use in Florida before the 1990s: the SFBC in Miami-Dade and Broward counties and the SBC in most of the rest of the state. Although the SFBC was the most stringent code in Florida, this was uncorrelated with compliance and enforcement from many builders, design professionals, and inspectors. To a lesser extent, some of the code stringency was eroded for almost three decades (Getter 1992; Fronstin and Holtmann 1994). Some measures that watered down the code included the allowance of power-driven staples instead of nails for roof decking, thinner roofing-felt, 63 mph resisting shingles, and waferboards (pressed wood) as a replacement for plywood for roof decking. A study by Florida A&M in the late 1980s (IBS-FAMU 1987) also highlighted deficiencies in code compliance and enforcement in the rest of Florida. Furthermore, the local amendments created a state of confusion, making it difficult for engineers, architects, and contractors to identify the locally administered codes and their jurisdictions (Shingle 2007; Barnes 1991).

The aftermath of Hurricane Andrew confirmed the concerns reported above. Post-storm damage surveys revealed innumerable violations to the SFBC (the absence of corner columns, vertical reinforcement, and gypsum board used as wall sheathing to name a few) that produced catastrophic failures of buildings (Cook and Sotani 1994; Khan and Suaris 1993; Khan et al. 1993). Clearly there were serious shortcomings in the compliance and enforcement process.

For later hurricanes like Opal and Erin (1995), the rebuild process was also delayed because of the intricacies of the jurisdictional, enforcement, and compliance issues of the codes, exacerbating the losses. An expeditious and unambiguous system would have eased proper compliance and enforcement and therefore would have drastically reduced the losses (Governor’s Report 1996).

Post-Andrew Building Code Development Enforcement

The South Florida Building Code

Three to four months after Andrew, a process was started in South Florida to reform the code and the code enforcement system. Engineers became directly involved in the design of residential structures. OSB decking and staples were banned. Wind-rated shingles were required. In 1994 the whole SFBC was reformed and it adopted the ASCE7 wind provisions.

The Florida Building Code

After Andrew, local and state agencies became uncertain of how to guarantee building safety. Concerns arose that a diminution of insurance availability would occur, which threatened the continuity of economic growth. In response, Governor Lawton Chiles established a Building Codes Study Commission in 1996 to review the current system of codes. The Governor’s Commission found that the existing system had led to a “patchwork of technical and administrative processes” and its recommendations led to the formation in 1998 of the Florida Building Commission responsible for creating a unified Florida Building Code (Governor’s Report 1996).

For the new unified Florida Building Code (FBC), the Commission selected the SBC, developed in Alabama from 1940 to 1945 (Ratay 2009), as the base code because 64 out of 67 counties were already using predominantly the 1973 and the 1997 versions of the code, with amendments (Shingle 2007). The SFBC was later included as an additional base code in 1999 to meet the special requirements of South Florida. The Building Commission worked to reach a consensus among all stakeholders, and the first version of a unified FBC was made effective on March 1, 2002 (Blair 2009). Studies indicate that the losses due to hurricanes have decreased since the enactment of the FBC (Gurley et al. 2006).

Application of the Building Code History

The history above clearly indicates that a completely accurate accounting of all building practices in every region of Florida going back many decades is not possible, given the limited policy information of age and location. To accommodate the history of residential building construction practice in Florida, buildings were classified into different eras. The classifications shown in Table 4.3.5 were adopted for characterizing the regions by age and model. The strength descriptions of weak, modified weak, medium, modified medium, and strongwithin Table 4.3.5 can be found inare provided at the bottom of Table 4.3.5 in terms of the nomenclature used in Tables 4.3.1 and 4.3.2. In Table 6, Strong_OP refers to the strong model with opening protection. The use of opening protection is required by current code in the regions in which Strong_OP is assigned, and not required elsewhere. Modified Strong refers to the stronger strong S01 described in Table 1b. Thus the application of the strong model is regionally dependent. The specific building eras and classifications per region are based on the evolution of the building codes in Florida and the opinions of the experts consulted.

[bookmark: _Ref345782446]Table 4.3.5. Age classification of the models per region.
	
	Pre-1960
	1960-1970
	1971-1980
	1981-1993
	1994-2001
	2002-pres.

	HVHZ

	⅔ modified Weak,
⅓ Medium
	⅔ Weak,
⅓ Medium
	½ Weak,
½ modified Medium
	⅔ Weak,
⅓ modified Medium
	Modified Strong
	Modified Strong

	Keys
	½ modified Weak,
½ Medium
	Medium
	Medium
	Medium
	⅓ Medium
⅔ Strong_OP
	Strong_OP

	WBDR
	modified Weak
	⅔ Weak,
⅓ Medium
	⅓ Weak,
⅔ Medium
	⅓ Weak,
⅔ Medium
	½ Medium,
½ Strong_OP
	Strong_OP

	Inland
	modified Weak
	⅔ Weak,
⅓ Medium
	½ Weak,
½ Medium
	½ Weak,
½ Medium
	½ Medium,
½ Strong
	Strong

	Table 6 Nomenclature with respect to Tables 1a and 1b
Strong: 		S00
 Strong_OP: 		Strong model, S00, run with opening protection, as per FBC requirement in these regionsS00-OP
Modified Strong: 	S01
Medium: 		M00
Modified Medium: 	M10
Weak: 			W00
Modified Weak: 	W10

	
	Pre-1960
	1960-1970
	1971-1980
	1981-1993
	1994-2001
	2002-pres.

	HVHZ

	⅔ modified Weak,
⅓ Medium
	⅔ Weak,
⅓ Medium
	½ Weak,
½ modified Medium
	⅔ Weak,
⅓ modified Medium
	Modified Strong
	Modified Strong

	Keys
	½ modified Weak,
½ Medium
	Medium
	Medium
	Medium
	⅓ Medium
⅔ Strong_OP
	Strong_OP

	WBDR
	modified Weak
	⅔ Weak,
⅓ Medium
	⅓ Weak,
⅔ Medium
	⅓ Weak,
⅔ Medium
	½ Medium,
½ Strong_OP
	Strong_OP

	Inland
	modified Weak
	⅔ Weak,
⅓ Medium
	½ Weak,
½ Medium
	½ Weak,
½ Medium
	½ Medium,
½ Strong
	Strong

Note: HVHZ means high velocity hurricane zone; WBDR means wind-borne debris region.

Appurtenant Structures

Appurtenant structures are not attached to the dwelling or main residence of the home, but they are located on the insured property. These types of structures could include detached garages, guesthouses, pool houses, sheds, gazebos, patio covers, patio decks, swimming pools, spas, etc. From insurance claims data there appears to be no obvious relationship between building damage and appurtenant structure claims. One of the primary reasons for this may be the variability of the structures that are covered by an appurtenant structure policy.

Since the appurtenant structures damage is not derived from the building damage, only one vulnerability matrix is developed for appurtenant structures. To model appurtenant structure damage, three equations were developed. Each determines the appurtenant structure insured damage ratio as a function of wind speed. One equation predicts damage for structures highly susceptible to wind damage, the second predicts damage for structures moderately susceptible to wind damage, and the third predicts damage for structures that are affected only slightly by wind. Because a typical insurance portfolio file gives no indication of the type of appurtenant structure covered under a particular policy, a distribution of the three types (slightly vulnerable, moderately vulnerable, and highly vulnerable) must be assumed and is validated against the claim data.

[bookmark: _Toc346555790]VFRMH Design Requirements

In addition to a classification of building by structural types (wood or masonry walls, hip or gable roof), it was also necessary to classify the buildings by relative strength to reflect changes in construction practice over many years. The vulnerability team has developed strong, medium, and weak strength models for each site-built structural type to represent relative quality of original construction as well as post-construction mitigation. The weak and medium models have additional variants that reflect historical building practices, roof retrofits, and reroofing of existing structures as mandated by the newer building standards. The strong model has two variants to delineate code requirements that are regionally dependent. One strong variant reflects inland and wind-borne debris region (WBDR) construction, and another (stronger) variant reflects construction in the high velocity hurricane zone (HVHZ).

The three strength categories are based on the same model framework, in which strength is represented by the capacities assigned to the modeled building components. For example, the strong models differ from the weak models by stronger assigned capacities for roof-to-wall (r2w) and stud to sill connections, garage pressure capacity, cracking capacity of masonry walls, gable end walls, decking and shingle capacities. The medium models differ from the weak models by increasing the strength of the roof-to-wall connections (toe nails vs. clips), roof decking capacity (nailing schedule), and masonry wall strength (un-reinforced vs. reinforced).

Any given strong, medium, or weak model may be altered by additional mitigation or retrofit measures individually or in combination. For example, from the base weak model, additional models were derived to represent historical building practices and mitigation techniques. The modified weak W10 model accounts for the use of tongue-and-groove plank decking in pre-1960s buildings. These buildings tend to exhibit higher deck strength capacities than the buildings with the plywood decking implemented in the base weak model, referred to as W00 (Shanmugam et al., 2009).

A modified medium model M10 was adopted that reflects the use of oriented strand board (OSB) decking with staples in the 1980s and pre-Andrew 1990s. This was considered an adequate alternative to nailed plywood at the time. It was, however, weaker in terms of wind resistance and was assigned a weaker deck attachment capacity than the standard medium model.

Additionally, retrofitted weak W01 and medium M01 models were derived from the base weak and medium models. They represent the case in which a structure has been reroofed and the decking re-nailed according to current code requirements. On the basis of the average lifespan of a roof, reroofing would be required periodically throughout the structure’s lifetime and would result in an increase in the deck attachment capacity and shingle ratings to meet current building code requirements. The deck attachment capacities of these models were therefore upgraded to produce the retrofitted weak W01 and medium M01 cases. The roof cover was also upgraded to rated shingles.

The base, retrofitted and modified versions of the weak and medium models were developed in order to provide a fine model resolution of quality of construction for homes constructed prior to 1994 and a portion of the homes prior to 2002. Weak and medium models represent approximately 80% of the existing single-family residential inventory in Florida.

Two basic variations of the strong model represent construction quality for the remaining approximately 20% of the single-family residential inventory. The base strong model, S00, represents modern construction in locations inland, as well as the WBDR that is not overlapping the HVHZ. The difference in strong models between inland, S00, and WBDR, S00-OP, is due to the presence of metal shutters in WBDR. This base strong model incorporates modern requirements for nailing schedules, roof to wall connection products, masonry reinforcing, and roof shingle products and installation methods. The second strong model, S01, has upgrades to the capacity for roof cover, roof decking and roof to wall connections to reflect additional code requirements for HVHZ construction.

The window pressure capacities for strong models were upgraded based on manufacturer design specifications and test pressures.

All models may be run without opening protection, with plywood opening protection, or with metal panel shutter opening protection installed, with increasing protection respectively.

Structural types are delineated by a combination of four characteristics: number of stories (either one or two), roof cover (either shingle, tile, or metal), roof shape (either gable or hip), and exterior wall material (either concrete blocks or timber).

Version 5.0 of the FPHLM is to implement the following changes:

· The capacity of the metal roof option was upgraded for strong models and retrofitted weak and medium models. The metal roof capacity is a representative of modern metal roof product and installation, and thus highly resilient to wind loads. The roof decking nailing schedule required for the application of metal roofs was employed concurrently, rendering models with metal roofs stronger in both roof cover and roof decking capacity. This modification was made to allow model variations to reflect the most recent exposure study results (Datin et al. 2011).

· Metal panel window protection is now the default for the shutter-on option for strong models in HVHZ and WBDR, while plywood is employed for weak and medium models, and for inland structures. This reflects the code requirement for new construction in HVHZ and WBDR. Inland structures are not required to have window protection, thus those structures are more likely to employ plywood (FBC 2010).

· The strong model was updated to include an upgraded (modified) strong option. This variation has an increased capacity of roof to wall connections, roof sheathing and roof cover relative to the strong model in the 4.1 submission. This reflects current FBC requirements for sheathing nailing schedule, roof to wall connection products, and shingle products for HVHZ (FBC 2010, Datin et al. 2011, Simpson Strong Tie 2011).

· The window pressure capacities for strong models were upgraded based on manufacturer design specifications and test pressures (FBC 2010).

· The definition of the WBDR boundaries were updated based on the latest FBC definition (FBC 2010).

The footprint options for the physical damage matrix simulation model were consolidated into a single timber frame and single masonry footprint. The previous version used four footprints (south concrete block, south timber, north concrete block, north timber). This version uses a single timber footprint (the north model) and a single concrete block footprint (the south model).

· The life cycle duration (time between re-roofing) was changed from 20 to 30 years.

Name:	Vulnerability and Fragility for Residential and Manufactured Homes

Description:	The user enters variables such as number of stories, building type, shutter protection, strengths, roof shape, date, Weibull distribution parameter, number of simulations, wind speed increment, and other factors for estimating costs. The program generates type 1 and type 2:
· vulnerability matrices,
· weighted vulnerability matrices, and
· age-weighted vulnerability matrices
	
1. The user generates the base vulnerability matrices:
1.1. The user manually selects the following parameters:
Regular Input:
Wall type: concblk, wood
Type of roof: hip, gable
Region: south, central, north
Strength: strong, medium, weak
Shutters: 1 story no shutters, 1 story with shutters, 2 stories no shutters, 2 stories with shutters
Weibul1 Parameter
Number of simulations
Wind increment

Predefined Cost Parameters: cost of foundation, cost of roof and wall sheathing, cost of roof cover, cost of new trusses and connections, cost of new exterior walls, cost of 15 new windows, cost of new front entrance and back sliding doors, cost of new garage door, cost of new gable end, cost of new interior, cost of new mechanical, cost of electrical, cost of plumbing

1.2. The system defines kii and kic parameters based on strength
1.3. Cost estimation model: for each FL region, the system calculates average cost of new homes from costs of sheathing, roof cover, gable roof, walls, windows, doors, garage, hip roof, gable roof, interior, mechanical, electrical, plumbing, foundation, and replacement ratios.
1.4. Damage matrices: Based on the input from the user, the system will open the appropriate Monte Carlo result files and convert damage values into decimal percentages,
1.5. For eight different angles (0,45,90,135,180,225,270,315), from 50mph to 250mph, at defined wind interval, compute ki variable (leak model) from current wind:
1.5.1. Leak model: compute ki variable
1.5.2. Interior damage: from 1 up to the defined number of simulations, apply interior equations,
1.5.3. Electrical plumbing mechanical damage: from 1 up to the defined number of simulations, apply electrical and plumbing equations,
1.5.4. Adjustment for threshold: from 1 up to the defined number of simulations, adjust damage percentages based on windborne debris and high velocity hurricane zones,
1.5.5. Building damage: from 1 up to the defined number of simulations, convert physical damage into monetary damage
1.5.6. ALE and contents: from 1 up to the defined number of simulations, compute ALE and contents damage based on damage to the interior
1.6. Vulnerability type1: build vulnerability matrices of type 1,
Type 1 matrices give the conditional probability of occurrence of a particular state of damage given a 3 second gust wind speed. Matrices are created for building, contents, and ALE.
1.7. Vulnerability type2: build vulnerability matrices of type 2,
Type 2 contents and ALE matrices give the conditional probability of a particular state of contents and ALE damage at a given level of structural damage. Matrices are created for contents and ALE.
1.8. Save results: save matrices to disk.
The output generated consists of vulnerability matrices for different combinations of wall type (frame, masonry, or other), region (North, Central, South, or Keys), subregion (high velocity hurricane zone, wind-borne debris region, or other), roof shape (gable or hip), roof cover (tile or shingle), window protection (shuttered or not shuttered), number of stories (one or two), and strength (base weak W00, modified weak W10, retrofitted weak W01, base medium M00, modified medium M10, retrofitted medium M01, or strong S).
2. The user generates the weighted vulnerability matrices
2.1. The user manually sets the input:
2.1.1. External input:
Path to vulnerability matrices
Path to statistical data derived from exposure study
2.1.2. Classification of counties and definition of building parameters:
Type of vulnerability: type 1, type 2
Building shape
Date of the run
Wind increment
List of wind-borne debris counties
List of not wind-borne debris counties
List of Northern county names
List of Northern county codes
List of Central county names
List of Central county codes
List of Southern county names
List of Southern county codes
List of county names in the Key
County code in the Keys
2.1.3. Define limits for eras, i.e., eras where each type of matrix is to be used.
2.2. Calculate probabilities of buildings: calculate conditional probabilities based on statistical data
2.3. Read required vulnerability matrices: read un-weighted vulnerability matrices from the disk
2.4. Calculate weighted matrices: weigh vulnerability matrices based on computed statistics
2.5. Save weighted matrices to disk: save matrices to the disk
3. The user generates the age-weighted vulnerability matrices
3.1. The user manually sets the input:
3.1.1. External input:
Path to weighted matrices
Path to statistical data derived from exposure study
3.1.2. Classify counties and define building parameters
Type of vulnerability: type 1, type 2
Building shape
Date of the run
Wind increment
List of wind-borne debris counties
List of not wind-borne debris counties
List of Northern county names
List of Northern county codes
List of Central county names
List of Central county codes
List of Southern county names
List of Southern county codes
List of county names in the Keys
County code in the Keys
3.2. Define limits for eras, i.e., eras where each type of matrix is to be used
3.3. Calculate probabilities of buildings: calculate conditional probabilities based on statistical data
3.4. Read required vulnerability matrices: read weighted vulnerability matrices from the disk
3.5. Calculate age-weighted matrices: weigh weighted-matrices based on age.
3.6. Save age-weighted matrices to disk
4. The user generates the manufactured homes vulnerability matrices:
4.1. The user manually selects the following parameters:
Regular Input:
Weibul1 Parameter: Bmax= 1.65, Bmin=0.5
Number of simulations: nnn=2500
Wind increments: wi=5

Predefined Cost Parameters: cost of foundation, cost of roof and wall sheathing, cost of roof cover, cost of new trusses and connections, cost of new exterior walls, cost of new windows, cost of new front entrance and back sliding doors, cost of new interior, cost of new mechanical, cost of electrical, cost of plumbing

Predefined structure areas building and roof area, building and roof lengths
4.2. Define kii and kic parameters based on strength (pre or post 1994)
4.3. Cost estimation model: For single and double-wide homes, calculate average cost of new homes from costs of foundation, wall sheathing, roof cover, new trusses and connections, exterior walls, new windows, new front entrance and back sliding doors, interior, mechanical, electrical, and plumbing.
4.4. Damage matrices: Based on the input from the user the system will open the appropriate Monte Carlo result files and convert damage values into decimal percentages,
4.5. For eight different angles (0,45,90,135,180,225,270,315), from 50mph to 250mph, at defined wind interval, compute ki variable (leak model) from current wind:
4.5.1. Leak model: compute ki variable
4.5.2. Interior damage: from 1 up to the defined number of simulations, apply interior equations,
4.5.3. Electrical plumbing mechanical damage: from 1 up to the defined number of simulations, apply electrical and plumbing equations,
4.5.4. Adjustment for threshold: from 1 up to the defined number of simulations, adjust damage percentages for windows, roof cover, and roof sheathing; for example, if damage in windows is greater than 50%, then replace all windows,
4.5.5. Building damage: from 1 up to the defined number of simulations, convert physical damage into monetary damage
4.5.6. ALE and contents: from 1 up to the defined number of simulations, compute ALE and contents damage based on damage to the interior
4.6. Vulnerability type1: build single wide manufactured matrices of type 1,
Type 1 matrices give the conditional probability of occurrence of a particular state of damage given a 3 second gust wind speed. Matrices are created for building, contents, and ALE.
4.7. Vulnerability type2: build single wide manufactured matrices of type 2,
Type 2 contents and ALE matrices give the conditional probability of a particular state of contents and ALE damage at a given level of structural damage. Matrices are created for contents and ALE.
4.8. Save the matrices to the disk
5. The user generates the weighted vulnerability matrices
5.1. The user enters the weibull parameter and weighing statistics for each region.
5.2. Read required vulnerability matrices: read weighted manufactured vulnerability matrices from the disk
5.3. Calculate weighted matrices: weigh vulnerability matrices based on given statistics
5.4. Save weighted matrices to disk: save matrices to the disk

The statistics data required for weighing and age-weighting the site-built vulnerability matrices need to provide the following conditional probabilities for each county, and for the eras pre-60, 60-70, 71-80, 81-93, 94-01, post-01:

	Exterior Wall
	P(Masonry | Era)

	
	P(Timber | Era)

	
	P(Other | Era)

	Roof Cover
	P(Shingle | Concrete block, Era)

	
	P(Tile | Concrete block, Era)

	
	P(Metal | Concrete block, Era)

	
	P(Other | Concrete block, Era)

	
	P(Shingle | Timber, Era)

	
	P(Tile | Timber, Era)

	
	P(Metal | Timber, Era)

	
	P(Other | Timber, Era)

	
	P(Shingle | Other, Era)

	
	P(Tile | Other, Era)

	
	P(Metal | Other, Era)

	
	P(Other | Other, Era)

	Roof Shape
	P(Gable | Era)

	
	P(Hip | Era)

	
	P(Flat | Era)

	
	P(Other | Era)

	Number of stories
	P(One story | Era)

	
	P(Two stories | Era)

	
	P(Three stories | Era)

	
	P(More than three stories | Era)

The main outputs of the VFRMH are different types of vulnerability matrices. The table below provides a partial example of a vulnerability matrix:

Table 4.3.6: Partial example of vulnerability matrix
	Damage\Wind Speed (mph)
	47.5 to 52.5
	52.5 to 57.5
	57.5 to 62.5
	62.5 to 67.5
	67.5 to 72.5

	0% to 2%
	1
	0.99238
	0.91788
	0.77312
	0.61025

	2% to 4%
	0
	0.00725
	0.0806
	0.21937
	0.36138

	4% to 6%
	0
	0.00037
	0.001395
	0.007135
	0.0235

	6% to 8%
	0
	0
	0.000125
	0.000375
	0.0025

	8% to 10%
	0
	0
	0
	0
	0.000375

	10% to 12%
	0
	0
	0
	0
	0.000375

	12% to 14%
	0
	0
	0
	0
	0.000625

	14% to 16%
	0
	0
	0
	0
	0.0005

	16% to 18%
	0
	0
	0
	0
	0.000125

	18% to 20%
	0
	0
	0
	0
	0.00012

	20% to 24%
	0
	0
	0
	0
	0.00025

	24% to 28%
	0
	0
	0
	0
	0

[bookmark: _Toc346555791]Computer Model Design

[bookmark: _Toc346555792]Use Case View of VFRMH

A.	Actors:

There is one actor in VFRMH, the scientists.

B.	Use Case:

Use case VFRMH is used to estimate the ability of certain structures to withstand hurricane-force winds. It uses the structural damage information provided by the MCS (Monte Carlo Simulation) and converts it to vulnerability matrices, which are used by the actuarial model for computation of losses. The output matrices are (1) un-weighted matrices (i.e., for the case when all the engineering attributes are available in the insurance loss model), (2) weighted matrices (i.e., for the case when some of the engineering attributes are not available), and (3) aged-weighted matrices (for the case when engineering attributes are not available in the insurance loss model including the year built attribute).

C. 	Use Case Diagram:
 (
Figure
4.3
.
3
:
Use case diagram for VFRMH
) (

VFRMH
)

[bookmark: _Toc346555793]System Design

This section describes the system design. Appropriate diagrams are provided to describe the system functions, activities, and the overall flowchart of the VFRMH.

The VFRMH consists of three main components: vulnerability component, weighting component, and age-weighting component. The vulnerability component generates the vulnerability matrices for combinations of wall type (frame or masonry), region (North, Central, South, and Keys), subregion (high velocity hurricane zone, wind-borne derbis region, or other), roof shape (gable or hip), roof cover (tile or shingle), window protection (shuttered or not shuttered), number of stories (one or two), and strength (base weak W00, modified weak W10, retrofitted weak W01 ,base medium M00, modified medium M10, retrofitted medium M01, or strong S). The weighting component takes as input the vulnerability matrices and generates weighted matrices, which are weighted by roof shape, roof cover, and window protection using statistics from the exposure study. The age-weighted component takes the weighted matrices and generates age-weighted matrices, which are weighted based on a distribution of ages (obtained from the exposure study) in the region from the weighted weak, medium, and strong matrices.

The overall flowchart of the VFRMH components is shown in Figure 4.3.4 and Figure 4.3.5. Figure 4.3.4 depicts the vulnerability program, whereas Figure 4.3.5 depicts the flowchart of the weighting and age-weighting programs.

[image:]
[bookmark: _Ref294695476]Figure 4.3.4: Overall flowchart of VFRMH’s vulnerability program

[image:]
[bookmark: _Ref294695482]Figure 4.3.5: Overall flowchart of VFRMH’s weighting and age-weighting programs

The matrix-naming scheme of the site-built model allows the identification of the building characteristics in the name of the matrices. Fields in this naming scheme are the following:

Vulnerability Type
Matrix Type
Exterior wall
Region
Sub Region
Strength
Number of Story
Roof Shape
Roof Cover
Decking
Roof to Wall Connection
Wall to Sill Connection
Underlayment
Garage Door
Window Protection
Door Protection
Shape
Date

In addition, literal values of building characteristics have been abbreviated so as to reduce the names of the matrices which increased substantially due to the inclusion of all the parameters in the new naming scheme. The table below shows the adopted nomenclature abbreviations:

	Parameter
	Value
	Abbreviation

	Model
	Residential
	res

	Type
	Buildings
	bldg

	
	Contents
	cont

	
	Additional Living Expenses
	time

	
	Interior
	int

	Region
	North
	North

	
	Central
	Central

	
	South
	South

	Sub-region
	None
	None

	
	Wind-Borne Debris Region
	WBDR

	
	High Velocity Hurricane Zone
	HVHZ

	Strength
	Weak
	Weak

	
	Medium
	Medium

	
	Strong
	Strong

	Exterior Wall
	Timber / Frame
	tbr

	
	Unreinforced Masonry
	MsryU

	
	Reinforced Masonry
	MsryR

	Roof Shape
	Unbraced Gable
	gblU

	
	Braced Gable
	gblB

	
	Hip
	hip

	Roof Cover
	Unrated shingle
	ShngU

	
	Rated shingle
	ShngR

	
	High Capacity Rated Shingle
	ShngH

	
	Tile
	Tile

	
	Metal
	metal

	Deck Attachment
	Plank
	Plk

	
	6d@12’’
	6d

	
	8d@12’’
	8d12

	
	8d@6’’
	8d6

	
	High Capacity 8d@6’’
	RS6

	Wall Connection
	Nail
	tnl

	
	Clip
	clp

	
	Strap
	stp

	Stud-to-sill connection
	Nail
	tnl

	
	Clip
	clp

	
	Strap
	strp

	Roof membrane
	Regular
	reg

	
	Strong
	strg

	
	Joint sealing
	strg

	
	Taping
	strg

	Garage Door
	Unbraced
	grgU

	
	Braced
	grgB

	
	Strong
	grgS

	Door Protection
	None
	none

	
	Shuttered
	shut

	Opening Protection
	None
	none

	
	Standard Glass
	shutt

	
	Laminated Glass
	Shut

	
	Impact resistance Glass
	Shut

	
	Plywood
	plySht

	
	Metal
	stlSht

	Shape
	Rectangle
	rect

With regards to the statistical data set required in the weighting process, the data set was compiled in MATLAB’s MAT format so that the MATLAB scripts corresponding to the weighing and age-weighting processes can utilize the statistical data seamlessly. In the MAT format, the statistical data set is required as six MAT files, each one containing a matrix named “data” of 77x52, where rows represent counties and the columns statistics. The file names are “Before_1960”, “1960_1970”, “1971_1980”, “1981_1993”, “1994_2001”, after “After_2001”. The columns of the matrix need to have the following information from row 1 up to row 67, where “Era” is specified by each file:
	Column
	Statistical Data

	1
	County codes as specified in the Report of Activities

	2
	Not used

	3
	Not used

	
	Exterior Wall

	4
	P(Masonry | Era)

	5
	P(Timber | Era)

	6
	P(Other | Era)

	
	Roof Cover

	7
	P(Shingle | Concrete block, Era)

	8
	P(Tile | Concrete block, Era)

	9
	P(Metal | Concrete block, Era)

	10
	P(Other | Concrete block, Era)

	11
	P(Shingle | Timber, Era)

	12
	P(Tile | Timber, Era)

	13
	P(Metal | Timber, Era)

	14
	P(Other | Timber, Era)

	15
	P(Shingle | Other, Era)

	16
	P(Tile | Other, Era)

	17
	P(Metal | Other, Era)

	18
	P(Other | Other, Era)

	
	Roof Shape

	19
	P(Gable | Era)

	20
	P(Hip | Era)

	21
	P(Flat | Era)

	22
	P(Other | Era)

	
	Number of stories

	23
	P(One story | Era)

	24
	P(Two stories | Era)

	25
	P(Three stories | Era)

	26
	P(More than three stories | Era)

[bookmark: _Toc346555794]Implementation of the Vulnerability and Fragility use case for Residential and Manufactured Home

The VFRMH and all of its components are implemented in MATLAB. The fact that many calculations are performed on matrices and vectors made MATLAB the preferred choice of implementation environment for the VFRMH.

The main purpose of the VFRMH model is to generate vulnerability matrices for both site-built homes and manufactured homes. Since the model for manufactures homes was not updated since version 3.1 of the model, the same code files are utilized in version 4.0. See Table 4.3.8. On the other hand, since the model for site-built homes was changed to incorporate more eras and levels of strengths as well as to implement a new matrix naming scheme, the model for site-built homes was re-designed and implemented. See Table 4.3.7.

[bookmark: _Ref294693261]Table 4.3.7: Code files for site-built homes
	Filename
	Role

	Vulns_run_PSB052012.m
	Driver for the Vulns_calc_PSB062110 program

	Vulns_calc_PSB052012.m
	Converts the Monte Carlo Simulation damages into vulnerability matrices

	Weight_calc_PSB053112.m
	Generates weighted vulnerability matrices for 67 counties in Florida, for different subregions and eras

	Age_Weigt_calc_PSB053112.m
	Generates age-weighted vulnerability matrices for 67 counties in Florida, for different subregions

[bookmark: _Ref294693243]Table 4.3.8: Code files for manufactured homes
	Filename
	Role

	Vulns_calc_PMH011309.m
	Vulnerability matrix generator for
manufactured homes

	Weight_calc_PMH011309.m
	Weighted vulnerability matrix
generator for manufactured homes

Site-Built Homes Model Files

[bookmark: _Toc279156960][bookmark: _Toc279677759]Vulns_run_PSB052012.m

[bookmark: _Toc279677760]Description: Call Vulnerability Program as a function, to convert Damage Matrices into Vulnerability Matrices
Inputs:
1)Date
2)Building's characteristics: Wall type, Opening protection, Number of Story, Roof Cover, Roof shape, Region, Strength.
	Name
	Definition
	Type
	Note

	RUNdate
	Date run
	Integer
	

	walltype
	Wall type
	Integer
	Masonry, Timber

	special
	Shutters and No. of Story
	Integer
	1 Story without Shutter=1
1 Story with Shutter=2
2 Story without Shutter=3

	rooftype
	Roof shape
	Integer
	Gable = 1, Hip = 2

	roofcover
	Roof Cover
	Integer
	Shingles = 1, Tiles = 2

	region
	Region
	Integer
	South=1, Central=2, North=3

Outputs:
1) Vulnerability Matrices for the defined building characteristics
2) Header Matrices
Outputs format:
1) Same format as Vulnerability Program (refer to nomenclature description for vulnerability program).
2) The header matrix is as follow:
	Building Use
	Residential

	Weighting Program
	Version of the Program

	Vulnerability Program
	Version of the Program

	FPHLM
	Version of the FPHLM

	Building Dimension
	Dimension of Building

	3.5*3.5 windows
	Number of Windows

	5.5*3.5 windows
	Number of Windows

	Type
	Building/Content/Time(ALE)/Interior

	Wall
	Masonry/Reinforced Masonry/Timber

	Region
	South, Central, North

	Sub-Region
	NWBDR/WBDR/HVHZ

	Strength
	Weak/Medium/Strong

	Number of Story
	1 or 2

	Roof Shape
	Hip/Gable

	Roof Cover
	Shingle/Rated Shingle/Tile

	Underlayment
	Regular/Strong

	Decking
	Plank,6d, 8d6, 8d12

	Roof to Wall
	Toe Nail/Clip/Strap

	Wall to Sill
	Not Applicable/ Toe Nail/Clip/Strap

	Garage Door
	Unbraced/Braced/Strong

	Door Protection
	Unbraced/Braced/Strong

	Windows protection
	None/plywood shutters/metal shutters

	Shape
	Rectangle

	Date
	Run Date

	Leak Model
	New/Old

	kii
	Value of kii

	kic
	Value of kic

	Region type
	New/Old

Running Instructions:
1) Set the MATLAB. Pathname to the location of Damage Matrices
2) Add the damage matrices for all three regions: South, Central, and North. For Central replace North and South for Central with Space tornado Renamer. North Timber = Central Timber and South Masonry = Central Masonry
3) Define building characteristics in the program's loops

External Routine Called
Vulns_calc_PSB052012

FPHLM model: Personal Residential

Written by: Jean-Paul Pinelli, Kurt Gurley
Last Revision Date: No Revision
Note: This program is sensitive to the names of damage matrices.

Vulns_calc_PSB052012.m
[bookmark: _Toc279156966][bookmark: _Toc279677767]Description: This program converts the results of the Monte Carlo Simulation into a vulnerability matrix.
[bookmark: _Toc279677768]Inputs:
 1) Damage Matrices
 2) Instructions from Run Program
[bookmark: _Toc279677769]Outputs:
 1) Weighted Vulnerability Matrix in different counties and sub region
 2) Header Matrix

	Results
	Type

	Building Vulnerability Matrix
	41 x 32 matrix

	Contents Vulnerability Matrix
	41 x 32 matrix

	ALE Vulnerability Matrix
	41 x 32 matrix

	Interior Vulnerability Matrix
	41 x 32 matrix

[bookmark: _Toc279677770]Outputs format:
 1) Engineering team decided on March 2010, to change the original naming format for vulnerability matrices; the goal was to allow user to see the building characteristics in the name of matrix, also avoid having repeated names for different type of matrices, and speed up the process.
Slots for the naming sequences considered as follow: Vulnerability Type, Matrix Type, Exterior wall, Region, Sub Region, Strength, Number of Story, Roof Shape, Roof Cover, Decking, Roof to Wall Connection, Wall to Sill Connection, Underlayment, Garage Door, Window Protection, Door Protection, Shape, and Date. The attributes for the mentioned slots are provided in table 1.
 The engineering team had to make an abbreviation (table 2) to have fewer characters in the names (MATLAB limitation in naming characters).

 Table 1. Variation of Parameters in the Naming
	Model
	Type
	Exterior wall
	Region
	Sub region
	Strength
	Stories
	Roof shape
	Roof Cover

	
	
	
	
	
	
	
	
	

	 Residential
	Buildings
	Timber
	North
	None
	Weak
	1
	UGable
	Unrated Shingle

	
	Contents
	Unreinforced Masonry
	Central
	WBDR
	Medium
	2
	BGable
	Rated Shingle

	
	Time (ALE)
	Reinforced Masonry
	South
	HVHZ
	Strong
	
	Hip
	Tile

	
	Interior
	
	
	
	
	
	
	Metal

	Deck attachment
	 Roof to wall connection
	Stud to sill connection
	Roof membrane
	Garage door
	Door protection
	Opening protection
	Shape
	

	
	
	
	
	
	
	 None
	
	

	 plank
	Nail
	Nail
	Regular
	Unbraced
	None
	Standard Glass
	Rectangle
	

	 6d@12”
	Clip
	Clip
	Strong
	Braced
	Shuttered
	 Laminated Glass
	Other
	

	 8d@12”
	Strap
	Strap
	Joint sealing
	Strong
	
	 Impact resistance Glass
	
	

	 8d@6”
	
	NA(for masonry)
	Taping
	
	
	Plywood
	
	

	
	
	
	
	
	
	Steel
	
	

 Table 2. Abbreviation of Parameters in the Naming
	Model
	Type
	Exterior wall
	Region
	Sub region
	Strength
	Stories
	Roof shape
	Roof Cover

	
	
	
	
	
	
	
	
	

	 res
	bldg
	Tbr
	North
	None
	Weak
	1
	gblU
	ShngU

	
	cont
	MsryU
	Central
	WBDR
	Medium
	2
	gblB
	ShngR

	
	time
	MsryR
	South
	HVHZ
	Strong
	
	hip
	tile

	
	int
	
	
	
	
	
	
	metal

	
	
	
	

	
	
	
	
	

	Deck attachment
	 Roof to wall connection
	Stud to sill connection
	Roof membrane
	Garage door
	Door protection
	Opening protection
	Shape
	

	
	
	
	
	
	
	none
	
	

	 plk
	tnl
	tnl
	reg
	grgU
	none
	shutt
	rect
	

	 6d
	clp
	clp
	strg
	grgB
	shutt
	shutt
	
	

	 8d12
	stp
	stp
	strg
	grgS
	
	shutt
	
	

	 8d6
	
	NA(for masonry)
	strg
	
	
	plySht
	
	

	
	
	
	
	
	
	stlSht
	
	

	
	
	
	
	
	
	
	
	

2) The second output is the header matrix, with the following format.

	Building Use
	Residential

	Weighting Program
	Version of the Program

	Vulnerability Program
	Version of the Program

	FPHLM
	Version of the FPHLM

	Building Dimension
	Dimension of Building

	3.5*3.5 windows
	Number of Windows

	5.5*3.5 windows
	Number of Windows

	Type
	Building/Content/Time(ALE)/Interior

	Wall
	Masonry/Reinforced Masonry/Timber

	Region
	South, Central, North

	Sub-Region
	NWBDR/WBDR/HVHZ

	Strength
	Weak/Medium/Strong

	Number of Story
	1 or 2

	Roof Shape
	Hip/Gable

	Roof Cover
	Shingle/Rated Shingle/Tile

	Underlayment
	Regular/Strong

	Decking
	Plank,6d, 8d6, 8d12

	Roof to Wall
	Toe Nail/Clip/Strap

	Wall to Sill
	Not Applicable/ Toe Nail/Clip/Strap

	Garage Door
	Unbraced/Braced/Strong

	Door Protection
	Unbraced/Braced/Strong

	Windows protection
	None/plywood shutters/metal shutters

	Shape
	Rectangle

	Date
	Run Date

	Leak Model
	New/Old

	kii
	Value of kii

	kic
	Value of kic

	Region type
	New/Old

[bookmark: _Toc279677771]Running Instructions:
 1) Set the MATLAB. Pathname to the location of Damage Matrices
 2) Add the damage matrices for all three regions: South, Central, and North. For Central replace North and South for Central with Space tornado Renamer. North Timber = Central Timber and South Masonry = Central Masonry
 4) Run proper routines (Run Program), taking care of the RUNdate, etc. Note: In the run program enter the RUNdate, date of damage matrices, and other parameters for each run. An example is given for running the 2 story CB without shutter, the user needs to modify the Run program according to the excel sheet which is provided for different damage matrices

FPHLM model: Personal Residential

Written by: Jean-Paul Pinelli, Josh Murphree, Arnoldo Artiles, Boback Bob Torkian, Timothy Johnson. Steven Bell Under the supervision of Dr. Jean-Paul Pinelli.
Recent Revisions:
Revision Date: 10/16/2010 by: BT, JP, TJ (new values for kii and kic adopted for timber to increase the damage of the leak model for timber homes, trial and error used to modify the values)
Revision Date: 10/16/2010 by: TJ (change in the leak model equation, the equation modified for different wind speeds)
Revision Date: 09/09/2010 by: BT, TJ (BT implemented the header and new naming format, results pasted inside vulnerability program by TJ helps)
Revision Date: 05/20/2012 by: TJ, SB (Adapted Program to accept additional model types)

Weight_calc_PSB053112.m

[bookmark: _Toc279677773]Description: This program generates weighted vulnerability matrices for 67 counties in Florida, in different sub regions and different eras.

Inputs:
 1) Vulnerability Matrices
 2) Statistical Data on building's characteristics from Personal Residential Exposure Study
[bookmark: _Toc279677774]
Output:
 1) Weighted Vulnerability Matrix in different counties and sub region
 2) Header Matrix
 3) Tensor for weighted vulnerability curve
	Weighted Results
	Type
	Additional Out Put
	Type

	Building Vulnerability Matrix
	41 x 32 matrix
	Tensor for weighted Vulnerability Curves
	41*1 Vector

	Contents Vulnerability Matrix
	41 x 32 matrix
	Tensor for weighted Vulnerability Curves
	41*1 Vector

	ALE Vulnerability Matrix
	41 x 32 matrix
	Tensor for weighted Vulnerability Curves
	41*1 Vector

	Interior Vulnerability Matrix
	41 x 32 matrix

[bookmark: _Toc279677775]Output format:
 1) Same format as Vulnerability Program (refer to nomenclature description for vulnerability program), the county name and eras name are also visible in the name of matrix.

 Slots for the naming sequences considered as follow: Vulnerability Type, Matrix Type, Exterior wall, County, Sub Region, Strength, Number of Story, Roof Shape, Roof Cover, Decking, Roof to Wall Connection, Wall to Sill Connection, Underlayment, Garage Door, Window Protection, Door Protection, Shape, Era, and Date

The weighted parameter is indicated by general name, for instance if the weighting was done on roof cover, the word "RoofCover" will show up in the slot of roof cover value.

2) The header matrix is as follow:
Content of Header Matrix:

	Building Use
	Residential

	Weighting Program
	Version of the Program

	Vulnerability Program
	Version of the Program

	FPHLM
	Version of the FPHLM

	Building Dimension
	Dimension of Building

	3.5*3.5 windows
	Number of Windows

	5.5*3.5 windows
	Number of Windows

	Type
	Building/Content/Time(ALE)/Interior

	Wall
	Masonry/Reinforced Masonry/Timber

	County
	Name of County

	Sub-Region
	NWBDR/WBDR/HVHZ

	Strength
	Weak/Medium/Strong

	Number of Story
	weighted

	Roof Shape
	weighted

	Roof Cover
	weighted

	Underlayment
	Regular/Strong

	Decking
	Plank,6d, 8d6, 8d12

	Roof to Wall
	Toe Nail/Clip/Strap

	Wall to Sill
	Not Applicable/ Toe Nail/Clip/Strap

	Garage Door
	Unbraced/Braced/Strong

	Door Protection
	Unbraced/Braced/Strong

	Windows protection
	weighted

	Shape
	Rectangle

	Date
	Run Date

	Leak Model
	New/Old

	kii
	Value of kii

	kic
	Value of kic

	Era
	Before 1960, 1960_1970, 1971_1980, 1981_1993, 1994_2001, After 2001,

	Region
	North, Central, South

	Region type
	New/Old

 3) Tensor of weighted vulnerability curves is attached to the output matrices

[bookmark: _Toc279677776]Running Instructions:
 1) Set the MATLAB. Pathname to the location of Vulnerability Matrices
 2) Set the MATLAB. Pathname to the location of Data Bases for Personal Residential Exposure Study
 4) Set the date
 5) For additional weak and medium matrices (01 and 10 cases); enter the value for roof cover and roof decking in the program

FPHLM model: Personal Residential

Written by: Boback Bob Torkian and Tim Johnson. Under the supervision of Dr. Jean-Paul Pinelli.
Last Revision Date: 12/06/2010 by: BT
Last Revision Date: 05/31/2012 by: TJ

Age_Weigt_calc_ PSB053112.m
[bookmark: _Toc279677778]
Description: This program generates age weighted vulnerability matrices for 67 counties in Florida, in different sub regions.

Inputs:
1) Weighted Matrices
2) Statistical Data on building's percentages in different era(Personal Residential Exposure Study)

Outputs:
Age Weighted Vulnerability Matrix in different counties and sub region
	Weighted Results
	Type

	Building Vulnerability Matrix
	41 x 32 matrix

	Contents Vulnerability Matrix
	41 x 32 matrix

	ALE Vulnerability Matrix
	41 x 32 matrix

	Interior Vulnerability Matrix
	41 x 32 matrix

1) Header Matrix

Output format:
1) Same format as Vulnerability Program (refer to nomenclature description for vulnerability program), the county name and eras name are also visible in the name of matrix.

 Slots for the naming sequences considered as follow:
Vulnerability Type, Matrix Type, Exterior wall, County, Sub Region, Strength, Number of Story, Roof Shape, Roof Cover, Decking, Roof to Wall Connection, Wall to Sill Connection, Underlayment, Garage Door, Window Protection, Door Protection, Shape, Era, Date

 The weighted parameter is indicated by general name, for instance if the weighting was done on roof cover, the word "RoofCover" will show up in the slot of roof cover value.

2) The header matrix is as follow:

Content of Header Matrix:

	Building Use
	Residential

	Weighting Program
	Version of the Program

	Vulnerability Program
	Version of the Program

	FPHLM
	Version of the FPHLM

	Building Dimension
	Dimension of Building

	3.5*3.5 windows
	Number of Windows

	5.5*3.5 windows
	Number of Windows

	Type
	Building /Content/Time(ALE)/Interior

	Wall
	Masonry/Reinforced Masonry/Timber

	County
	Name of County

	Sub-Region
	NWBDR/WBDR/HVHZ

	Strength
	Weighted

	Number of Story
	Weighted

	Roof Shape
	Weighted

	Roof Cover
	Weighted

	Underlayment
	Weighted

	Decking
	Weighted

	Roof to Wall
	Weighted

	Wall to Sill
	Weighted

	Garage Door
	Weighted

	Door Protection
	Weighted

	Windows protection
	Weighted

	Shape
	Rectangle

	Date
	Run Date

	Leak Model
	New/Old

	kii
	Weighted

	kic
	Weighted

	Era
	Weighted

	Region
	North, Central, South

	Region type
	New/Old

Running Instructions:
 1) Set the MATLAB. Pathname to the location of Weighted Matrices
 2) Set the MATLAB. Pathname to the location of Data Bases for Personal Residential Exposure Study
 4) Set the date
 5) For additional weak and medium matrices (01 and 10 cases); enter the value for roof cover and roof decking in the program

FPHLM model: Personal Residential

Written by: Boback Bob Torkian and Tim Johnson. Under the supervision of Dr. Jean-Paul Pinelli.
Last Revision Date: 12/06/2010 by: BT
Last Revision Date: 05/31/2012 by: TJ

Flowcharts for the programs in the site-built model are presented as follows:
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
Figure 4.3.6: Detailed flowchart of the site-built vulnerability component of the VFRMH
[image:]
[image:]
[image:]
Figure 4.3.7: Detailed flowchart of the weighting component of the VFRMH
[image:]
[image:]
[image:]
Figure 4.3.8: Detailed flowchart of the age-weighting component of the VFRMH
Manufactured Homes Model Files

Vulns_calc_PMH011309.m
Description: This program generates vulnerability matrices for single or double wide pre or post-HUD manufactured homes, using the results of the Monte Carlo Simulation. The matrices can be type 1 and type 2.
Input
· Type of construction, number of simulations, Weibull distribution parameters, and wind speed increment
· Proper Monte Carlo Simulation result files
Output:
· Type 1 – three vulnerability matrices
· One for building
· One for contents
· One for ALE
· Type 2 – two vulnerability matrices
· One for contents
· One for ALE

Weight_calc_PMH011309.m
Description: This program aims at creating the weighted damage matrices for pre-94 manufactured homes from the vulnerability matrices
Input:
· Manually by user: type of matrix and region.
· Type of matrix: ‘1’= type 1, and ‘2’= type 2
· Region: ‘south’, ‘central’, or ‘north’
· Based on the manual selection of parameter, the program opens 3 vulnerability matrices or files. 2 matrix for building (pre-94, with tied downs, pre-94 without tie downs) , and the corresponding matrices for contents and for ALE. In addition, the program opens the post-94 zone 2 and 3 matrices, renames them and saves them with the new weighted matrices for pre-94.
· Region wide weighting statistics:

For South:

Type1=.818; % Pre-94 TD
Type2=.146; % Post-94 TD
Type3=.00; % No TD
Type4=.009; % Partial TD
Type5=.026; % Unknown

For Central:

Type1=.752; % Pre-94 TD
Type2=.200; % Post-94 TD
Type3=.001; % No TD
Type4=.014; % Partial TD
Type5=.033; % Unknown

For North:

Type1=.422; % Pre-94 TD
Type2=.434; % Post-94 TD
Type3=.002; % No TD
Type4=.03; % Partial TD
Type5=.113; % Unknown

For Keys:

Type1=.90; % Pre-94 TD
Type2=.098; % Post-94 TD
Type3=.00; % No TD
Type4=.00; % Partial TD
Type5=.001; % Unknown

Output: weighted manufactured vulnerability matrices

Flowcharts for the programs in the manufactured homes model are presented as follows:

Figure 4.3.9: Detailed flowchart of Vulns_calc_PMH011309.m

Figure 4.3.10: Detailed flowchart of Weight_calc_PMH011309.m
[bookmark: _Toc346555795]Class Diagram

Figure 4.3.11: Class diagram for VFRMH
[bookmark: _Toc346555796]Data Flow Diagram

Figure 4.3.12: Data flow diagram of VFRMH
[bookmark: _Toc346555797]Glossary

The following table maps variables in the code to the equations in the documentation:

Glossary for Site Built Model
	1) Equation: Cost of Building

	

	Definitions
	Routines

	· Total_Cost = total new home costs for the three regions Q (called regionnum in the code). Each one is a vector of dimensions (124). This variable is the 15th row of the called new_south, new_central, new_north matrices and is the sum of the previous 14 (components) rows.
· UnitCosti(X) = unit cost per area of every component X, i.e. foundation, roof, wall sheathing, roof cover (shingles, tiles), exterior walls, windows, doors, gable end, interior, mechanical, electrical and plumbing.
· Areai(Y) = Area where Unit Cost applies. In the code is called Region and are 2 (Wood and concrete), 3×3 matrices with rows: roof area, building area, living area. Columns: Central, North, South.
· X = home components (sheathing, shingles & tiles, connections, walls, windows, doors, garage door, gable end, interior, mechanical, electrical, plumbing, foundation, wall sheathing); X = 1, 2, …, 14. In the code X is the index of each one of the 14 rows of new_south, new_central, new_north, matrices
· Y = home types (combinations of CB, Wood, gable, hip, 1-story, 2-stories, etc.); Y = 1 , 2, …, 24. Y is the index of each one of the 24 columns of new_south, new_central, new_north that is depicts the home types.

	Vulns_calc_PSB052012

	2) Equation: Cost Replacement Ratio

	

	· CR = Cost replacement ratio. The ratio of new material plus removal normalized over new materials. It is defined for each one of all three regions. It is a matrix of dimensions 2414. In the code the matrices south, central and north. Later in the code this matrix is called S.
· UnitCosti(X) = unit cost per area of every component X.
· RemovalCost = removal cost of every component X.
· Areai(Y) = Area where Unit Cost applies.
· Total_Cost = total new home cost for all three regions.

	Vulns_calc_PSB052012

	3) Equation: Total Replacement Ratio

	

	· Σ CR = Total replacement ratio. It is the sum of the first 13th columns of CR. It is also the 14th column of CR. Later in the code it is the 14th column of S.
· regionnum = regions (north=3, central=2, south=3).
· Region= Areas, (CB and Wood); Z = 1, 2.
· Z = X = home components (sheathing, shingles & tiles, connections, walls, windows, doors, garage door, gable end, interior, mechanical, electrical, plumbing, foundation, wall sheathing); X = 1, 2, …, 14
· Y = home types (combinations of CB, Wood, gable, hip, 1-story, 2-stories, etc.); Y = 1 , 2, …, 24
· CR = Cost replacement ratio. The ratio of new material plus removal normalized over new materials. It is defined for each one of all three regions. It is a matrix of dimensions 2414. In the code the matrices south, central and north. Later in the code this matrix is called S.

	Vulns_calc_PSB052012

	4) Equation: Normalize Damage

	

	· EDM = normalized simulation results, which originally are expressed as: % of failed component, No. of failed walls, pressure broken windows, doors, impact broken windows, etc. In the code this matrix is expressed as DP has dimensions of 10 ×simulations.
· MC_File = The simulation results matrix from Monte Carlo simulations. There is one for each combination of: house type (materials, roofs, shutters or not), region, wind speed and wind angle.
	Vulns_calc_PSB052012

	5) Equation: Interior Damage and Leak Model

	

	· ki = factor that considers the interior damage portion when there is no exterior damage. It is defined for 55 mph < wi < 115 mph, and wi=>115 mph.
· wi = wind speed in mph.
· g(x) = interior damage formula based on failed exterior component
· F=Failure Modes
· ke = Electrical Factor
· kp = Plumbing Factor
· km = Mechanical Factor
· kii = adjusts up or down the interior damage due to water penetration at low wind speed.
· k2= factor to indicate number of story
· R= Weibull distribution, Weibull distribution variates to apply to interior damage.
Other Parameters:
· Int(F) = Interior damage function. It keeps track of the damages of all components. In the code the same name is used
· k2 = coefficient to increased interior damage for 2-story homes. If stories = 2, k2 = 1.1 else k2 = 0;
· ki = factor that considers the interior damage portion when there is no exterior damage. It is defined for 55 mph < wi < 115 mph and wi=>115 mph
· EDM = normalized simulation results, which originally are expressed as: % of failed component, No. of failed walls, pressure broken windows, doors, impact broken windows, etc. In the code this matrix is expressed as DP has dimensions of 10 ×simulations.
· R = Weibull distribution variates to apply to interior damage.
	Vulns_calc_PSB052012

	6) Equation: Interior Damage (1)

	

	· Int1 Total = This equation selects the maximum Interior damage as the actual damage. It has dimensions of 1No. Simulations
· Int = Interior damage function. It keeps track of the damages of all components.
· F = failure modes. (how the simulation results are expressed). F = 1, 2, …15.
· S = simulation. (1, 2,…, n). S = 1, 2, …n.
	Vulns_calc_PSB052012

	7) Equation: Interior Damage (2)

	

	· Int2 Total = This equation selects the maximum Utility damage as the actual damage. It has dimensions of 1No. Simulations
· Int = Utility damage function. It keeps track of the damages of all componentsperc = percolation from story to story.
	Vulns_calc_PSB052012

	8) Equation: Adjustment of Thresholds

	
(Adjust Values for windows, roof sheathing and roof cover)

	· AM = Adjustment and threshold factors. Adjusts damage percentages and applies thresholds in Windborne Debris region (WBDR) or High Velocity Hurricane Zone (HVHZ) for windows, roof cover, sheathing, etc. This variable is defined as: WindAdj, SheathAdj, CoverAdj depending the component adjusted.
· EDM = normalized simulation results. In the code this matrix is expressed as DP has dimensions of 10 ×simulations.
	Vulns_calc_PSB052012

	9) Equation: Building Damage

	

	· BDM = Building damage as a percentage of the total cost of the house. This variable is called BuildingDamage in the code.
· CR = Cost replacement ratio. The ratio of new material plus removal normalized over new materials. It is defined for each one of all three regions. Each one is a vector of124
· DP = normalized simulation results. In the code this matrix is expressed as DP has dimensions of 10 × No. of simulations
· AM = Adjustment and threshold factors. Adjusts damage percentages and applies thresholds in Windborne Debris region (WBDR) or High Velocity Hurricane Zone (HVHZ) for windows, roof cover, sheathing, etc. This variable is defined as: WindAdj, SheathAdj, CoverAdj depending the component adjusted.
· ElecTotal = Maximum of electrical damage
· MechTotal = Maximum of mechanical damge
· PlumTotal = Maximum of plumbing damage
· IntTotal = Maximum of interior damage
	Vulns_calc_PSB052012

	10) Equation: ALE/Content Calculation

	

	· ALE = ALE losses based on damage to the interior. This variable is called ALE in the code.
· Ra=Weibull Variables
· S= stands for simulation number
· CD(S) = Total contents damage. This variable is called ContTotal in the code.
· Rc=Weibull Variables
	Vulns_calc_PSB052012

	11) Equation: Vulnerability Matrix Type 1

	

	· BM = Type 1 building vulnerability matrix. In the code is called VM_bldg. There are 6 different matrices namely, A,B,C,D,E,F for tile, neither, tile, WBDR, tile, HVHZ, shingle, neither, shingle, WBDR, shingle, HVHZ
· BM + 1 = increases the damage if BDM’s damage is between a particulars Limit(K) and Limit(K+1)
· CM = Type 1 contents vulnerability matrix. In the code is called VM_cont. There are 6 different matrices namely, A,B,C,D,E,F for tile, neither, tile, WBDR, tile, HVHZ, shingle, neither, shingle, WBDR, shingle, HVHZ
· CM + 1 = increases the damage if Cont(F) and BDM damages are between a particulars Limit(K) and Limit(K+1)
· AM = Type 1 ALE loss vulnerability matrix. In the code is called VM_ale. There are 6 different matrices namely, A,B,C,D,E,F for tile, neither, tile, WBDR, tile, HVHZ, shingle, neither, shingle, WBDR, shingle, HVHZ
· AM + 1 = increases the damage if ALM(F) and BDM damages are between a BV = normalized building vulnerability matrix. In the code is named as VM_bldg.
· n = number of simulations. In the code the variable is named as nnn particulars Limit(K) and Limit(K+1)
· CV1 = Normalized type 1 contents vulnerability matrix. In the code is named as VM_cont.
· CM = Type 1 contents vulnerability matrix. In the code is called VM_cont. There are 6 different matrices namely, A,B,C,D,E,F for tile, neither, tile, WBDR, tile, HVHZ, shingle, neither, shingle, WBDR, shingle, HVHZ
· AV1 = Normalized type 1 ALE vulnerability matrix. In the code is named as VM_ale.
· AM = Type 1 ALE loss vulnerability matrix. In the code is called VM_ale. There are 6 different matrices namely, A,B,C,D,E,F for tile, neither, tile, WBDR, tile, HVHZ, shingle, neither, shingle, WBDR, shingle, HVHZ
	Vulns_calc_PSB052012

	12) Equation: Vulnerability Matrix Type 2

	

	· CM2 = Type 2 contents vulnerability matrix. In the code is called VM_cont
· CM2 + 1 = increases the damage if Cont(F) and BDM damages are between a particulars Limit(K) and Limit(K+1)
· AM2 = Final type 2 ALE loss vulnerability matrix. In the code is called VM_ale
· AM2 + 1 = increases the damage if ALM(F) and BDM damages are between a particulars Limit(K) and Limit(K+1)
· Total_CM2 = Sum of all content vector damage values. In the code it is called SVM_cont. There are 6 matrices, A, B, C, D, E, F that account for tile, neither, tile, WBDR, tile, HVHZ, shingle, neither, shingle, WBDR, shingle, HVHZ
· CV2 = Normalized type 2 contents vulnerability matrix.
· Total_CM2 = Sum of all content vector damage values. In the code it is called SVM_cont.
· AV2 = Normalized type 2 ALE vulnerability matrix.
· Total_A = Sum of all ALE vector damage values. In the code it is called SVM_ale.
	Vulns_calc_PSB052012

	13) Equation: Probability of Home Types

	

	· RC=Roof Cover (Shingle, Tile)
· RS=Roof Shape (Gable, Hip)
· OP=Opening Protection (Shutter, No Shutter)
· NS=Number of Story (1 Story, 2 Story)
· EX=Exterior Wall (Masonry, Timber)
	Weight_calc_PSB053112
Age_Weight_calc_PSB053112

	14) Equation: Normalize Probabilities

	

	· P(i)= Probability of Home Type i
· NP(i)=Normalized Probability for Home Type i
	Weight_calc_PSB053112
Age_Weight_calc_PSB053112

	14) Equation: Weighted Matrix

	

	· W(i)=Weighted Matrix
· V(i)=Vulnerability Matrix For Home Type i
· NP(i)=Normalized Probability for Home Type i
	Weight_calc_PSB053112
Age_Weight_calc_PSB053112

Glossary for Manufactured Model
	1) Equation: Cost of Building

	

	Definitions
	Routines

	· Total_Cost = total new home costs for the four models Q (called “single” and “double” in the code). Each one is a vector of dimensions (131). This variable is the 13th row of the called damage matrices and is the sum of the previous 12 (components) rows.
· UnitCosti(X) = unit cost per area of every component X, i.e. foundation, roof, wall sheathing, roof cover (shingles, tiles), exterior walls, windows, doors, gable end, interior, mechanical, electrical and plumbing.
· Areai(Y) = Area where Unit Cost applies. In the code is called Area in the code and are 4 types, in one 2×2 matrix.
· X = home components (sheathing, roof cover, connections, walls, windows, doors, interior, mechanical, electrical, plumbing, foundation, wall sheathing); X = 1, 2, …, 12.
· Y = home types (4 types.); Y = 1 , 2, 3, 4. Y is the index of each one of the home types.

	Vulns_calc_PMH011309

	2) Equation: Cost Replacement Ratio

	

	· CR = Cost replacement ratio. The ratio of new material plus removal normalized over new materials.
· UnitCosti(X) = unit cost per area of every component X.
· RemovalCost = removal cost of every component X.
· Areai(Y) = Area where Unit Cost applies.
· Total_Cost = total new home cost for all three regions.

	Vulns_calc_PMH011309

	3) Equation: Total Replacement Ratio

	

	· Σ CR = Total replacement ratio. It is the sum of the first 10 columns of CR. It is also the 11th column of CR.
· Area where Unit Cost applies. In the code is called Area in the code and are 4 types, in one 2×2 matrix.
· Z = X = home components (sheathing, cover, connections, walls, windows, doors, garage door, interior, mechanical, electrical, plumbing, foundation, wall sheathing); X = 1, 2, …, 12
· Y = home types (4 types.); Y = 1 , 2, 3, 4. Y is the index of each one of the home types
· CR = Cost replacement ratio. The ratio of new material plus removal normalized over new materials.
	Vulns_calc_PMH011309

	4) Equation: Normalize Damage

	

	· EDM = normalized simulation results, which originally are expressed as: % of failed component, No. of failed walls, pressure broken windows, doors, impact broken windows, etc. In the code this matrix is expressed as DP has dimensions of 10 ×simulations.
· MC_File = The simulation results matrix from Monte Carlo simulations. There is one for each combination of: house type (materials, roofs, shutters or not), region, wind speed and wind angle.
	Vulns_calc_PMH011309

	5) Equation: Interior Damage and Leak Model

	

	· ki = factor that considers the interior damage portion when there is no exterior damage. It is defined for 55 mph < wi < 115 mph, and wi=>115 mph.
· wi = wind speed in mph.
· g(x) = interior damage formula based on failed exterior component
· F=Failure Modes
· ke = Electrical Factor
· kp = Plumbing Factor
· km = Mechanical Factor
· kii = adjusts up or down the interior damage due to water penetration at low wind speed.
· k2= factor to indicate number of story
· R= Weibull distribution, Weibull distribution variates to apply to interior damage.
Other Parameters:
· Int(F) = Interior damage function. It keeps track of the damages of all components. In the code the same name is used
· k2 = coefficient to increased interior damage for 2-story homes. If stories = 2, k2 = 1.1 else k2 = 0;
· ki = factor that considers the interior damage portion when there is no exterior damage. It is defined for 55 mph < wi < 115 mph and wi=>115 mph
· EDM = normalized simulation results, which originally are expressed as: % of failed component, No. of failed walls, pressure broken windows, doors, impact broken windows, etc. In the code this matrix is expressed as DP has dimensions of 10 ×simulations.
· R = Weibull distribution variates to apply to interior damage.
	Vulns_calc_PMH011309

	6) Equation: Interior Damage (1)

	

	· Int1 Total = This equation selects the maximum Interior damage as the actual damage. It has dimensions of 1No. Simulations
· Int = Interior damage function. It keeps track of the damages of all components.
· F = failure modes. (how the simulation results are expressed). F = 1, 2, …7.
· S = simulation. (1, 2,…, n). S = 1, 2, …n.
	Vulns_calc_PMH011309

	7) Equation: Interior Damage (2)

	

	· Int2 Total = This equation selects the maximum Utility damage as the actual damage. It has dimensions of 1No. Simulations
· Int = Utility damage function. It keeps track of the damages of all componentsperc = percolation from story to story.
	Vulns_calc_PMH011309

	8) Equation: Adjustment of Thresholds

	
(Adjust Values for windows, roof sheathing and roof cover)

	· AM = Adjustment and threshold factors. Adjusts damage percentages and applies thresholds in Windborne Debris region (WBDR) or High Velocity Hurricane Zone (HVHZ) for windows, roof cover, sheathing, etc. This variable is defined as: WindAdj, SheathAdj, CoverAdj depending the component adjusted.
· EDM = normalized simulation results. In the code this matrix is expressed as DP has dimensions of 10 ×simulations.
	Vulns_calc_PMH011309

	9) Equation: Building Damage

	

	· BDM = Building damage as a percentage of the total cost of the house. This variable is called BuildingDamage in the code.
· CR = Cost replacement ratio. The ratio of new material plus removal normalized over new materials. It is defined for each one of all three regions. Each one is a vector of124
· DP = normalized simulation results. In the code this matrix is expressed as DP has dimensions of 10 × No. of simulations
· AM = Adjustment and threshold factors. Adjusts damage percentages and applies thresholds in Windborne Debris region (WBDR) or High Velocity Hurricane Zone (HVHZ) for windows, roof cover, sheathing, etc. This variable is defined as: WindAdj, SheathAdj, CoverAdj depending the component adjusted.
· ElecTotal = Maximum of electrical damage
· MechTotal = Maximum of mechanical damge
· PlumTotal = Maximum of plumbing damage
· IntTotal = Maximum of interior damage
	Vulns_calc_PMH011309

	10) Equation: ALE/Content Calculation

	

	· ALE = ALE losses based on damage to the interior. This variable is called ALE in the code.
· Ra=Weibull Variables
· S= stands for simulation number
· CD(S) = Total contents damage. This variable is called ContTotal in the code.
· Rc=Weibull Variables
	Vulns_calc_PMH011309

	11) Equation: Vulnerability Matrix Type 1

	

	· BM = Type 1 building vulnerability matrix. In the code is called VM_bldg. There are 6 different matrices namely, A,B,C,D,E,F for tile, neither, tile, WBDR, tile, HVHZ, shingle, neither, shingle, WBDR, shingle, HVHZ
· BM + 1 = increases the damage if BDM’s damage is between a particulars Limit(K) and Limit(K+1)
· CM = Type 1 contents vulnerability matrix. In the code is called VM_cont.
· CM + 1 = increases the damage if Cont(F) and BDM damages are between a particulars Limit(K) and Limit(K+1)
· AM = Type 1 ALE loss vulnerability matrix. In the code is called VM_ale.
· AM + 1 = increases the damage if ALM(F) and BDM damages are between a BV = normalized building vulnerability matrix. In the code is named as VM_bldg.
· n = number of simulations. In the code the variable is named as nnn particulars Limit(K) and Limit(K+1)
· CV1 = Normalized type 1 contents vulnerability matrix. In the code is named as VM_cont.
· CM = Type 1 contents vulnerability matrix. In the code is called VM_cont.
· AV1 = Normalized type 1 ALE vulnerability matrix. In the code is named as VM_ale.
· AM = Type 1 ALE loss vulnerability matrix. In the code is called VM_ale.
	Vulns_calc_PMH011309

	12) Equation: Vulnerability Matrix Type 2

	

	· CM2 = Type 2 contents vulnerability matrix. In the code is called VM_cont
· CM2 + 1 = increases the damage if Cont(F) and BDM damages are between a particulars Limit(K) and Limit(K+1)
AM2 = Final type 2 ALE loss vulnerability matrix. In the code is called VM_ale_manuf.
·
· AM2 + 1 = increases the damage if ALM(F) and BDM damages are between a particulars Limit(K) and Limit(K+1)
Total_CM2 = Sum of all content vector damage values. In the code it is called VM_cont_manuf.
· .
· CV2 = Normalized type 2 contents vulnerability matrix.
· Total_CM2 = Sum of all content vector damage values. In the code it is called VM_cont_manuf.
· AV2 = Normalized type 2 ALE vulnerability matrix.
· Total_A = Sum of all ALE vector damage values. In the code it is called VM_ale_manuf.
	Vulns_calc_PMH011309

[bookmark: _Toc346555798]References

1. K. Gurley, J.-P. Pinelli, C. Subramanian, A. Cope, L. Zhang, J Murphree, A. Artiles, P. Misra, FLORIDA PUBLIC HURRICANE LOSS PROJECTION MODEL , Engineering Team Final Report - Predicting the Vulnerability of Typical
Residential Buildings to Hurricane Damage, March 2005, Volume I, II and III.

[bookmark: _Toc346555799]Vulnerability Model for Commercial Residential Buildings (VM-CRB) Use Case IV

[bookmark: _Toc346555800]General Description of VM-CRB

The Vulnerability model for Commercial Residential Buildings (VM-CRB) generates vulnerability curves for commercial residential buildings given the damage curves from the Monte Carlo Simulation Model for Commercial Residential Buildings (MCS-CRB). Because of the different characteristics of commercial residential buildings, the VM-CRB models low-rise (LB) and mid-/high-rise (MHB) buildings separately. The generated vulnerability curves are utilized by the Insurance Loss Model for estimating losses.

[bookmark: _Toc346555801]Technical Description

Given the hurricane hazard defined by the atmospheric component, the engineering component performs several tasks: (1) it estimates the physical damage to exterior components of typical buildings or apartment units; (2) it assesses the interior and utilities damage and contents damage due to water penetration through exterior damage and defects to interior walls, ceiling, doors, etc.; (3) it combines the exterior and interior damage to estimate the building and content vulnerabilities; (4) it estimates the time related expenses; and (5) it estimates appurtenant structure vulnerability (Pita et al., 2008, 2009a, 2009b, 2009c, 2010, 2011a, 2011b, 2011c, 2012a, 2012b; Pinelli et al., 2009b, 2010b ; Weekes et al., 2009).

Exposure Study

Most low-rise commercial residential buildings (LB) (Figure 4.4.1) can be categorized into a few generic groups having similar structural characteristics, layout, and materials (although they may differ somewhat in dimensions). These buildings can suffer substantial external structural damage (in addition to envelope and interior damage) from hurricane winds. The modeling approach to assessing damage for all these building types is the same as that for assessing damage for single-family homes in that it models the building as a whole.

However, commercial residential mid- and high-rise buildings (MHB) (Figure 4.4.2) are very different from low-rise buildings and single-family-homes. The mid-/high-rise buildings are usually engineered structures, which suffer few structural failures during a windstorm but are subject to cladding and opening failures and the resultant water ingress. These buildings, which come in many different types, shapes, height, and geometries, consist of steel, reinforced concrete, timber, masonry, or a combination of different structural materials.

It is not realistic to perform damage simulations on a reduced collection of ‘base’ buildings, as is done for single-family residential and low-rise commercial residential buildings, because that will necessarily leave out a majority of existing mid- and high-rise typologies. For instance, for steel frame structures alone there are a wide variety of possible building shapes and configurations. These different shapes lead to very different wind-loading scenarios and therefore different vulnerabilities. Equally important, the number of MHB is at least an order of magnitude smaller than the number of RB or LB. It is therefore not feasible to average the losses over a very large number of buildings and compensate small differences between buildings, as in the case of RB. On the contrary, the analyst is faced with a relatively small number of buildings, each of which is different from the other.

As a result, the FPHLM has adopted a modular approach to model mid- and high-rise buildings. Rather than considering a structure as a whole, the model treats the building as a collection of apartment units. The base modules are typical apartment units, divided as corner and middle units. Thus, buildings with any number of stories and any number of units per floor can be modeled by aggregating the corresponding apartment units’ vulnerabilities and accounting for correlation of damage among units (e.g., water ingress through an envelope breach in a 5th-floor unit creates problems for lower units with no failures).

To summarize, in the case of LB, typical models of the whole structure that are representative of the vast majority of this building population in Florida must be defined. In the case of MHB, typical models of individual units that are representative of the vast majority of units in Florida must be defined.

An extensive survey of the Florida building stock was carried out to generate a manageable number of these building and apartment models to represent the majority of the Florida residential building stock. The modelers analyzed Florida counties’ property tax appraisers’ (CPTA) databases for building stock information. Although the database contents and format vary from county to county, many of the databases contain the structural information needed to define the most common structural types. The information from 21 counties was collected for commercial residential buildings. The modelers extracted information on several building characteristics for classification, including roof cover, roof shape, exterior wall material, number of stories, year built, building area, foundation type, floor plan, shape, and opening protection.

[bookmark: _Ref294695529]Figure 4.4.1: Typical low-rise buildings

[bookmark: _Ref294695540]Figure 4.4.2: Examples of mid- and high-rise buildings
Commercial Residential Building Survey

In the case of the commercial residential buildings, the CPTAs classify the buildings either as condominiums or as multifamily residential (MFR) based only on the type of ownership. Condo buildings are such that each unit or apartment has a different owner. The condo unit can then be occupied by the owner or by a renter. The CPTAs do not record if the condo unit is rented or owned. Condo owners’ expenses include the maintenance and use of the common areas and common facilities because the condo owner actually owns a percentage of the entire facility. The condo buildings relevant to this survey are all classified by the CPTAs as residential. Commercial office condo buildings are out of the scope of the survey.

A MFR building has a single owner who rents the units to tenants. The CPTAs classify MFR buildings with fewer than 10 units (duplex, triplex, and quadruplex) as residential buildings; MFR buildings with 10 units or more are classified as commercial buildings. Both residential and commercial MFR buildings were considered in this survey. MFR buildings are interchangeably referred to as apartment buildings by CPTAs. Residential MFR buildings (fewer than 10 units) account for approximately 70% of the MFR building stock, and the remaining 30% are commercial MFR buildings (10 units or more).

The commercial-residential buildings, regardless of whether they are condos or MFR buildings, were divided in two categories: low-rise (one–three stories) and mid-high rise (four stories and more). Low-rise buildings have three stories or fewer. The survey shows these buildings, which represent the majority of the building stock, have different characteristics than taller buildings. Unanwa (1997) uses a similar definition in his study. The mid- and high-rise buildings tend to be more heterogeneous and necessitate a different treatment in the vulnerability model. Owned as well as rented apartment units are included in this survey; the CPTAs do not distinguish between the two.

Appraisers have confirmed, that MFR tend to have fewer stories than condo buildings and the majority of MFR buildings are duplexes, triplexes, and quadruplexes. Also, the proportion of MFR that can be classified as mid/high rise is negligible according to available information and consultation with CPTAs.

The commercial residential low-rise model (LB) was developed to represent typical apartment and town-house style structures of three stories or fewer (Figure 4.4.1). The model framework is based on the single-family, site-built residential model, which uses a probabilistic description of wind loads and exterior and structural component capacities to project physical damage as a function of wind speed. The components in the LB damage model include roof cover, roof sheathing, roof-to-wall connections, wall type, wall sheathing, windows, entry doors, sliding-glass doors, and gable end truss integrity.

Given the large array of sizes and geometries for low-rise commercial residential structures, the program is developed to provide flexibility in choosing a building layout and dimensioning details (footprint, overhang length, roof slope, roof shape, etc.). The changes in construction practice over decades in Florida also necessitate flexibility when choosing construction quality with regard to hurricane wind resistance. The model allows the selection of building components with a variety of strength options to represent a range from low to high wind resistance (braced or unbraced gable ends, old or new roof cover, sheathing nailing schedules, etc.).

A standard (default) model was developed based on the building exposure study that quantified average square footage per story, units per story, and other descriptors. Default settings were also developed to represent weak, medium, and strong construction practice. Any given strong, medium, or weak model may be altered by additional mitigation or retrofit measures individually or in combination. For example, reroofing an older apartment can be represented by increasing the probabilistic descriptor of capacity for the roof cover.

VULNERABILITY MATRICES FOR LOW-RISE BUILDINGS

Unweighted Vulnerability Matrices of LB

A description of the process to estimate the total vulnerability of low-rise buildings is displayed in Figure 4.2.4. Given a particular building type, the Monte Carlo simulation-generated damage array that expresses the exterior damage in the envelope is loaded. For a particular wind speed and wind direction, each component’s physical damage is normalized to a percentage value. For instance, the number of damaged doors, windows, and sliding doors is divided by the total number of the corresponding openings; collapsed trusses are divided over the total number of trusses, etc. The cost of the damage is then assessed.

Interior damage is estimated by (1) simulating the amount of wind-driven rain that enters through the breaches and defects in the building envelope, (2) propagating water from floor to floor, and (3) converting to damage to interior and utilities.

Replacement cost ratios provide the link between modeled physical damage and the corresponding monetary losses. They can be defined as the cost of replacing a damaged component or assembly of a building divided by the cost of constructing a completely new building of the same type. An explicit procedure is used to convert physical damage of the modeled components to monetary damage. The procedure is almost identical to the one already described for single-family residential buildings. The damage ratio (DR) as a function of wind speed for the exterior, interior, and utilities is calculated by adding the corresponding costs of damaged exterior plus damaged interior plus damaged utilities divided over the overall building cost that is contingent upon the type and size of the building.

Derivation of the probability distribution functions of damage at each wind speed interval is the final step of the process. For each wind speed interval, the probability of damage given that wind speed interval (i.e., the cells of the vulnerability matrices) is computed as the summation of specific damage ratios for all wind directions divided by the total number of simulations at that particular wind speed interval.

Weighted Vulnerability Matrices of LB

In the case of LB, vulnerability matrices were created for every combination of construction type (masonry, timber, or other), roof shape (gable or hip), roof cover (tile or shingle or metal), shutters (with or without), number of stories (one, two, or three), and subregion (inland, wind-borne debris region, and high velocity zone). However, in general, there is little information available in an insurance portfolio file regarding the structural characteristics and the wind resistance of the insured property. Instead, insurance companies rely on the ISO fire resistance classification. Portfolio files have information on ZIP Code and year built. The ISO classification is used to determine if the home is constructed of masonry, timber, or other. The ZIP Code is used to define the subregion. The year built is used to assist in defining whether a building should be considered weak, medium, or strong.

From the insurance files, sub-region, construction type, and year built are determined. This leaves the roof shape, roof cover, number of stories, and shutter options undefined. From the exposure study of 21 Florida counties, the distribution of these parameters can be extrapolated. For each age group, we define a weighted matrix for each construction type in each sub-region. The procedure is identical to the one already described for single-family buildings.

Age-Weighted Matrices of LB

The year built or year of last upgrade of a structure in a portfolio may not be available when performing a portfolio analysis to estimate hurricane losses in a certain region. In that case, it becomes necessary to assume a certain distribution of ages in the region to develop an average vulnerability by combining weak, medium, and strong. Here again, the procedure is identical to the one described for single-family residential buildings.

Mapping of Insurance Policies to Vulnerability Matrices for LB

The mapping of the low-rise vulnerability matrices to the insurance policies in any given portfolio is also very similar to the process already reported for single-family buildings.

LB Models’ Distribution in Time

The low-rise building models’ distribution in time is similar to that of the single-family buildings.
Vulnerability of Mid-/High-Rise Buildings

MHB opening vulnerabilities

In the case of MHB, a process similar to the one described above is followed to derive exterior vulnerability and breach curves for different openings of typical apartment units. These curves are derived for the cases of open and closed buildings, for corner and middle units, with different opening protections (with or without impact-resistant glass; with or without metal shutters). Each vulnerability curve for openings of corner or middle apartment units (window, door, or slider) gives the number or fraction of opening damaged as a function of wind speed. Each breach curve for openings of corner or middle apartment units (window, door, or slider) gives the breach area in ft2 of opening damaged as a function of wind speed.

MHB building vulnerability

Unlike the single-family home loss model in which interior and exterior damage was aggregated inside the vulnerability module, the aggregation for mid-/high-rise buildings is performed outside that module because of the interior damage propagation. The modular approach produces independent assessments of exterior damage for each unit while also considering the interior water damage that can spread from unit to unit and trigger damage far from its source. Therefore, interior damage is treated in two stages: the first stage occurs as a direct result of the exterior damage, and the second occurs as a consequence of propagation between units. The separate modeling of exterior and interior damage is also well suited to dealing with the insurance issue of different insurance coverage for apartment and condo buildings.

The process for damage estimation for MHB is presented in Figure 4.4.4. For each policy in the portfolio, the program reads the information on the building (location and number of stories and units) and assigns a wind speed profile based on its location (i.e., surrounding terrain). The algorithm calculates the number of corner and middle units per floor (ac and aM) and loads the corresponding opening vulnerability and breach curves (VC,M and BC,M). The vulnerability curves, combined with the wind speed value at every story, Wi, yield the number of openings of each kind damaged at each story, which are then assigned a replacement cost, CW,D,S. The result is the cost of damage to the openings at each story (CDOs), which is then accumulated over all the stories as the total expected cost of damage to the openings (TECDO).

For the interior damage estimation the process is similar. From the wind profile, the corresponding wind speed, Wi, is calculated at each story. For a given story and its corresponding wind speed, the value of the expected breach size for windows, entry door, and sliding door, BCW.D,S and BMW.D,S,, are retrieved from the corresponding breach curves. The breach size of each component is added to get the total breach size per story. The next step is to estimate the amount of water that will enter a particular story with a given breach size, as described in the section describing the interior damage model. Note that for the sake of simplification, defects are not represented in the flow chart.

A scheme for vertical propagation of water between floors was implemented. The water content is then transformed at each story into an interior damage ratio (ID) based on the bilinear relationship described in Standard V-1. The final product of the interior damage assessment is the Expected Interior Damage Ratio (EIDR).

At this point in the process, the algorithm has computed expected damages, both exterior (TECDO) and interior (EIDR), for the particular building of the policy under study. The EIDR is then multiplied by the interior insured value expressed as a percentage of the total insured value BV, thanks to a coefficient kI which varies for condos and apartment buildings. The final value is the total expected damage value (EDV).

[image:]
[bookmark: _Ref294695564]Figure 4.4.3: Procedure to create vulnerability matrix

Weighted Vulnerability Matrices of LB

In the case of LB, vulnerability matrices were created for every combination of construction type (masonry, timber, or other), roof shape (gable or hip), roof cover (tile or shingle), shutters (with or without), number of stories (one, two, or three), and subregion (inland, wind-borne debris region, and high velocity zone). However, in general, there is little information available in an insurance portfolio file regarding the structural characteristics and the wind resistance of the insured property. Instead, insurance companies rely on the ISO fire resistance classification. Portfolio files have information on ZIP Code and year built. The ISO classification is used to determine if the home is constructed of masonry, timber, or other. The ZIP Code is used to define the subregion. The year built is used to assist in defining whether a building should be considered weak, medium, or strong.

From the insurance files, sub-region, construction type, and year built are determined. This leaves the roof shape, roof cover, number of stories, and shutter options undefined. From the exposure study of the 21 Florida counties, the distribution of these parameters can be extrapolated. For each age group, we define a weighted matrix for each construction type in each sub-region. The procedure is identical to the one already described for single family buildings.

Age-Weighted Matrices of LB

The year built or year of last upgrade of a structure in a portfolio may not be available when performing a portfolio analysis to estimate hurricane losses in a certain region. In that case, it becomes necessary to assume a certain distribution of ages in the region to develop an average vulnerability by combining weak, medium, and strong. Here again, the procedure is identical to the one described for single-family residential buildings.

Mapping of Insurance Policies to Vulnerability Matrices for LB

The mapping of the low-rise vulnerability matrices to the insurance policies in any given portfolio is also very similar to the process already reported for single-family buildings.

LB Models Distribution in Time

The low-rise building model distribution in time is similar to that of the single-family buildings.

MHB building vulnerability

Unlike the single-family home loss model in which interior and exterior damage was aggregated inside the vulnerability module, the aggregation for mid-/high-rise buildings is performed outside that module because of the interior damage propagation. The modular approach produces independent assessments of exterior damage for each unit while also considering the interior water damage that can spread from unit to unit and trigger damage far from its source. Therefore, interior damage is treated in two stages: the first stage occurs as a direct result of the exterior damage and the second occurs as a consequence of propagation between units. The separate modeling of exterior and interior damage as presented here is also well suited to dealing with the insurance issue of different insurance coverage for apartment and condo buildings.

The process for damage estimation for MHB is presented in Figure 4.4.4. For each policy in the portfolio, the program reads the information on the building (location and number of stories and units) and assigns a wind speed profile based on its location (i.e., surrounding terrain). The algorithm calculates the number of corner and middle units per floor and loads the corresponding unit vulnerability curves. Vulnerability curves are aggregated for each story and weighted by the relative proportion of middle and corner units. The wind speed value at every story is used to get the expected exterior damage ratio (EEDR) from the aggregated vulnerability VA at each story.

For the interior damage estimation the process is similar. From the wind profile, the corresponding wind speed, W0, is calculated at each story. For a given story and its corresponding wind speed, the value of the expected breach size for windows, entry door, and sliding door is retrieved from the corresponding vulnerability curves. The breach size of each component is added to get the total average breach size per story. The next step is to estimate the amount of water that will enter a particular story with a given breach size.

A scheme for vertical propagation of water between floors was implemented. The water content is then transformed at each story into an interior damage ratio, based on engineering judgment. The final product of the interior damage assessment is the Expected Interior Damage Ratio (EIDR).

At this point in the process, the algorithm has computed expected damages, both exterior (EEDR) and interior (EIDR), for the particular building of the policy under study. These damages are then multiplied by the insured value of exterior and interior, respectively. These values are expressed as a percentage of the total insured value VBldg, thanks to a coefficient ke, which varies for condos and apartment buildings.

[image:]
[bookmark: _Ref294695579]Figure 4.4.4: Exterior and interior damage assessment for MHB
Interior and Utilities Damage

The FPHLM introduces a novel approach to assessing the interior damage by considering the physics of the problem. The approach starts from the damage to the building envelope (Weekes et al. 2009), described in the previous section. The model then estimates the amount of wind-driven rain that enters through the breaches and defects in the building envelope and converts it to interior damage. The approach is described below.

The method described hereafter (Figure 4.4.5) combines existing building defects and estimated building envelope damage with the impinging rain to predict the amount of water that enters a building. This physically based approach models the main contributor to interior damage, addresses the uncertainty in the interior damage source, and documents the individual water ingress contribution of each component to the total water intrusion.

[image:]
[bookmark: _Ref294695628]Figure 4.4.5: Flowchart of the interior damage model
The exterior building components that the model considers include roof cover, roof sheathing, wall cover, wall sheathing, gable cover, gable sheathing, windows, doors, and sliding doors. In the case of MHB units only windows, doors, and sliding doors are considered. For a given wind speed, the model first estimates breach areas of each component from the exterior damage array. An estimated area of existing defects in envelope components is also accounted for from surveys (Mullens et al. 2006) and engineering experience.

In order to estimate water intrusion into the buildings, a study was performed to estimate the likely accumulated horizontally impinging rain on a structure during a hurricane event. This study used a simulation model that is composed of a simplified wind model and the R-CLIPER rain rate model developed at NOAA HRD (Lonfat et al, 2007) and is used operationally at NHC. The simplified wind model is based on Holland (1980) and includes parameters for the pressure profile ("B"), Rmax, translation speed and central pressure. Additionally, the Vickery (2005) pressure filling model was used to decay the storms. Storm parameters are sampled from distributions relevant to Florida. The R- CLIPER model determines the vertically free-falling rain rates at each time step of the simulation. The R-CLIPER rain rate is essentially an azimuthally averaged rain rate that varies as a function of radius and maximum intensity of the storm.

The total potential impinging rain rate is calculated as a function of the vertical rain rate (rr), the horizontal mean wind speed (Vh) and the terminal velocity of the rain drops (Vt). We may write this as

The actual impinging rain rate entering a building is assumed to be a fraction of the total potential impinging rain rate by the use of a rain admittance factor (RAF) that is described in Disclosure 4 in the Vulnerability Standard. The vertical rain rate is determined from the R-CLIPER model. The terminal velocity depends on the rain drop size (D), which in turn has a distribution based on rain rate. We use a rain drop distribution based on Willis and Tattelman (1989):

where

The term NG is the concentration parameter, γ is the slope parameter, α is the curvature parameter, M is the water content, and D0 is the median volume diameter.

The terminal velocity is based on Dingle and Lee (1972):

We compute an average Vt based on the mass flux contribution of each drop size to the rain rate

We define the Driving Rain Factor (DRF) as

The DRF is a function of the rain rate. The R-CLIPER model, as mentioned above, produces a rain rate that is based on the azimuthal average of rain rate as a function of radius to center of the storm. Thus the averaged rain rate includes locations where there is very little or no rain. So the DRF could have a high bias if based solely on an average rain rate, since the terminal velocity increases with drop size, which in turn increases with rain rate. We seek to compute an effective DRF that is an average of the DRF weighted by the distribution of rain rates that contribute to the average rain rate estimated by R-CLIPER, as follows

where g is the rain rate distribution from TRMM observations that yield a given mean rain rate, . Rain rate distributions generally follow a log normal distribution (e.g., Marks et al., 1993). A study by Lonfat et al. (2004) using TRMM data shows figures that suggest rain rates have a log normal distribution. Hence we may provisionally assume that g has a log normal distribution. We can estimate the range of the mode and frequency of the mode using probability distribution functions shown in figures from Lonfat et al. (2004) for the entire range of possible radii and storm intensity. These two parameters uniquely determine the distribution. We find that using a range of values for these two parameters, the mode ranging from 1 to 10 mm/hr and frequency of the mode ranging from 7% to 11%, the effective DRF is approximately 0.18 and does not vary by more than a few percent of this value. Given that the DRF is insensitive to relatively large changes in these parameters, it is unlikely that the DRF would be sensitive to a choice of reasonable alternative distributions (such as a gamma), and also not likely to be sensitive to parameter estimation due to maximum likelihood approximations, for example.

We use a simple wind model to provide a time series of the peak three-second gust wind for a given station location. The wind model is a simple Holland B-type model that incorporates a term for the translation speed. The wind speed, assumed to be valid at gradient wind height (taken to be 700 mb), is given by

where

and B is the Holland B shape profile, dp is the central pressure deficit, ρ is the air density, Rm is the radius of maximum winds, r is the radius to center of the storm, c is the translation speed, f is the Coriolis parameter and θ is the angle between the vector for the storm motion and the vector pointing to the station location with reference to the center of the storm.

The gradient winds are reduced to winds at 300 m using a radially dependent gradient conversion factor based on dropsonde data from Franklin et al. (2003). Further details can be found in Axe (2004). Finally, winds are reduced to surface using a log wind profile. The surface roughness length was assumed to be 0.45 m, though tests were done using 0.30 m without significant difference in the final results. A gust factor was used to obtain the peak three-second gust based on ESDU methodology (Vickery & Skerlj, 2005).

The effects of storm decay at landfall are modeled using a pressure filling model (Vickery, 2005). This is the same pressure filling model used in the FPHLM. The distance of simulated stations to the shore line are modeled using a uniform distribution ranging from 0-100 km. This distance effectively determines the time before the storm begins to decay.

The parameters used to specify the storm characteristics are based on statistical distributions relevant to Florida. For each storm simulation, a set of parameters were sampled from their respective distributions. Table 9 provides a list of parameters and their associated distributions used in the model, as well as the reference. Please refer to the references provided in the table for details on the distributions.

[bookmark: _Ref341098574][bookmark: _Toc341100755][bookmark: _Toc341090892][bookmark: _Toc341089122]Table 9. Parameter Distributions used in the wind model.
	Parameter
	Description
	Distribution
	Reference

	B
	Pressure shape profile
	Gaussian
	FPHLM

	dp
	central pressure deficit
	Weibull
	Huang et al. (2001)

	c
	translation speed
	Log Normal
	Huang et al. (2001)

	Rm
	radius maximum winds
	Gamma
	FPHLM

	e_decay
	pressure filling error term
	Gaussian
	Vickery (2005)/FPHLM

	Dshore
	distance to shore
	Uniform
	Present Study

The model simulates the duration of the event from the time a location enters the storm affected area (defined as being within 450 km of the storm center) until exit. The number of storm simulations was 100,000 and for each simulation, 91 locations were selected to record the accumulated impinging rain ("IR") and maximum three-second wind gust at 10 m. Each location was specified to be a multiple of 10 km away from the storm closest approach to center (from 450 km to the left of the storm to 450 km to the right of the storm, in steps of 10 km. A direct hit is at 0 km). The time step of the model was 0.1 hr. In addition to the total impinging rain during the event, separate accumulations were recorded starting at the time that a location experiences the peak wind of the storm event ("IR2"). The impinging rain accumulated prior to the maximum peak gust ("IR1") is computed as the difference: IR1=IR-IR2. The resulting accumulations are then distributions of impinging rain as a function of the peak three-second wind gust for 10 meter height.

The product of the areas of the breaches and defects by the impinging rain conveys the amount of water that enters the building. The water penetration is computed as follows.

Water penetration through defects:

Water penetration through breaches:

Where:
	height of water that accumulates due to defects in component i, in inches
: 	height of water that accumulates due to envelope breaches in component i, in inches
k:	adjustment factor
RAF: 	rain admittance factor
dCi: 	defects percentage
ACi: 	area of component i
: 	breach area of component i
Ab: 	floor area
IR1 : 	accumulated impinging rain prior to maximum wind
IR2 : 	accumulated impinging rain after the occurrence of maximum wind
SCi :	survival factor for component i = 1 – ABCi / ACi

These terms are discussed in more detail in the Vulnerability Standard.

The full distribution of impinging rain from the simulation is used in the development of the vulnerability matrices for low-rise structures. For mid-/high-rise structures, the mean value of the distribution of the impinging rain as a function of wind speed is used in the calculation of water intrusion, and hence damage, in the Loss Module. Figure 17 shows the mean IR1 and IR2 as a function of peak three-second gusts at 10 m. As shown in the figure, simple regressions were performed to facilitate calculations in the Loss Module. Note that for very high wind speeds there is large sampling error, as these are rare events, and thus the relation between mean rain and wind speed is less reliable.

[bookmark: _Ref341093849][bookmark: _Toc341100659][bookmark: _Toc340831348]Figure 17. Mean accumulated impinging rain as a function of peak 3-second wind gust.

This approach estimates the amount of water that enters through each component of the envelope. The total amount of water is calculated by adding the contribution of all components for a given wind speed, and by estimating the water which percolates from story to story. The final step maps water inside the building to interior damage with a bilinear relationship, where total interior damage is achieved for a certain threshold of height of accumulated water (currently set at 1 inch).

Contents Damage

Contents include anything in the building that is not attached to the structure. In the case of a condo building only the contents of the common areas are covered by the policy. In the case of an apartment building, the personal contents of the renters are not covered by the building policy. In both cases, the contents vulnerability is proportional to the interior vulnerability. The constant of proportionality is based on engineering judgment and is validated using claims data.

Time-Related Expenses

Time-related expenses are coverage for loss of income due to the building damage. The value of a claim is obviously dependent on the time it takes to repair a damaged building as well as the surrounding utilities and infrastructure. This coverage applies only to apartment buildings, where the loss of income is the loss of rent. The time-related expenses are modeled as directly proportional to the interior vulnerability.

Appurtenant Structures

For commercial residential structures, appurtenant structures might include a clubhouse or administration building, which are treated like additional buildings. For other structures such as pools, etc., the appurtenant structures model developed for residential buildings is applicable.

[bookmark: _Toc346555802]VM-CRB Design Requirements

The LB model was developed to represent typical apartment and town-house style structures of three stories or fewer. The model framework is based on the single-family, site-built residential model, which uses a probabilistic description of wind loads and exterior and structural component capacities to project physical damage as a function of wind speed. The components in the LB damage model include roof cover, roof sheathing, roof-to-wall connections, wall type, wall sheathing, windows, entry doors, sliding-glass doors, soffits, and gable end truss integrity.

Given the large array of sizes and geometries for low-rise commercial residential structures, the program is developed to provide flexibility in choosing a building layout and dimensioning details (footprint, overhang length, roof slope, roof shape, etc.). The changes in construction practice over decades in Florida also necessitate flexibility when choosing construction quality with regard to hurricane wind resistance. The model allows the selection of building components with a variety of strength options to represent a range from low to high wind resistance (braced or unbraced gable ends, old or new roof cover, sheathing nailing schedules, etc.).

A standard (default) model was developed based on the building exposure study that quantified average square footage per story, units per story, and other descriptors. Default settings were also developed to represent weak, medium, and strong construction practice. Any given strong, medium, or weak model may be altered by additional mitigation or retrofit measures individually or in combination. For example, reroofing an older apartment can be represented by increasing the probabilistic descriptor of capacity for the roof cover.

Outputs (damage matrices) have been produced for each combination of the following: building height (one, two, or three stories), wall type (timber or masonry), roof shape (hip or gable), strength (weak, medium, or strong), and window protection (no protection or with metal shutters).

The following set of requirements were added to the CR LR model in v5.0:
· Physical modeling of soffit wind damage was added to offer more refinement of the rain water ingress modeling.
· Plywood shutters were replaced with metal shutters. Based on current code requirements metal shutters are a more realistic choice for HVHZ and WBDR.
· Updated the debris and pressure protection factors offered by metal shutters. The probability of window damage from either debris impact or pressure is reduced with the employment of shutters. The reduction for debris was modified to reflect the prevalence of shingle roof neighborhoods, where metal shutters provide excellent protection. The reduction for pressure damage was modified to reflect the observations from post-storm investigations that indicate a reduction in pressure damage on windows protected by metal shutters.
· A metal roof option was added for strong models to broaden the representation of the building inventory.
· The debris impact model was updated by the employment of a trajectory model to track the flight of roof cover debris impacting neighboring structures. As a result, the probability of impact on a given window is now a function of the floor that window is on, and total height of the building and surrounding buildings. This modification was made as a leveraged opportunity, whereby a debris trajectory study was funded by the Florida Building Commission, and results adapted to this model.
· The adjustment factors in the rain damage model were modified, to achieve a more realistic simulation of the rain structure interaction. The modifications reflect the fact that any breach and defect can change from leeward to windward or vice versa during the duration of the storm due to the rotation of the hurricane winds.
· In v4.1, the wind speed was assumed constant with height in the rain model. In version 5.0, the wind speeds variation with height in the rain model follows a more realistic logwind profile, in accordance with accepted wind engineering practice and to be consistent with the wind speed variation in the Monte Carlo damage simulations.
· The costing model was extensively upgraded based on input with contractors, and comparisons with RSMeans. The unit costs are more realistic, and better adapted to the market conditions in Florida. The unit costs are now a function of the size of the repairs, and of the height of the building.
· The capacities of wall sheathing (timber frame structures) were updated to reflect wall nailing schedules in the FBC.
· The window pressure capacities for strong models were upgraded based on manufacturer specifications of design and test pressures.
· The roof pressure coefficients on hip roof buildings were adjusted based on literature that shows Cp lower on hip roofs than ASCE suggests. The change was made to bring this aspect of the model up to the current state of knowledge on wind loading.
· The relationship between Cp values in ASCE and those applied to the model to calculate wind loads have been changed to reflect the current implementation in the personal residential model. This change was made to resolve a difference in the frames of reference used in ASCE and the model. ASCE Cp values are conservatively based on a low probability of exceedence of a peak Cp value, while the model Cp values are intended to represent a typical Cp value rather than an extreme value.
· Roof to wall capacities have been adjusted upward for all LR CR models to reflect the additional load sharing available on buildings larger than PR footprints. The additional load sharing effectively reduces the load on the connections, which was modeled by increasing capacity rather than reducing load.
· Roof to wall damage for hip roof buildings is post-processed to remove non-monotonic behavior. This behavior is an artificial artifact associated with the reduction in connection uplift as sheathing loss increases at higher winds.
· The masonry wall capacity algorithm was updated to delineate bending and shear failure modes. The failure modes were separated to better distinguish potential wall collapse (bending failure mode) and wall cracking (shear failure mode).

In the case of the mid-/high-rise commercial residential model (buildings with more than three stories), the models include different apartment units corresponding to different building layouts (interior or exterior entry door), different locations within the floor plan (corner or middle units), different heights (subject to different probabilities of missile impact and wind speed), and different openings (windows, doors, sliders) with different protection options (none or impact resistant).

The following requirements were added to the CR MHR model in v5.0:
· The debris impact model was expanded to include three levels of impact probability (low, medium and high). This was done to accommodate the probability of debris impact as a function of the height of the residence unit.
· Options with or without sliding doors were created, where an additional window is added when sliding door option is off
· The interaction of impacting debris and opening failures was updated. Doors and windows may be impacted and require repair/replacement, but the impact may or may not result in a breach and resultant internal pressure change. In the event of an impact, the model now separately evaluates the probability of damage and the probability of breach. This modification was made to reflect the observation that debris may a) impact, damage (incurring repair or replacement cost) but not breach, or b) impact, damage and breach the opening. Breached openings result in both internal pressurization and a path for wind driven rain ingress and resultant additional internal losses.
· Adjustments were made to the pressure capacities for all openings. This was done to reflect the design and test pressures reported by fenestration manufacturers.
· The costing algorithm for external damage to the openings was changed. The model does not produce any more vulnerability curves for apartment units, but instead produces vulnerability curves for the different types of opening within a unit. These vulnerability curves directly yield the number of openings damaged at every story, which are then multiplied by the opening replacement costs.
· The interior cost coefficient is now a function of the height and size of the building in addition to being also a function of the type of layout (open or closed) and type of property (condo vs. apartment building).
· The number of windows per apartment units was increased in the case of an open layout building, to reflect the fact that in general they will have more windows than for similar units in a closed layout.

For V 5.0 of the mid-high rise there are some additional model types which have been added to the current building configurations. These include the addition of a slider or no sliding door option. Shutters are considered metal which is different from the previous version. The table below represents the different model types and the nomenclature that is used in the label of the curves. The name format in of the curves is as follows.

Vuln curve name format
VulnCurve_CC_Sh_NG_HDI_NSD_71212

Breach curve name format
BreachDamg_MO_Sh_NG_MDI_NSD_71212
Configuration variables and nomenclature
	Variables
	
	
	
	
	

	Unit type
	Opening Protection
	Window Type
	Debris Impact Zone
	Sliding Door
	Run date

	Corner Closed
	Shutters
	Normal Glass
	High DIZ
	Yes
	71212

	Corner Open
	No shutters
	Impact Resistant Glass
	Medium DIZ
	No
	

	Middle Closed
	
	
	Low DIZ
	
	

	Middle Open
	
	
	
	
	

	
	
	
	
	
	

	Nomenclature
	
	
	
	
	

	Unit type
	Opening Protection
	Window Type
	Debris Impact Zone
	Sliding Door
	Run date

	
	
	
	
	
	

	CC
	Sh
	NG
	HDI
	YSD
	71212

	CO
	nSh
	IRG
	MDI
	NSD
	

	MC
	
	
	LDI
	
	

	MO
	
	
	
	
	

Name:	Vulnerability Model for Commercial Residential Buildings

Description:	The user enters variables such as number of stories, building type, shutter protection, strengths, roof shape, date, Weibull distribution parameter, number of simulations, wind speed increment, and other factors for estimating costs. The program generates type 1 and type 2:
vulnerability matrices,
weighted vulnerability matrices, and
age-weighted vulnerability matrices
	
1. The user executes the vulnerability model for low-rise buildings
1.1. The user enters the following parameters: date, wall type, roof type, roof cover, shutter protection, building quality, region
1.2. The system generates the un-weighted vulnerability curves
1.2.1. Exterior Damage: the system obtains the damage matrices from the Monte Carlo Simulation and loads model variables (i.e., # units/floor, width and length, #windows, etc)
1.2.2. Costing: the system obtains the cost analysis sheet and selects percentage costs for building type
1.2.3. Interior Damage: the system produces the interior damage curves by estimating the water ingress (WAT) to breached building, aggregating all water ingressed per component, and converting water array to interior damage array (DAI)
1.2.4. The system generates and saves the vulnerability plots for building and contents
1.3. The system generates the weighted vulnerability curves
1.3.1. The system runs all possible combinations of missing parameters and produces the decadal un-weighted curves
1.3.2. The obtains the statistics data from Marion and St. Lucie
1.3.3. The system calculates the conditional probabilities
1.3.4. The system generates and saves the weighted vulnerability curves
2. The user executes the vulnerability model for mid-/high-rise buildings
2.1. The user enters the following parameters: window area, slider area, door area, date, and MCS damage matrices.
2.2. The system loops through the apartment types
2.2.1. The system loops over openings (shuttered and no shuttered)
2.2.1.1. The system loads the corresponding damage matrices
2.2.1.2. The system declares the number of openings per apartment types
2.2.1.3. The system declares costs percentages for all opening types of given apartment types: Pw, Pd, Ps
2.2.1.4. The system adds pressure and debris damage for each opening type: Edw, EDd, EDs
2.2.1.5. The system calculates the exterior vulnerability curves: VCext=EDwPw + EDDPD + EDSPS
2.2.1.6. The system calculates the breach curves: VBW=EDW x Areawindow (window), VDD=EDDxAreaD (doors), and VBS=EDSxAreaS (sliders)
2.2.1.7. The system plots and saves the vulnerability curves and breach curves
[bookmark: _Toc346555803]Computer Model Design

[bookmark: _Toc346555804]Use Case View of VM-CRB

C.	Actors:

There is one actor in VM-CRB, the scientists.

D.	Use Case:

The VM-CRB models two types of buildings: low-rise and mid-/high-rise buildings. The model for low-rise buildings (VM-LB) generates un-weighted vulnerability matrices and weighted matrices, and the model for mid-/high-rise buildings (VM-MHB) generates exterior vulnerability curves and breach curves.

C. 	Use Case Diagram:
[image:]
[bookmark: _Ref294695782]Figure 4.4.6: Use case diagram for VM-CRB
[bookmark: _Toc346555805]System Design

This section describes the system design. Appropriate diagrams are provided to describe the system functions, activities, and the overall flowchart of the VM-CRB. Given that two building models are modeled in the VM-CRB, the VM-CRB system was divided into two components: the component for low-rise buildings (VM-LB) and that for mid-/high-rise buildings (VM-MHB).

LOW-RISE COMPONENT

The low-rise component (VM-LB) produces the vulnerability curves for low-rise buildings. Figure 4.4.6 provides a detailed flowchart for the VM-LB.

The VM-LB consists of three main modules: a control module, a vulnerability module, and a weighted vulnerability module. The control module sets global parameters and repeatedly calls both the vulnerability module and the weighted vulnerability module. The vulnerability module normalizes the exterior damage information provided by the Monte Carlo simulation, calls the interior damage routines, and aggregates both damages to produce vulnerability curves. The weighted-vulnerability module generates the weighted and decadal vulnerability curves.

[image:]
[image:]
Figure 4.4.7: Flowchart for VM-LB
MID-/HIGH-RISE COMPONENT

The mid-/high-rise component (VM-MHB) generates the vulnerability curves for mid-/high-rise buildings. The VM-MHB consists of just one component which calculates the exterior vulnerabilities and breach curves for mid-/high-rise buildings. This component adopts a modular approach to model the damage in mid-/high-rise buildings in which the total damage is computed by aggregating the damage the damage of all apartments in the building.

Figure 4.4.8: Program flowchart of VM-MHB
[bookmark: _Toc346555806]Implementation of the Vulnerability Model for Commercial Residential Buildings

This section presents the implementation of the MCS-CRB. Given the two different types of buildings addressed in the MCS-MHB (i.e., vulnerabilities for low-rise buildings and for mid-/high-rise buildings), the section divides the implementation description into the low-rise component and mid-/high-rise component. Each sub-section covers the program files of the model and provides detailed flowcharts.

A. LOW-RISE COMPONENT

Vulns_run_CL080112.m
Description: This program automates the use of ‘Vulns_calc_CL080112’ by allowing the user to call the program ‘Vulns_calc_CL080112’ as a function. This code can be set up to run all models for a certain condition; for example, a single run can analyze weak, medium, and strong models for one story shuttered models.
Input:
· Rundate: Run date of the matrices
Outputs:
· Strong_unweight_Bldg: Strong buildings un-weighted curves array
· Medium_unweight_Bldg: Medium buildings un-weighted curves array
· Weak_unweight_Bldg: Weak buildings un-weighted curves array
· Strong_unweight_Int: Strong interior un-weighted curves array
· Medium_unweight_Int: Medium interior un-weighted curves array
· Weak_unweight_Int: Weak interior un-weighted curves array
· Medium_unweight_Bldg: Medium buildings un-weighted curves array
· Weak_unweight_Bldg: Weak buildings un-weighted curves array
· Strong_unweight_Int: Strong interior un-weighted curves array
· Medium_unweight_Int: Medium interior un0-weighted curves array

Vulns_calc_CL080112.m
Description: This program calculates the vulnerability curves for all building types based on the damage matrices.
Input:
· Rundate: Run date of the matrices
· Tot_No_Stories: Total number of stories
· walltype: Wall type (CB or TIMBER)
· rooftype: Roof type (GABLE or HIP)
· roofcover: Roof cover (SHINGLES or TILES)
· Shut_Prot: Opening protection (SHUTTERED or NOT-SHUTTERED)
· Constr_Qlty: Construction quality (WEAK, MEDIUM, or STRONG)
· region: Region (WBDR, HVHZ, or INLAND)
· locat: Damage Arrays folder
Outputs:
· Bldg_Vuln_Curve: Building Vulnerability Curve (41 x 1)
· Cont_Vuln_Curve: Contents Vulnerability Curve (41 x 1)
· VM_ext: Exterior Damage Matrix (41 x 32)
· VM_int: Interior Damage Matrix (41 x 32)

Weight_run_CL080112.m
Description: This program calls the routine that calculates the weighted vulnerability curves for all possible combinations of missing parameters. It also splits Decadal Array into single files and saves them with the proper filenames.
Input:
· RUNdate: Vulnerability date label: Integer (MMDDYY)
Output:
· Weighted vulnerability curves

Weight_calc_CL080112.m
 Description: This program combines the unweighted vulnerability curves weighted by roof type (rt), roof cover (rc) and opening protection (op) conditional probabilities.
 Inputs
· RUNdate: Vulnerability date label: Integer (MMDDYY)
· c_case: Missing variable/s case (1 through 7). See Run_Weight_CR_LowRise_MMYYDD
· Strong_unweight_Bldg,Medium_unweight_Bldg,Weak_unweight_Bldg: Strong, MEdium and Weak unweighted arrays (41x3x2x2x2x2x3)-(Winds,Stories,walltype,shutt,rooftype,roofcover,subregion)
· plotF: Yes/No graphs Flag
Outputs
· S: Case Selector matrix (See weighted matrices document)
· P: Conditional probabilities matrix
· Wk: Weighted Decadal Vulnerability Curves Array -> (k,41,ns,ew,zni,ybe); k can be 2,4 or 8 depending on the case.
· VkYb: Decadal "unweighted" Vulnerability curves -> (k,41,ns,ew,zni,ybe); k can be 2,4 or 8 depending on the case.

Weight_CondProbs_CL080112.m
Description: This routine caclulate the conditional probabilities P(RC,RT|EW,YB), P(RT|YB) and P(RC|EW,YB) directly from county appraisers spreadsheets that are loaded into the code. Currently the inly two available complete counties to calculate these probabilities are St.Lucie county (Coastal) and Marion county (Inland Ocala). The routine can be easily extended as soon as there is more information available, by declaring the directory where new spreadsheets are located and giving the option in Weight_Prog_LowRise.MMYYDD.m
Input:
· prob_case: either 1) P(RC,RT|EW,YB), 2) P(RC|EW,YB) or) P(RT|YB) will be calculated
· cond_probs: Select which county dataset will be used
· StLucie_Weighting.xls/StLucie_Weighting.xls: Excel Spreadsheet with counties’ datasets
Output
· p: conditional probability matrix or matrices

Vulns_plotter_CL030911.m
Description: This program plots the vulnerability curve with respect to wind speed based upon vulnerability matrix.
Input:
· Bldg Vuln. Matrix: VM_bldg (32x41)
· Contents Vuln. Matrix: VM_cont (32x41)
· Interior Vuln. Matrix: VM_int (32x41)
· Ext. Wall Type: walltype (1=CB; 2=Wood)
· Subregion Number: region (1=wbdr; 2=inland)
· Filenames string
· Damage vector: d (1x32)
· Flag to plot labels or not; plot_labels
· Standard Deviation (1x41)
Output:
· Bldg. Vuln. Curve derived from on Vuln. Matrix. Bldg_VPoints_out (1x32)
· Contents Vuln. Curve derived from on Vuln. Matrix. (1x32)
· Interior Vuln. Curve derived from on Vuln. Matrix. (1x32)

IntExt_calc_CL041111.m
Description: This program calculates the interior-exterior curves for chosen building types.
Input:
· walltype: wall type (1 for CB, 2 for WD)
· rooftype: roof shape (1 for gable, 2 for hip)
· NbrStories: number of stories
· Shutters: Opening protection (1 for nSh, 2 for Sh, and 3 for IRW)
· Constr_Qltry: 1, 2, 3 (Strong, Medium, or Weak respectively)
· plot_y_n: flag for plotting or not
· DMversion: damage matrix run date
· Header: Cell array with information on the model (23x3 cell)
· Output: damage array (4-dimensional array)
· Pcv: costs vector
Output:
· ext: total exterior damage vector (41x1)
· idr: total interior damage vector (41x1)
· EXT: Exterior damage array (1000x9x41x8)
· WAT: water ingressed inside building (1000x9x41x8)
· WAT_419: water ingressed inside building (41x9)
· Graph #1: Damage modes’ interior damage vs. overall exterior damage
· Graph #2: Overall exterior vs interior damage ratio
· Graph #3: Damage modes’ participation in the interior damage as a function of exterior damage
· Graph #4: Water ingress as a function of exterior damage
· Graph #5: Exterior damage per component as a function of wind speed
· Graph #6: Overall exterior and interior damages as a function of wind speed.

IntExt_plotter_SeprtPlots_CL111110.m
Description: This program plots graphs as an option to IntExt_plotter_CL111110.m
Input:
· Ext_out: exterior damage matrix (41x9)
· IDR_out: interior damage matrix (41x9)
· Rooftype: roof type parameter
Output
· Graphs exterior vs. interior

IntExt_plotter_CalcMatrcs_CL011811.m
Description: This program calculates the interior and exterior damage ratios matrices to be used in IntExt_ploter_CL111110.m
Input:
· EXT: Exterior damage array (1000x9x41x8)
· WAT: water ingressed inside building (1000x9x41x8)
· wat_threshold: interior damage water threshold
Output:
· EXT_411: Total exterior damage vector as a function of wind speed (41x1)
· EXT_419: Exterior damage matrix for each of the damage components (41x9) or (41x7) for hip
· WAT_411: Total ingressed water as a function of wind speed (41x1)
· WAT_419: Water ingressed through each damage mode as a function of wind speed (41x9) or (41x7) for hip
· IDR_411: Interior damage as a function of wind speed (41x1)
· IDR_419: Interior damage for each damage mode as a function of wind speed (41x9) or (41x7) for hip
· STD_I: Standard deviation of interior damage vector IDR_411 (41x1)

IntExt_plotter_C011811.m
Description: This program plots interior vs. exterior damage ratios. It is a complement to “IntExt_calc_CL111110”
Input:
· EXT: Exterior damage array (5000x9x41x8)
· WAT: Water ingressed inside building (5000x9x41x8)
· wat_threshold: interior damage water threshold
· ext_weights: cost weight for each of the exterior components (9x1)
· cell_title: cell with information on graph title, roof type, and a flag to activate/deactivate plotting
Output
· ext: Total exterior damage vector (41x1)
· idr: Total interior damage vector (41x1)
· Graphs: Damage modes’ interior damage vs. overall exterior damage, overall exterior vs interior damage ratio, etc.

Figure 4.4.9: Detailed flowchart for Vulns_run_CL111110

Figure 4.4.10: Detailed flowchart for Vulns_calc_CL022711

Figure 4.4.11: Detailed flowchart of IntExt_calc_CL041911111110

Figure 4.4.12: Detailed flowchart of Vulns_plotter_CL031911

Figure 4.4.13: Detailed flowchart of Weight_run_CL111110

Figure 4.4.14: Detailed flowchart of Weight_calc_CL111110

Figure 4.4.15: Detailed flowchart of Weight_CondProbs_CL111110
[image:]
Figure 4.4.17: Detailed flowchart of IntExt_plotter_CL011811111110, IntExt_plotter_CalcMatrcs_CL011811111110, and IntExt_SeprtPlots_CL111110

B. MID-/HIGH-RISE COMPONENT

Vulns_calc_CM070612.m
Description: This program calculates the exterior vulnerabilities and breach curves for mid-/high-rise building apartment types. A modular approach is adopted to model the damage in which the total damage is computed via aggregating the damage of all apartments in the building.
Input:
· wdw_ar: area of windows
· door_ar: area of entry doors
· sld_ar: area of sliders
· winds: wind array, i.e., 50:5:250
· Exterior damage array
· RUNdate: date for the run
Output:
· VC: exterior vulnerability curves for all apartment types, i.e., a 41x1 vector; CO, CC, MO, MC (Middle=M, Corner=C, Open=O, Closed=C)
· VB: breach curves for windows, entry doors, and sliders for all apartment types, a 41x1 vector, and each apartment has then thee breach curves

Figure 4.4.18: Detailed flowchart of Vulns_calc_CM110910
[bookmark: _Toc346555807]Class Diagram

A. LOW-RISE COMPONENT
[image:]
Figure 4.4.19: Class diagram for VM-LB
B. MID-/HIGH-RISE COMPONENT

Figure 4.4.20: Class diagram for VM-MHB
[bookmark: _Toc346555808]Data Flow Diagram

A. LOW-RISE COMPONENT
[image:]
Figure 4.4.21: Data flow diagram for low-rise component of VM-CR
B. MID-/HIGH-RISE COMPONENT

Figure 4.4.22: Data flow diagram for mid-/high-rise component of VM-CR

[bookmark: _Toc346555809]Glossary

	1) Equation: Water intrusion through breached gable end cover

	

	· AreaTotal = total living area
· EDGableCover = Exterior damage of gable cover. (%)
· EDGableSheath = Exterior damage of gable sheathing. (%)
· fPerc = percolation from story to story. (%)
· fRunWat = Factor to account for running water into breaches. (%)
· fRedGbl: simultaneous factor accounting for gable ends not on windward side for the duration of storm
· IR2 = impinging rain integrated from time of occurrence of max wind speed to time of min wind speed. (inches)
· fLogLaw= height correction factor for reducing windspeed
· WatIngrBr = water ingressed into the building through the breaches in gable cover. (Actually through the joints in the exposed sheathing). (inches)
	IntExt_calc_CL 080112

	2) Equation: Water intrusion through breached gable end sheathing

	

	· AreaBase = Roof horizontal base area. (sqf)
· AreaTotal = total living area
· EDGableSheath = Exterior damage of gable sheathing. (%)
· fPerc = percolation from story to story. (%)
· fRunWat = Factor to account for running water into breaches. (%)
· fRedGbl: simultaneous factor accounting for gable ends not on windward side for the duration of storm
· IR2 = impinging rain integrated from time of occurrence of max wind speed to time of min wind speed. (inches)
· fLogLaw= height correction factor for reducing windspeed
· WatIngrBr = water ingressed into the building through the breached gable sheathing. (inches)
	IntExt_calc_CL080112

	3) Equation: Total water intrusion through gable sheathing

	

	· WatIngrBr = water ingressed into the building through the breached gable sheathing. (inches)
	

	4) Equation: Water intrusion through breached roof cover

	

	Definitions
	Routines

	· AreaBase = Horizontal base area of roof. (sqf)
· AreaTotal = total living area
· DefSheath = Measure of the gap between plywood panels. (% of Area)
· EDRoofCover = Exterior damage of roof cover. (%)
· EDRoofSheath = Exterior damage of roof sheathing. (%)
· fPerc = percolation from story to story. (%)
· fSimRoof: Projection factor function of wind angle. Accounts for % of breaches on windward side. (%).
· fRunWatRoof = Factor to account for running water into roof breaches. (%)
· fRedRoof = reduction factor function of wind angle. Accounts for rain coming parallel or perpendicular to wind roof ridge. (%)
· IR2 = impinging rain integrated from time of occurrence of max wind speed to time of min wind speed. (inches)
· sin() = Projects impinging rain onto vertical plane of roof. = Slope of roof.
· fLogLaw= height correction factor for reducing windspeed
· WatIngrBr = water ingressed into the building through the breached roof cover. (Actually through the joints in the exposed sheathing). (inches)

	IntExt_calc_CL080112

	5) Equation: Water intrusion through breached roof sheathing

	

	· AreaBase = Horizontal base area of roof. (sqf)
· AreaTotal = total living area
· EDRoofSheath = Exterior damage of roof sheathing. (%)
· fPerc = percolation from story to story. (%)
· fRedRoof = reduction factor function of wind angle. Accounts for rain coming parallel or perpendicular to wind roof ridge. (%)
· fRunWat = Factor to account for running water into breaches. (%)
· fSimRoof: Projection factor function of wind angle. Accounts for % of breaches on windward side. (%).
· IR2 = impinging rain integrated from time of occurrence of max wind speed to time of min wind speed. (inches)
· sin() = Projects impinging rain onto vertical plane of roof. = Slope of roof.
· fLogLaw= height correction factor for reducing windspeed
· WatIngrBr = water ingressed into the building through the breached roof sheathing. (inches)
	IntExt_calc_CL080112

	6) Equation: Water intrusion through breached wall cover

	

	

	

	

	SurvF = 1 – (EDWC,1 + EDWC,2 + EDWC,3)

	AreaRemains = AreaEffWalls SurvF

	

	

	

	Note: if the model has less than 3 stories, EDWC,3 vanishes. Same with EDWC,2 if model has one story.

	· AreaD, AreaS , Areaw = Area of a door, slider and window
· AreaEffWallStory = Area of Wall per story (i.e. excluding openings)
· AreaTotal = total living area
· AreaRemains = undamaged area
· DefSheath = Measure of the gap between plywood panels. (% of Area)
· EDWallCover,i , EDWallSheathing,i = Wall Cover and Sheathing damage at story i
· EDWC,i = wall cover damage minus wall sheathing damage
· fPerc = percolation from story to story. (%)
· fRunWat = Factor to account for running water into breaches. (%)
· fSimAngles = Simultaneity factor to account that rain will not hit all walls at the same time. Function of wind angle.
· IR1 = impinging rain integrated from initial time to time of occurrence of max wind speed. (inches)
· IR2 = impinging rain integrated from time of occurrence of max wind speed to time of min wind speed. (inches)
· L, W, h = length, width of building and story height respectively. (ft)
· NbrStories = number of stories
· SurvF = Survival function
· fLogLaw= height correction factor for reducing windspeed
· WAT = total water ingressed through breaches and defects
· WatIngrBrN = Water hitting the building per unit wall (to simplify equations)
· WatIngrBr = water ingressed into the building through the breached roof cover. (Actually through the joints in the exposed sheathing). (inches)
· WatIngrLeak = Water ingressed through defects
· NbrWindows = number of windows.
	IntExt_calc_CL080112

	7) Equation: Water intrusion through breached wall sheathing

	

	

	Note: if the model has less than 3 stories, EDWS,3 vanishes. Same with EDWS,2 if model has one story.

	· EDWS,3 = Wall Sheathing damage at 3rd story
· Remaining variables defined in 6)
	IntExt_calc_CL080112

	8) Equation: Water intrusion through breached windows

	

	

	SurvF = 1 – (EDW,1 + EDW,2 + EDW,3)

	WdowRemains = NbrWindows SurvF

	

	

	· AreaW = Area of windows
· DefWindow = Density of window defects per window. It is a function of the building strength (strong, medium and weak). (sqf of defect per window)
· EDW,3 = Damage to windows of 3rd floor and so on. Damage is caused by both, wind pressure and debris.
· WdowRemains = undamaged windows
· WatIngrBr = Water ingressed through breached windows
· WatIngrBrN = normalized damage per window
· Remaining variables defined in 6)
	IntExt_calc_CL080112

	9) Equation: Water intrusion through breached sliders

	

	

	SurvF = 1 – (EDS,1 + EDS,2 + EDS,3)

	SliderRemains = NbrSliders SurvF

	

	

	· AreaS = Area of sliders
· DefSliders = Density of defects per sliders. It is a function of the building strength (strong, medium and weak). (sqf of defect per slider)
· EDS,3 = Damage to sliders of 3rd floor and so on. Damage is caused by both, wind pressure and debris.
· NbrSliders = Number of sliders
· SliderRemains = undamaged sliders
·
= Probability that Sliders will be on the windward side for the duration of the storm
· WatIngrBr = Water ingressed through breached sliders
· WatIngrBrN = normalized damage per slider
· Remaining variables defined in 6)
	IntExt_calc_CL080112

	10) Equation: Water intrusion through breached doors

	

	

	SurvF = 1 – (EDD,1 + EDD,2 + EDD,3)

	DoorRemains = NbrDoors SurvF

	

	

	· AreaD = Area of doors
· DefDoors = Density of defects per doors. It is a function of the building strength (strong, medium and weak). (sqf of defect per door)
· EDD,3 = Damage to doors of 3rd floor and so on. Damage is caused by both, wind pressure and debris.
· NbrDoors = Number of doors
· DoorRemains = undamaged doors
·
= Probability that Doors will be on the windward side for the duration of the storm
· WatIngrBr = Water ingressed through breached doors
· WatIngrBrN = normalized damage per door
· Remaining variables defined in 6)
	IntExt_calc_CL080112

	11) Equation: Water intrusion through Soffits

	

	

	· fSimSoff= simultaneity of soffits windward to water intrusion
· RAFsoff= Rain admittance factor of soffits (% of freestream wind driven rain hitting soffit surface)
· Soffα = Correlation factor relating Stucco soffits to vinyl soffits (stucco = 0.3, vinyl =1)
funSoff = function of % water intrusion per windspeed for unbreached soffit material
· Areasoff= soffit area
· WatIngrBr = Water ingressed through breached Soffit
· Remaining variables defined in 6)
	IntExt_calc_CL080112

	12) Equations: Weighted Combination of Vulnerability Curves

	

	

	

	· Wn = Weighted Vulnerability Curves Array for case “n”
· Pn = Combination matrix whose elements have the conditional probabilities to combine the appropriate rows (vulnerability curves of Vk), for case “n”. T indicates transpose.
· Vkn = Vulnerability curves matrix to be combined for case “n”. In this matrix each of its 8 rows has a vulnerability curve (41 elements) to be combined
· m = number of weighted vulnerability curves for missing variables case “n”. n = 1,2,4,8 for cases 1,2-4,5-7 and 8 respectively defined below.
· n =
· n=1: Missing roof cover (RC), roof shape (RT) and opening protection (OP)
· n=2: Missing RC,OP
· n=3: Missing RT,RC
· n=4: Missing RT,OP
· n=5: Missing OP
· n=6: Missing RC
· n=7: Missing RT
· n=8: Missing none

· Sn = is the selector matrix with 1’s and zeros. Sn rows select which vulnerability curves of Vkn (rows) will be combined by weights of matrix Pn. Sn columns say the number of weighted vulnerability curves resulting for each case “n”. Refer to CR_Routines_InputOutputs.doc and Weighting Process Report.doc for more details.
· Pop is a column vector with the probabilities of having/not having shutters for each of the rows of Vkn
pop (1,:,1) = [.1 .9]; % P(NoSh,Sh|hvhz) > 1993
pop (1,:,2) = [.6 .4]; % P(NoSh|hvhz) : otherwise
pop (2,:,1) = [.1 .9]; % P(NoSh,Sh|wbd) > 2001
pop (2,:,2) = [.75 .25]; % P(NoSh|wbd) : otherwise
pop (3,:,1) = [.9 .1]; % P(NoSh,Sh|inland) > 2001
pop (3,:,2) = [.95 .05]; % P(NoSh|inland) : otherwise
	Weight_calc_CL080112

	13) Equations: Conditional probabilities

	

	

	

	· RC, RT, EW, YB : Roof cover, roof type, exterior wall and year built respectively
	Weight_CondProbs_CL080112.m

	14) Equations: Calculate Vulnerability curves

	

	CDR = EDR×PCEXT × Size factors + IDR×PCINT + Fixed Costs

	

	

	· CDRi,j,k,l: Complete or Total Damage ratio array.
· EDR: Exterior damage ratio array
· IDR: Interior damage ratio array
· Size factors = replacement size factors accounting for economies of scale of repair jobs
· PCEXT, PCINT: Percentage participation of exterior and interior components in total costs respectively.
· Fixed Costs = costs associated with permitting, equipment, mobilization etc.
· tw: ingressed water threshold for complete damage (inches)
· VC: Vulnerability curve. (41x1 vector)
· WAT: Water ingressed array
· (.)j: average operator over the j-th dimension of array
· i,j,k,l: Dimensions of exterior, interior damage and water ingressed tensors (array) representing, simulations (5,000), components (9), wind speeds (50, 55, …,250), wind angles (0,45,…,315).
	Vulns_calc_CL080112

	15) Equations: Interior damage for plotting

	

	

	

	· IDR41,9: Interior damage ratio matrix of 41 (winds) by 9 (components) for plotting.
· IDRA: Interior damage ratio array
· IDRi,j,k,l: interior damage ratio array
· tw: ingressed water threshold for complete damage (inches)
· WAT: Water ingressed array
· (.)j: average operator over the j-th dimension of array
· i,j,k,l: Dimensions of exterior, interior damage and water ingressed tensors (array) representing, simulations (5,000), components (9), wind speeds (50, 55, …,250), wind angles (0,45,…,315).
	IntExt_plotter_CalcMatrcs_CL011811.m

	16) Equations: Exterior Vulnerability curves and Breach curves for mid/High-rise models

	

	

	

	

	· VCEXT = exterior vulnerability curves for all apartment types (CO, CC, MO, MC (Middle = M, Corner = C, Open = O, Closed = C))
· EDW, EDD, EDS = Number of damaged components (produced by pressure and/or debris) in windows, entry doors and sliders respectively
· VBW, VBD, VBS =Breach curves for windows, entry doors and sliders respectively.
· AreaW, AreaD, AreaS = area of windows, entry doors and sliders respectively
	Vulns_calc_CM070612

[bookmark: _Toc346555810]Volume V. Insurance Loss Module (Module IV)

Revision History
	Last Updated
	Person
	Summary

	02/01/2007
	Min Chen
	Created the document

	04/20/2007
	Min Chen
	Demand Surge-ILM

	06/01/2007
	Shermann Chans
	- Added Additional Programs section
- Updated version 2.5’s demand surge section with the new demand surge model of version 2.6

	02/22/2008
	Fausto Fleites
	- Improved PILM and SILM’ class diagrams and class descriptions
- Added for PILM and SILM table that maps variables, equations, and formulas in the documentation to source code terms and variables

	05/18/2008
	Fausto Fleites
	- Added section of Matrices Checking Program

	02/20/2009
	Fausto Fleites
	Added revision history

	10/23/2010
	Fausto Fleites
	- Removed PILM documentation
- Updated requirements, flowcharts, and glossary tablesfor ILM PR
- Added documentation for ILM CR

	04/16/2011
	Ronald Ocampo
	- Updated documentation, flowcharts, and glossary tables for ILM CR

	06/06/2011
	Ronald Ocampo
	- Updated flowcharts for ILM-MHB

	01/15/2013
	Raul Garcia
	- Updated documentation and flowcharts for ILM PR, ILM CLR, and ILM CHR.

[bookmark: _Toc346382673][bookmark: _Toc346382930][bookmark: _Toc346383659][bookmark: _Toc346384008][bookmark: _Toc346384294][bookmark: _Toc346384582][bookmark: _Toc346384869][bookmark: _Toc346385156][bookmark: _Toc346385442][bookmark: _Toc346385729]

CHAPTER 5. [bookmark: _Toc346400054][bookmark: _Toc346408512][bookmark: _Toc346555811]
[bookmark: _Toc346555812]Insurance Loss Module for Personal Residential Policies

[bookmark: _Toc346555813]General Description of ILM-PR

Insurance Loss Model for Personal Residential Policies (labeled ILM-PR, ILM, or SILM) calculates the expected losses during storms. ILM-PR takes actual, observed, or model wind speeds per each policy and calculates the expected losses using the corresponding vulnerability matrices, provided by the engineering team, per loss type given the input exposure/insurance policy data. The winds for the policies are obtained from the Wind Speed Correction use case which computes winds at the latitude/longitude level and thus enables the ILM-PR to compute losses at the geocoding level.

[bookmark: _Ref294774558][bookmark: _Toc346555814]Detailed Design and Implementation of ILM-PR

Input

Both the meteorology and engineering components provide outputs that constitute critical inputs to the insured loss model. The meteorology component provides, for each policy record, the associated wind speed. Thus, policy is associated with a wind speed computed at the latitude/longitude coordinate of the policy.

The Engineering component produces damage matrices that are used as input in the insured loss model. Damage matrices are provided at the county level for building structure, contents, appurtenant structures, and additional living expenses. A separate damage matrix is provided for each construction type. But within a certain range of building ages, a particular construction type will have the same damage matrix across all policies that belong in the same region. The cells of the matrix provide probabilities of damage outcomes for a given wind speed. The damages are specified in intervals or classes of ratios. The row represents a given interval of damage ratios and the column represent a given wind speed. In practice, the damage probabilities are assigned to the midpoint of the interval of damage ratios. The probabilities of all possible damage outcomes must add up to 1. Therefore, the sum of the cells in any given vector column (for a wind speed) adds up to 100%.

It should be noted that both the damages and wind speeds are initially specified as a set of discrete points. If needed one can interpolate to get a rough continuous function by using either some standard smoothing techniques (e.g. by defining the jump of the distribution function and using it with a kernel function and optimal bandwidth to estimate a smooth PDF) or by specifying an empirical set of ranges or intervals where each interval has an associated probability. The latter method is used by the engineering component, and its output is specified as a set of damage ratio intervals with associated probabilities.

The third major dataset utilized is composed of insurance policy and claim data provided by several property and casualty insurance companies operating in Florida.

Implementation Steps

In this section we develop the algorithm for estimating expected loss costs for a given scenario. Typically the scenario refers to a particular hurricane with a given set of characteristics. Hence, both the exposure data and the wind speeds by policy are given observed data. The damage matrices, as before, are modeled. Most of the steps in this algorithm are the same as in the prior section.

(1) Start with a particular insurance company m.

(2) Next pick a residential policy exposure unit k from the insurance policy database.

(3) Determine the latitude/longitude coordinates j of the policy.

(4) Determine the county c of the policy

(5) Extract the wind speed for policy from the wind database.

(6) Next determine the building type i and the building construction date d (if available) for the selected policy.

(7) Select the damage matrix for structure of type i based on its construction date d from the set of matrices for county c. If the construction date d is not available, another set of vulnerability matrix is used. The matrix is provided by the Engineering team and consists of the simulated probabilities for various damage ratio intervals and wind speeds. The row represents a given interval n of damage ratios and the column represent a given wind speed w. Only the column corresponding to the observed wind speed for the zip code is used. Let Xij be the vector of the mid points of the interval of damage ratios for structure type i in zip code j. It has N elements. Now rather than use the MDR (Mean Damage Ratio) of the whole matrix, the midpoint of the damage ratio interval n, Xn, is used to represent an outcome, and the probability of this outcome for a given observed wind speed is Pnw. In general, for structure i in zip code k, the midpoint of damage intervals is Xijn and its probability of outcome for a given observed wind speed is Pijnw.

(8) Select the damage matrix for contents for structure of type i based on its construction date d from the set of matrices for county c. If the construction date d is not available, another set of vulnerability matrix is used. The matrix is provided by the Engineering team and consists of the simulated probabilities for various content damage ratio intervals and wind speeds. The row represents a given interval n of content damage ratios and the column represent a given wind speed w. The interpretation of the cells values etc is similar to the description given above for structure damage matrix. Although the content damage depends indirectly on structural damage, there is no stipulated functional relationship between the two matrices and their damage intervals.

(9) Select the AP and ALE damage matrices accordingly. The Engineering team has generated independent matrices for AP and ALE based on indirect relationships between structural damage and both ALE and AP.

(10) From the insurance policy file, get the property value Vijk, its policy limits LMijk, and its deductible Dijk.. The limit LM is the default value of the property k (default is V = LM) if value is not available. Value is contingent on the type of policy specified and is either replacement cost or actual cash value (replacement cost minus depreciation).

(11)
Select the damage vector for the observed wind speed. Apply the damage ratio vector Xij to the property k (of type i in zip code j). For each damage interval n, calculate the $ damage: . Thus, a Nx1 $ damage vector DMijk is generated for property k. This vector is associated with the observed wind speed.

(12)
For the observed wind speed, estimate the row vector of wind conditional mean $ content damages, where each element is the mean content damage for the given wind speed: ratio.

(13)
For the observed wind speed, estimate the row vector of wind conditional mean $ AP damages, where each element is the mean AP damage for the given wind speed: ratio.
	
(14)
For the observed wind speed, estimate the row vector of wind conditional mean $ ALE damages, where each element is the mean ALE damage for the given wind speed: ratio.

(15) Using the wind conditional mean $ structural damage DMijk, and combining it with the wind conditional mean C, mean APijkw and mean ALEijkw: calculate the deductibles DS, DC, DAP, DALE on a pro-rata basis to the respective damages as follows:

(16)
Apply the pro-rata structure deductible Dsijk and limits LMijk to each of the cells of the $ damage Matrix DMijk . Calculate the structure loss Lsijkn net of deductible, and truncate it on the upside by LMijk and on the downside by Dsijk. Thus, a vector Lsijk of insured losses is generated for property k. Its elements are Lsijkn. If Lsijkn is LMijk, then Lsijkn = LM ijk- . If Lsijkn is 0, then let Lsijkn = 0 .

(17) Repeat step (15) for C, AP, and ALE. Here, these variables are means conditional on the wind speed. Generate Lc, LAP, and LALE.

(18) Next, to get the expected insured loss for the observed wind speed w, multiply each element Lijkn of the vector Lijk by its corresponding probability Pijkwn to compute Lijknw, and then sum over the N intervals. Steps 15 - 17 can be represented by:

where Lijkwn = LMijk - if (DMijn - Dsijk) LMijk, and if (DMijn - DSijk) 0, then let Lijkwn = 0 , i.e replace negative values of net of deductible loss with zero. The same applies to C, AP, and ALE.
To apply the proper demand surge factors, determine the county of the policy, get its demand surge factors, and apply it:

If after applying the demand surge factors, any expected loss (S, C, APP, ALE) is greater than its corresponding limit, then E(Lijkwn) = LMijk.

(19)
 for property k

(20) Steps (7) through (18) are repeated for all dwellings of type i in zip code j to generate E (Lijk) for all properties k =1,...,K.

(21) The expected losses are then summed to get the Expected Aggregate Loss for property type i in zip code j:

(22) Repeat steps (5) through (21) for all property types i = 1,....,I to get the Expected Aggregate Loss and Expected loss for all property types in zip code j.

(23) Sum the E(ALij) across all property types i to get the Expected Aggregate Loss for all exposure in zip code j:

[bookmark: _Toc346555815]Computer Model Design

[bookmark: _Toc346555816]Use Case View of Insurance Loss Model (ILM)

A.	Actors:

There is one actor (engineers) in ILM. Engineers use this use case to find the expected losses for particular companies for all wind speeds.

B.	Use Case:

It represents the expected losses for particular companies for given wind speeds. The total expected loss is actually the summation of the expected losses of the property for a given wind speed, which is calculated by aggregating the losses at different intervals with respect to the corresponding damage probabilities.

C.	Use Case Diagram:

Figure 5.1.1 shows the use case diagram for ILM.
 (
Figure
5.1
.
1
:
Use case diagram of ILM-PR
) (
INSURANCELOSSMODEL
Engineer
)

[bookmark: _Toc346555817]System Design

This portion describes the system design. The overall flowchart, classes, and activities for ILM are provided.

A.	Program Flowchart of ILM

The Non-Parametric Approach for Generating Expected Loss Costs for a Given Exposure
 [image:]

[image:]
[image:]
[image:]
	

Figure 5.1.2: Flowchart for generated scenario-based expected loss costs in ILM-PR

B. 	Mapping Flowchart of PR Matrices

[image:]

[bookmark: _Toc346555818]Class Diagram and Description

Figure 5.1.3: Class diagram for ILM-PR
Class Description
This section addresses the functionalities of the major classes that were not already described in part A.

· ILM:
This class serves as a base class for the SILM class. ILM provides the ability to have different versions of SILM and share common variables.

· IMatrices:
This class serves as a base class for the class SILM_IMatrices.

· DamageRatio:
This class reads and stores the damage ratio values required in calculating the mean average damage from the vulnerability matrices.

· ZipcodeChecker:
This class stores the list of valid Zip codes and is used by PreProcessChecker to determine if a Zip code is valid.

· Windborne:
This class stores the windborne Zip codes.

· IPolicy:
IPolicy objects represent policy records from a company portfolio.

· CountySurge:
A CountySurge object contains the demand surge factors for a specific county (see section for demand surge factors).

· CountySurgeVector:
This class holds the demand surge factors of all counties in Florida as a list of CountySurge objects.

· ICompany:
This class serves as the base class for the SILM_ICompany class.

· Zone:
This class holds the list of Zip codes that are in Zone 2 of manufactured homes.

· ParameterInfo:
This class serves as a base class for the class SILMInfo.

· PreProcessChecker
This class is in charge of processing a company portfolio for SILM input. To improve the program’s efficiency and performance, the ILM architecture was re-designed to check a company portfolio only once and transfer the processed data to SILM, which then just loops through the storms and compute loss costs without having to repeat checks at every storm. The class PreProcessChecker carries out the pre-processing which involves checking for invalid Zip codes and augmenting the policy data with the indexes of the matrices the policy data set will require throughout the entire loss computation (which involves processing thousands of storms).

· SILMExecutor:
This class servers as a driver for the SILM class. The SILMExecutor creates the SILM_ICompany, SILMInfo, DamageRatio, and CountySurgeVectors and then iterates through all the storms. For storm, the SILMExecutor class creates a SILM object and passes to the SILM_ICompany, SILMInfo, DamageRatio, and CountySurgeVectors.

· SILM:
This class inherits from ILM and directs the SILM loss estimation through the methods companyProcess() and policyProcess(). The SILM computation requires that all necessary checking and pre-processing on the policy data set was performed by the PreProcessChecker class.

· Windspeeds:
This class stores the wind speed corresponding to each policy in a particular storm.

· SILM_ICompany:
This class inherits from ICompany and reads from the disk the exposure input data.

· SILMInfo:
This class represents the parameter file needed to execute SILM.

· PreProcess_IMatrices:
This class inherits from IMatrices and takes care of storing the list of available matrices.

· SILM_IMatrices:
This class inherits from IMatrices and takes care of storing the list of available matrices.

[bookmark: _Toc346555819]Data Flow Diagram for ILM

Figure 5.1.4: Data flow diagram for ILM

Vol.V-516
[bookmark: _Toc346555820]Glossary

The following table maps variables in the code to equations/algorithmic steps of the SILM part of Section 5.1.2.

	
Variables/Terms
	
Description
	
Mathematical Equation/Algorithm

	
- companyHolder
 Type: SILM_ICompany*
 File: Forms.cpp
- pol
 Type: IPolicy*
 File: ILM.cpp
	
The policy data set is processed in both the PreProcess_Checker class and the SILM class. The former checks that the policy’s zip code is valid and determines the indexes of the matrices to be used in SILM to compute the estimated loss for the policy.

In PreProcess_Checker class, the variable pol iterates through all the policies in the company data set.

In SILM, the variable companyHolder, a pointer to SILM_ICompany, stores every policy from the user-selected input file (SILMInfo::policyFile) into objects of type IPolicy.

	
(1) Start with a particular Insurance company m.

	
- m_Policies_arr
 Type: IPolicy[]
 File: ILM.cpp
- pol
 Type: IPolicy
 File: ILM.cpp

	
In PreProcess_Checker class, the variable pol iterates through all the policies.

In SILM, the method SILM::companyProcess receives as part of its parameters the companyHolder, which stores the array m_Policies_arr. The array m_Policies_arr is used to iterate through all the records (policies) stored in companyHolder. IPolicy object stored in the array is passed to SILM::policyProcess which computes the expected losses. In SILM::policyProcess, the IPolicy object is referenced by pol.

	
(2) Next pick a residential policy exposure unit k from the insurance policy database.

	
N/A

	
The latitude/longitude coordinates of the policies are determined in the geocoding use case which converts the policy’s street address to latitude/longitude values. These coordinates are utilized by the Wind Speed Correction use case to determine the 3-sec gust wind for the policy, and the SILM process just receives the obtained wind. Therefore, this step is transparent to SILM.

	
(3) Determine the latitude/longitude coordinates j of the policy.

	- pol.countyCode
 Type: int
 File: Inputs.h
- pol.county
 Type: string
 File: Inputs.h
	
The variables pol.countyCode and pol.county hold the code for the policy’s county which is utilized by the classes PreProcess_Checker and SILM to determine the matrices for the company.

	
(4) Determine the county c of the policy

	
- winds
 Type: WindSpeeds*
 File: ILM.h
- wind
 Type: double
 File: ILM.cpp
- winds->m_Pol_Wind_arr
 Type: pair<int,double>*
 File: ILM.cpp
- i
 Type: int
 File: ILM.cpp
	
In its initialization step, the SILM class loads into winds, a member variable, all the policies’ ids and their corresponding 3 sec gust winds from the wind speed file. Then, when processing a particular policy in SILM::policyProcess, the wind speed that corresponds to the policy is obtained using the array winds->m_Pol_Wind_arr[i] where i is the index of the policy.
	
(4) Extract the distribution of wind speeds for the zip code j from the wind database.

	
- pol.consType
 Type: string
 File: Inputs.h
- pol.yearBuilt
 Type: long double
 File: Inputs.h

	
The IPolicy class’s member variables consType and yearBuilt contain the picked policy’s building type and building construction date; if the date is not available in the input file, then it set to 0. These variables are used by both PreProcess_Checker and SILM.
	
(5) Next determine the building type i and the building construction date d (if available) for the selected policy.

	
- matrices
 Type: IMatrices*
 File: ILM.h
- matrices.VMs
- matrices.VMc,
- matrices.VMapp
- matrices.VMale
 Type: double * [32]
 File: Inputs.h
- m_Pd_v,
- m_Pdc_v
- m_Pdap_v
- m_Pdale_v
 Type: vector<long double>
 File: ILM.h

	
Declared outside of the SILM class, the variable matrices is passed as argument to the method SILM::policyProcess; when the variable matrices is created, it contains the file names of the set of matrices.

The process of determining which matrices correspond to the policy is performed by PreProcess_Checker which augments the policy information with the indices of the matrices to be used for the policy’s expected loss calculation.

In SILM is where the actual contents of the matrices are loaded using the policy’s matrix indices.

The method IMatrices::populateMatrices is used to load the matrices’ data into memory, and the pointer VMs of the IMatrices class exposes the probabilities (matrices->VMs) which a are saved into the vector m_Pd_v. Similarly for contents, app, and ale.

	
(6) Select the damage matrix for structure of type i based on its construction date d. The row represents a given interval n of damage ratios. The column represent a given wind speed w. Each cell represents the probability Pnw

(7) Select the damage matrix for contents of type i based on its construction date d. The row represents a given interval n of content damage ratios. The column represent a given wind speed w.

(8) Select the AP and ALE damage matrices accordingly.

	
- pol.Vi, pol.LMs, pol.LMc,
 pol.LMapp, pol.LMale, pol.HD
 Type: long double
 File: Inputs.h

	
The variables pol.Vi, pol.LMs, pol.LMc, pol.LMapp, pol.LMale, and pol.HD are member variables of the IPolicy class and hold the current policy’s property value, structure limit, contents limit, appurtenant limits, ALE limit, and hurricane deductible respectively (because pol is the current policy being processed). These values are read from the policy input file.

	
(9) From the insurance policy file, get the property value Vijk, its policy limits LMijk, and its deductible Dijk.

	
- m_Xs_v, m_Xc_m, m_Xap_v,
 m_Xale_v
 Type: vector<long double>
 File: ILM.h
- m_DMs_v
 Type: vector<long double>
 File: ILM.h
- Xs_Iti
 Type: vector<long double>::iterator
 File: ILM.cpp
- DMs_ave
 Type: long double
 File: ILM.cpp

	
The observed wind speed (wind) is used to select the column of the matrices that must be used for calculating the losses; each column of the matrices represents a certain wind speed. The vectors m_Xs_m, m_Xc_m, m_Xap_m, and m_Xale_m are member variables of the SILM class and contain the same damage ratio vector, which is loaded into memory when the program is started. The variable Xs_Iti is an iterator that is used to obtain each value of m_Xs_m. By calculating polHolder.Vi*Xs_Iti, the structure damage vector m_DMs_v, a member variable of the SILM class, is filled, and the mean structure damage is stored in DMs_ave which is a local variable of SILM::policyProcess.
	

(10) Select the damage vector for the observed wind speed. Apply the damage ratio vector Xij to the property k (of type I in zip code j). For each damage interval n, calculate the $ damage:

	
- m_C_v
 Type: vector<long double>
 File: ILM.h
- Xc_Iti
 Type: vector<long double>::iterator
 File: ILM.cpp+
- DMc_ave
 Type: long double
 File: ILM.cpp
	
Following the same approach as with the structure damage vector and mean damage, m_C_v is filled by calculating polHolder.LMc*Xc_Iti for each damage ratio, and the mean contents damage is stored in DMc_ave.

	

(11) mean content damage for the given wind speed: ratio.

	
- m_AP_v
 Type: vector<long double>
 File: ILM.h
- Xap_Iti
 Type: vector<long double>::iterator
 File: ILM.cpp+
- DMap_ave
 Type: long double
 File: ILM.cpp

	
As with structure and contents damage vector and mean damages, m_AP_v is filled by calculating polHolder.LMapp*Xap_Iti for each damage ratio, and the man appurtenants damage is stored in DMap_ave.
	

(12) For the observed wind speed, estimate the row vector of wind conditional mean $ AP damages: ratio.

	
- m_ALE_v
 Type: vector<long double>
 File: ILM.h
- Xale_Iti
 Type: vector<long double>::iterator
 File: ILM.cpp
- Vale
 Type: long double
 File: ILM.cpp
- DMap_ave
 Type: long double
 File: ILM.cpp

	
As with structure, contents, and appurtenants damage vector and mean damages, m_ALE_v is filled by calculating Vale*Xap_Iti for each damage ratio. However, Vale is a local variable declared in SILM::policyProcess and equals polHolder.LMale if not all ALE limits in the policy file are zeroes; otherwise Vale is updated to 20% of polHolder.LMs if polHolder.LMs is greater than zero or to 40% of polHolder.LMc if polHolder.LMs is zero but polHolder.LMc is greater than zero; if both polHolder.LMs and polHolder.LMc are zeroes, then Vale is set to 40% of polHolder.app. The mean appurtenants damage is stored in DMap_ave.

	

(13) For the observed wind speed, estimate the row vector of wind conditional mean $ ALE damages: ratio

	
- m_SumDM
 Type: long double
 File: ILM.h
- m_Ds, m_Dc, m_Dapp, and
 m_Dale
 Type: long double
 File: ILM.h
	

The variable m_SumDM is local to SILM::policyProcess equals to DMs_ave + DMc_ave + DMap_ave. The SILM class’s member variables m_Ds, m_Dc, m_Dapp, m_Dale correspond to , , , and
	
(14) Calculate the deductibles DS, DC, DAP on a pro-rata basis to the respective damages as follows:

	
- m_Ls_v
 Type: vector<long double>::iterator
 File: ILM.h
	
The SILM class’s member variable m_Ls_v is a vector and corresponds to Lsijkn.

	
(15) Apply the pro-rata structure deductible Dsijk and limits LMijk to each of the cells of the $ damage Matrix DMijk. Thus, a vector Lsijk of insured losses is generated for property k. Its elements are Lsijkn. If Lsijkn is LMijk, then Lsijkn = LMijk-Ds. If Lsijkn is 0, then let Lsijkn = 0.

	
- m_Lc_v, m_Lap_m, and m_Lale_m
 Type: vector<long double>::iterator
 File: ILM.h
	
The variables m_Lc_m, m_Lap_m, and m_Lale_m are declared in the SILM class and correspond to Lc, LAP, and LALE respectively.

	
(16) Repeat step (15) for C, AP, and ALE. Generate Lc, LAP, and LALE.

	
- pol
 Type: IPolicy
 File: Inputs.h
-countyDSArr
Type: CountySurgeVector
File: Inputs.h
	
After the estimated losses (without DS) are estimated for all the policies in the data set, the method SILM::companyProcessDS is called. This method applies the demand surge factors to all the policies by calling the method policyProcessDS for each policy. The method SILM::policyProcessDS receives as parameters the policy object, pol, and an object, countyDSArr, which holds the demand surge factors for each county.

	(17)

	
- m_SumEL
 Type: long double
 File: ILM.h
	

The variable m_SumEL is a member of the SILM class and corresponds to
	
(18)

 for property k

	
- SILM::companyProcess
 File: ILM.h
- SILM::policyProcess
 File: ILM.h
- SILM::companyProcessDS
 File: ILM.h
- SILM::policyProcessDS
 File: ILM.h

	
The method SILM::companyProcess calls the method SILM::policyProcess for all records of the policy file. Similarly, to apply demand surge, the method SILM::companyProcessSILM calls the method SILM::policyProcessDS for each policy.
	
(19) Steps (7) through (18) are repeated for all dwellings of type i in zip code j to generate E(Lijk) for all properties k =1...K.

	
- m_SumAEL
 Type: long double
 File: ILM.h
	
After SILM::companyProcess finishes processing, the SILM class’s member variable m_SumAEL holds the expected aggregate loss.
	
(20) The expected losses are then summed to get the Expected Aggregate Loss for property type i in zip code j:

Steps 20-29 are hypothetical steps. They were not implemented in the code

[bookmark: _Toc346555821]Additional Programs

[bookmark: _Toc346555822]Generation of Combined Mobile Matrices

A.	Overall Procedure

From Cat Fund exposure, the mobile policies are separated into zone2 and zone3 policies. For each group (zone2 and zone3), the ratio of pre-1994 structure coverage over post-1994 structure coverage is calculated for each region (North, Central, South, and Keys) and used as input for the ProcessMobile program. The latter one, containing the complete set of matrices as input, outputs into the specified output folder all the input matrices plus the following ones:

VM_ale_central_manuf_zone2_comb.csv	
VM_ale_central_manuf_zone3_comb.csv	
VM_ale_keys_manuf_zone3_comb.csv	
VM_ale_north_manuf_zone2_comb.csv	
VM_ale_north_manuf_zone3_comb.csv	
VM_ale_south_manuf_zone2_comb.csv	
VM_ale_south_manuf_zone3_comb.csv
VM_central_manuf_zone2_comb.csv	
VM_central_manuf_zone3_comb.csv
VM_cont_central_manuf_zone2_comb.csv	
VM_cont_central_manuf_zone3_comb.csv	
VM_cont_keys_manuf_zone3_comb.csv	
VM_cont_north_manuf_zone2_comb.csv
VM_cont_north_manuf_zone3_comb.csv	
VM_cont_south_manuf_zone2_comb.csv	
VM_cont_south_manuf_zone3_comb.csv	
VM_keys_manuf_zone3_comb.csv	
VM_north_manuf_zone2_comb.csv	
VM_north_manuf_zone3_comb.csv	
VM_south_manuf_zone2_comb.csv	
VM_south_manuf_zone3_comb.csv	

Basically, the new combined mobile matrices are obtained by weighting each region’s pre-1994 matrices with its corresponding zone2 and zone3 matrices; therefore, producing two new combined matrices per region. The advantage of this approach is that for calculating the insurance losses from mobile policies with no year-built information, the ILM program can use the new matrices, with little change to its code.

B.	Flowchart of the ProcessMobile program

Figure 5.1.5: Flowchart for the ProcessMobile program
[bookmark: _Ref294774612][bookmark: _Toc346555823]Application of Demand Surge

A.	Purpose

An allowance for demand surge is included in the calculation of modeled hurricane losses in order to recognize that the settlement cost of property claims following a catastrophe are typically higher than what those same claims would cost if they occurred individually. The sudden post-storm demand for construction materials and labor, for example, will normally exceed the supply available in the local market. As a consequence the prices charged for these goods and services rise, ultimately impacting the size of the insurance claims resulting from the storm.

B.	How Demand Surge is Incorporated in the Model

SILM

When modeling a specific storm such as Andrew or Charley, the demand surge functions described below are applied directly to the storm in question, and demand surge factors are calculated based on the locations impacted by the storm and the modeled statewide losses for the storm prior to the inclusion of demand surge.

C.	How Average Demand Surge Factors are calculated

For each storm in the stochastic set the demand surge for that storm is assumed to be a function of coverage, region (defined as North, Central, South or Monroe) and the storm’s estimated statewide losses before consideration of demand surge. For each storm, therefore, individual demand surge factors are determined, via specified functions, by region and coverage. The factors are then weighted with each storm’s modeled losses by region to determine the average demand surge factors for each region.

D.	Adjustment Applied for Northwest Location

The average demand surge factors for the North region, as calculated above, are applied to losses in Northeast and North Central locations. The average demand surge factors for losses with a Northwest location, however, are determined as an upward adjustment to the average factors for the North region. The adjustment allows for demand surge in the Northwest section of the panhandle that is a function of combined storm losses in Florida and a neighboring state, rather than storm losses in Florida alone.

E.	Functions used to determine individual Demand Surge Factors for each storm

The following functions are used to determine a storm’s demand surge:

Structure: Surge Factor = .9803 + p1 x ln (statewide storm losses in $billions) + p2

 Where p1 and p2 are defined as follows:

	Region
	P1
	P2

	North
	.0207
	.0000

	Central
	.0207
	.0116

	South (except Monroe Co.)
	.0207
	.0367

	Monroe Co.
	.0350
	.0500

The calculated factor is limited to a minimum value of 1.0000.

The p1 parameter determines how quickly the level of demand surge rises with increasing levels of hurricane damage. The p2 parameter, on the other hand, measures the differences in demand surge between regions for the same size storm (in terms of damages).

Appurtenant Structures: Surge Factor = Structure Factor

Contents: Surge Factor = [(Structure Factor – 1) x 30%] + 1

Additional Living Expenses: Surge Factor = 1.5 x Structure Factor - .5

The development of the functional relationships and their parameters is described below.

F.	Development of the Structural Demand Surge Function

To estimate the impact of demand surge on the settlement cost of structural claims following a hurricane we used a quarterly construction cost index produced by Marshall & Swift/Boeckh. We considered the history of the index from first quarter 1992 through second quarter 2007. There is an index for each of 52 zip codes in Florida with forty-two counties represented. We grouped the indices to produce a set of regional indices, weighting each zip code index with population.

The approach to estimating structural demand surge was to examine the index for specific regions impacted by one or more hurricanes since 1992. From the history of the index we projected what the index would have been in the period following the storm had no storm occurred. Any gap between the predicted and actual index was assumed to be due to demand surge. In total we examined ten storm/region combinations. From these ten observations of structural demand surge we generalized to the functional relationship shown above.

Monroe County was treated as an exception. There were no storms of any severity striking Monroe during the time period of our observations. We believe, though, that the location of and limited access to the Keys will result in an unusually high surge in reconstruction costs after a storm, particularly since the Overseas Highway could be damaged by storm surge. We have therefore judgmentally selected surge parameters for Monroe in excess of those indicated for the remainder of South Florida.

The adjustment for the Northwest location was determined by considering the percentage of historical storms that have impacted both the Florida Panhandle and another state, together with the average misstatement in structural demand surge that would arise if only the Florida losses are used to determine the demand surge factor for such multi-state storms.

G.	Development of the Contents Demand Surge Function

The approach to determining the contents demand surge function was to relate any surge in consumer prices in Southeast Florida following hurricanes Katrina and Wilma to the estimated structural demand surge following those storms. We used the Miami-Ft. Lauderdale Consumer Price Index for this purpose, and compared the projected and actual index after the storms. Since the surge in consumer prices was roughly 30% of the surge in construction costs, we selected that percentage as the relationship between structural and contents demand surge.

H.	Development of Additional Living Expense (ALE) Demand Surge Function

To estimate ALE demand surge we first examined the relationship between structural losses and ALE losses in the validation data set. This data set includes losses from three storms (Andrew, Charley and Frances) and eleven insurance companies. We then compared the predicted increase in ALE losses associated with various increases in structural losses. That generalized relationship is the ALE demand surge function shown above.

ALE demand surge is related to structural demand surge in following sense: Structural surge is caused by an inability of the local construction industry to meet the sudden demand for materials and labor following a storm. A high surge in construction costs suggests a more serious mismatch between the demand for repairs and the supply of materials and labor. This mismatch translates into longer delays in the completion of repairs and rebuilding, which in turn implies a higher surge in ALE costs.

Because ALE surge is determined as a function of structural surge, Monroe County ALE surge factors are higher than those for the remainder of South Florida. We believe this is reasonable because of the unusual delays in repair/rebuilding that will occur following a major storm in the Keys, especially if there is storm surge damage to US 1 or to bridges connecting the islands.

I.	Demand Surge Factors applied to SILM

To apply demand surge to a specific storm, first SILM is run without using demand surge factors, and the statewide loss is used as input in the formulas described in Section 5.1.4.2.E to obtain the demand surge factors per region (see flowchart below).

Flowchart for the calculation of Demand Surge factors

Figure 5.1.6: Flowchart for the calculation of demand surge factors
After obtaining the demand surge factors per region, the program assigns the demand surge factors of one region to all the counties that belong to this region, and the demand surge factors of the special counties of the Florida Panhandle Region (NW counties) are multiplied by the adjustment factors; then SILM is run again but this time applying the just obtained demand surge factors (see flowchart below).
Flowchart of application of Demand Surge factors to SILM

Figure 5.1.7: Flowchart of application of demand surge factors to SILM
[bookmark: _Toc346555824]Matrices Checking Program

Purpose

To solve any problems in the use of the vulnerability matrices, programs were developed to validate that the matrices used in the generation of losses are the correct matrices sent by the engineering team.

Since the programming team receives the vulnerability matrices in MAT format, two programs were developed in MATLAB to check that the columns of all matrices add up to one and to generate a specific text file (identification file) that serves as identification for the set of MAT matrices. However, since the ILM program needs the vulnerability matrices in CSV format, the programming team converts the MAT matrices to CSV format; therefore, a program written in JAVA was developed to check that all columns of the CSV matrices add up to one and to generate, as in the MATLAB program, a specific text file that serves as identification for the set of CSV matrices. Having the two identification files generated by the MATLAB and Java programs, the latter checks whether both identification files are the same. If a matrix in MATLAB format differs from the corresponding matrix in CSV format in at least one column, the Java program notifies the user about the difference in the matrices, avoiding silent errors in the generation or use of the vulnerability matrices.

To generate the identification files, the following steps are followed:

1. Multiply each cell of each column of a matrix by its corresponding damage ratio.
2. Sum up for each column the values of 1).
3. Output for each matrix a vector containing the values of 2) of each column of the matrix

[bookmark: _Toc346555825]MATLAB program for matrix checking

The following MATLAB programs were developed to check the vulnerability matrices in MAT format:
Checkone.m: used to check that the columns of the matrices add up to one
List.m: used to generate the identification file for a set of matrices

A.	CheckOne.m

To check whether the columns of a set of matrices add up to one, this program takes as input a folder containing the matrices in MAT format. For each matrix in the directory, the probabilities for each column are summed up to get a total probability for the column. The user will be informed of the matrices that have columns that do not add to one.

Example1:
This example shows the program’s output when the columns of all matrices add up to one:

Input: The directory where the matrices are located “/home/phrlm-storage-09/MatricesProgram/MatrixFolder” which contains the following matrices:

VM_ale_central_concrblk.mat
VM_ale_central_concrblk_half.mat
VM_ale_central_concrblk_hvhz_half.mat
VM_ale_central_concrblk_hvhz_medium.mat

Output: CheckingOneResult.txt file

0 Wrong

Example2:
This example shows the program’s output when one column in a matrix does not add up to one:

Input: The directory where the matrices are located “/home/phrlm-storage-09/MatricesProgram/MatrixFolder” which contains the following matrices:

VM_ale_central_concrblk.mat
VM_ale_central_concrblk_half.mat
VM_ale_central_concrblk_hvhz_half.mat
VM_ale_central_concrblk_hvhz_medium.mat

Output: CheckingOneResult.txt file

VM_ale_central_concrblk,1,0.500000
VM_ale_central_concrblk,5,0.280370
VM_ale_south_concrblk_hvhz,1,0.500000
VM_ale_south_concrblk_hvhz,8,0.636430
2 Wrong

Flowchart

Figure 5.1.8: Checkone.m program flowchart.
B.	List.m

To generate the identification file for a set of matrices, a folder containing the MAT matrices is taken as the current directory and for each matrix in the directory, each damage ratio is multiplied by the corresponding probability for all columns (or wind speeds). Then, for each wind speed the results of the damage ratios multiplied by the probabilities are summed up to get a number that will serve as identification for that column. This column identification number is rounded to four decimal places. Consequently, each matrix’s identification string consists of the matrix’s name and a vector of 41 values that contains the identification values of each column. The summary of all matrices will be output to a file called output.txt. An example is the following:

Input: The directory where the matrices are located “/home/phrlm-storage-09/MatricesProgram/MatrixFolder” which contains the following matrices:

VM_ale_central_concrblk_hvhz_medium.mat
VM_ale_central_concrblk.mat
VM_ale_central_concrblk_half.mat
VM_ale_central_concrblk_hvhz_half.mat

Output: output.txt file

VM_ale_central_concrblk,0.0000,0.0004,0.0009,0.0013,0.0016,0.0018,0.0020,0.0023,0.0027,0.0038,0.0057,0.0091,0.0138,0.0208,0.0298,0.0406,0.0537,0.0678,0.0809,0.0954,0.1099,0.1252,0.1394,0.1572,0.1724,0.1866,0.2056,0.2212,0.2355,0.2496,0.2645,0.2772,0.2917,0.3081,0.3242,0.3419,0.3598,0.3761,0.3987,0.4163,0.4391
VM_ale_central_concrblk_half,0.0000,0.0005,0.0011,0.0016,0.0019,0.0022,0.0027,0.0035,0.0052,0.0087,0.0141,0.0230,0.0338,0.0489,0.0670,0.0859,0.1065,0.1264,0.1426,0.1577,0.1722,0.1882,0.2003,0.2164,0.2289,0.2464,0.2661,0.2844,0.3029,0.3244,0.3460,0.3663,0.3828,0.4077,0.4295,0.4501,0.4699,0.4893,0.5108,0.5278,0.5481
VM_ale_central_concrblk_hvhz_half,0.0000,0.0005,0.0011,0.0016,0.0019,0.0022,0.0027,0.0036,0.0052,0.0086,0.0140,0.0227,0.0337,0.0481,0.0657,0.0852,0.1052,0.1247,0.1415,0.1564,0.1711,0.1858,0.1993,0.2141,0.2264,0.2433,0.2629,0.2810,0.2996,0.3202,0.3412,0.3628,0.3798,0.4047,0.4262,0.4476,0.4675,0.4890,0.5096,0.5270,0.5476
VM_ale_central_concrblk_hvhz_medium,0.0000,0.0004,0.0010,0.0014,0.0018,0.0020,0.0022,0.0025,0.0031,0.0044,0.0071,0.0121,0.0193,0.0293,0.0427,0.0591,0.0773,0.0961,0.1120,0.1270,0.1413,0.1546,0.1651,0.1779,0.1888,0.1994,0.2134,0.2272,0.2389,0.2495,0.2631,0.2755,0.2872,0.3068,0.3236,0.3430,0.3608,0.3812,0.4037,0.4211,0.4446

Flowchart

Figure 5.1.9: List.m program flowchart.

[bookmark: _Toc346555826]JAVA program for matrix checking

A.	Overall Procedure

This program is used to check the vulnerability matrices after they have been converted from MAT to CSV format and provides the user with three options:

M1: This option is used to generate the identification file for a set of matrices.
M2: This option is used to check that the columns of the matrices add up to one.
C1: This option receives as input two identification files (one generated by the MATLAB program and the other by option M1) and notifies the user whether the files are the equal or whether there is a difference in any of the matrices.

B.	Option M1

To generate the identification file for a set of matrices, a folder containing the CSV matrices is taken as parameter, and for each matrix in the directory, each damage ratio is multiplied by the corresponding probability for all columns (or wind speeds). Then, for each wind speed the results of the damage ratios multiplied by the probabilities are summed up to get a number that will serve as identification for that column. This column identification number is rounded to four decimal places. Consequently, each matrix’s identification string consists of the matrix’s name and a vector of 41 values that contains the identification values of each column. The summary of all matrices will be output to a file called output.txt. An example is the following:

Input: The directory where the matrices are located “/home/phrlm-storage-09/MatricesProgram/MatrixFolder” which contains the following matrices:

VM_ale_central_concrblk_hvhz_medium.csv
VM_ale_central_concrblk.csv
VM_ale_central_concrblk_half.csv
VM_ale_central_concrblk_hvhz_half.csv

Output: output.txt file

VM_ale_central_concrblk,0.0000,0.0004,0.0009,0.0013,0.0016,0.0018,0.0020,0.0023,0.0027,0.0038,0.0057,0.0091,0.0138,0.0208,0.0298,0.0406,0.0537,0.0678,0.0809,0.0954,0.1099,0.1252,0.1394,0.1572,0.1724,0.1866,0.2056,0.2212,0.2355,0.2496,0.2645,0.2772,0.2917,0.3081,0.3242,0.3419,0.3598,0.3761,0.3987,0.4163,0.4391
VM_ale_central_concrblk_half,0.0000,0.0005,0.0011,0.0016,0.0019,0.0022,0.0027,0.0035,0.0052,0.0087,0.0141,0.0230,0.0338,0.0489,0.0670,0.0859,0.1065,0.1264,0.1426,0.1577,0.1722,0.1882,0.2003,0.2164,0.2289,0.2464,0.2661,0.2844,0.3029,0.3244,0.3460,0.3663,0.3828,0.4077,0.4295,0.4501,0.4699,0.4893,0.5108,0.5278,0.5481
VM_ale_central_concrblk_hvhz_half,0.0000,0.0005,0.0011,0.0016,0.0019,0.0022,0.0027,0.0036,0.0052,0.0086,0.0140,0.0227,0.0337,0.0481,0.0657,0.0852,0.1052,0.1247,0.1415,0.1564,0.1711,0.1858,0.1993,0.2141,0.2264,0.2433,0.2629,0.2810,0.2996,0.3202,0.3412,0.3628,0.3798,0.4047,0.4262,0.4476,0.4675,0.4890,0.5096,0.5270,0.5476
VM_ale_central_concrblk_hvhz_medium,0.0000,0.0004,0.0010,0.0014,0.0018,0.0020,0.0022,0.0025,0.0031,0.0044,0.0071,0.0121,0.0193,0.0293,0.0427,0.0591,0.0773,0.0961,0.1120,0.1270,0.1413,0.1546,0.1651,0.1779,0.1888,0.1994,0.2134,0.2272,0.2389,0.2495,0.2631,0.2755,0.2872,0.3068,0.3236,0.3430,0.3608,0.3812,0.4037,0.4211,0.4446

Flowchart

Figure 5.1.10: Option M1 of the Java program for checking the vulnerability matrices.
C.	Option M2

To check whether the columns of a set of matrices add up to one, this option receives as input a folder that contains the matrices in CSV format. For each matrix in the directory, the probabilities for each column are summed up to get a total probability for the column. Total values for the columns are truncated to nine decimal places and checked whether they are equal to 1.000000000 or 0.999999999. A summary of all matrices will be output to a file called probabilitySummary.txt.

Example1:
This example shows the program’s output when the columns of all matrices add up to one:

Input:
Directory: The directory where the matrices are located “/home/phrlm-storage-09/MatricesProgram/MatrixFolder” which contains the following matrices:

VM_ale_central_concrblk.csv
VM_ale_central_concrblk_half.csv
VM_ale_central_concrblk_hvhz_half.csv
VM_ale_central_concrblk_hvhz_medium.csv

Output: probabilitySummary.txt file

VM_ale_central_concrblk,1.0,0.999999999,1.0,1.0,1.0,0.999999999,1.0,0.999999999,0.999999999,0.999999999,1.0,1.0,0.999999999,0.999999999,1.0,1.0,1.0,0.999999999,0.999999999,0.999999999,0.999999999,1.0,1.0,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.999999999,1.0,0.999999999,1.0,0.999999999,0.999999999
VM_ale_central_concrblk_half,1.0,1.0,0.999999999,0.999999999,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,1.0,1.0,0.999999999,0.999999999,1.0,0.999999999,1.0,1.0,1.0,1.0,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0
VM_ale_central_concrblk_hvhz_half,1.0,0.999999999,0.999999999,0.999999999,1.0,1.0,1.0,1.0,1.0,0.999999999,0.999999999,1.0,1.0,0.999999999,0.999999999,0.999999999,1.0,0.999999999,1.0
VM_ale_central_concrblk_hvhz_medium,1.0,0.999999999,1.0,0.999999999,0.999999999,1.0,1.0,1.0,0.999999999,0.999999999,0.999999999,1.0,0.999999999,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.999999999

All matrices add up to 1 or 0.999999999

Example2:
This example shows the program’s output when one column in a matrix does not add up to one:

Input:
Directory: The directory where the matrices are located “/home/phrlm-storage-09/MatricesProgram/MatrixFolder” which contains the following matrices:

VM_ale_central_concrblk.csv
VM_ale_central_concrblk_half.csv
VM_ale_central_concrblk_hvhz_half.csv
VM_ale_central_concrblk_hvhz_medium.csv

Output: probabilitySummary.txt

VM_ale_central_concrblk,0.5,0.999999999,1.0,1.0,1.0,0.999999999,1.0,0.999999999,0.999999999,0.999999999,1.0,1.0,0.999999999,0.999999999,1.0,1.0,1.0,0.999999999,0.999999999,0.999999999,0.999999999,1.0,1.0,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.999999999,1.0,0.999999999,1.0,0.999999999,0.999999999
VM_ale_central_concrblk_half,1.0,1.0,0.999999999,0.999999999,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,1.0,1.0,0.999999999,0.999999999,1.0,0.999999999,1.0,1.0,1.0,1.0,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0
VM_ale_central_concrblk_hvhz_half,1.0,0.999999999,0.999999999,0.999999999,1.0,1.0,1.0,1.0,1.0,0.999999999,0.999999999,1.0,1.0,0.999999999,0.999999999,0.999999999,1.0,0.999999999,1.0
VM_ale_central_concrblk_hvhz_medium,1.0,0.999999999,1.0,0.999999999,0.999999999,1.0,1.0,1.0,0.999999999,0.999999999,0.999999999,1.0,0.999999999,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.999999999,1.0,0.999999999,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.999999999

Summary of Matrices that do not add up to 1 or 0.999999999
VM_ale_central_concrblk

Flowchart

Figure 5.1.11: Option M2 of the Java program for checking the vulnerability matrices.
D.	Option C1

To check the differences between two identification files, this option receives as input the two files. Each file should have the matrix names followed by the identification values of each column (separated by commas). Each file is read and loaded into memory, and all matrix names and values are compared. Any inconsistencies are reported to an output file called result_file1_file2.txt.

Example1:
The following example is when the input files are different (differences highlighted):

Input:
File1: output_example.txt

VM_ale_central_concrblk,0.0000,0.0004,0.0009,0.0013,0.0016,0.0018,0.0020,0.0023,0.0027,0.0038,0.0057,0.0091,0.0138,0.0208,0.0298,0.0406,0.0537,0.0678,0.0809,0.0954,0.1099,0.1252,0.1394,0.1572,0.1724,0.1866,0.2056,0.2212,0.2355,0.2496,0.2645,0.2772,0.2917,0.3081,0.3242,0.3419,0.3598,0.3761,0.3987,0.4163,0.4391
VM_ale_central_concrblk_half,0.0000,0.0005,0.0011,0.0016,0.0019,0.0022,0.0027,0.0035,0.0052,0.0087,0.0141,0.0230,0.0338,0.0489,0.0670,0.0859,0.1065,0.1264,0.1426,0.1577,0.1722,0.1882,0.2003,0.2164,0.2289,0.2464,0.2661,0.2844,0.3029,0.3244,0.3460,0.3663,0.3828,0.4077,0.4295,0.4501,0.4699,0.4893,0.5108,0.5278,0.5481
VM_ale_central_concrblk_hvhz_medium,0.0001,0.0004,0.0010,0.0014,0.0018,0.0020,0.0022,0.0025,0.0031,0.0044,0.0071,0.0121,0.0193,0.0293,0.0427,0.0591,0.0773,0.0961,0.1120,0.1270,0.1413,0.1546,0.1651,0.1779,0.1888,0.1994,0.2134,0.2272,0.2389,0.2495,0.2631,0.2755,0.2872,0.3068,0.3236,0.3430,0.3608,0.3812,0.4037,0.4211,0.4446

File2: Result_Total_example.txt

VM_ale_central_concrblk_medium,0.0000,0.0004,0.0010,0.0014,0.0018,0.0020,0.0023,0.0025,0.0031,0.0045,0.0072,0.0123,0.0193,0.0298,0.0432,0.0585,0.0782,0.0971,0.1133,0.1288,0.1429,0.1577,0.1662,0.1813,0.1930,0.2022,0.2188,0.2328,0.2438,0.2569,0.2696,0.2813,0.2920,0.3129,0.3287,0.3484,0.3655,0.3834,0.4061,0.4242,0.4446
VM_ale_central_concrblk_hvhz_medium,0.0000,0.0004,0.0010,0.0014,0.0018,0.0020,0.0022,0.0025,0.0031,0.0044,0.0071,0.0121,0.0193,0.0293,0.0427,0.0591,0.0773,0.0961,0.1120,0.1270,0.1413,0.1546,0.1651,0.1779,0.1888,0.1994,0.2134,0.2272,0.2389,0.2495,0.2631,0.2755,0.2872,0.3068,0.3236,0.3430,0.3608,0.3812,0.4037,0.4211,0.4446
VM_ale_central_concrblk_half,0.0000,0.0005,0.0011,0.0016,0.0019,0.0022,0.0027,0.0035,0.0052,0.0087,0.0141,0.0230,0.0338,0.0489,0.0670,0.0859,0.1065,0.1264,0.1426,0.1577,0.1722,0.1882,0.2003,0.2164,0.2289,0.2464,0.2661,0.2844,0.3029,0.3244,0.3460,0.3663,0.3828,0.4077,0.4295,0.4501,0.4699,0.4893,0.5108,0.5278,0.5481

Output: result_output_example_Result_Total_example.txt

Summary of Files:

Matrix VM_ale_central_concrblk is not found in file Result_Total_example.txt
Matrix VM_ale_central_concrblk_hvhz_medium does not have the same values in both files

Matrix VM_ale_central_concrblk_medium is not found in file output_example.txt

Matrices list not the same in both files

Example2:

The following example is when both identification files are equal:

Input:
File1: output_example.txt

VM_ale_central_concrblk,0.0000,0.0004,0.0009,0.0013,0.0016,0.0018,0.0020,0.0023,0.0027,0.0038,0.0057,0.0091,0.0138,0.0208,0.0298,0.0406,0.0537,0.0678,0.0809,0.0954,0.1099,0.1252,0.1394,0.1572,0.1724,0.1866,0.2056,0.2212,0.2355,0.2496,0.2645,0.2772,0.2917,0.3081,0.3242,0.3419,0.3598,0.3761,0.3987,0.4163,0.4391
VM_ale_central_concrblk_half,0.0000,0.0005,0.0011,0.0016,0.0019,0.0022,0.0027,0.0035,0.0052,0.0087,0.0141,0.0230,0.0338,0.0489,0.0670,0.0859,0.1065,0.1264,0.1426,0.1577,0.1722,0.1882,0.2003,0.2164,0.2289,0.2464,0.2661,0.2844,0.3029,0.3244,0.3460,0.3663,0.3828,0.4077,0.4295,0.4501,0.4699,0.4893,0.5108,0.5278,0.5481

File2: Result_Total_example.txt

VM_ale_central_concrblk,0.0000,0.0004,0.0009,0.0013,0.0016,0.0018,0.0020,0.0023,0.0027,0.0038,0.0057,0.0091,0.0138,0.0208,0.0298,0.0406,0.0537,0.0678,0.0809,0.0954,0.1099,0.1252,0.1394,0.1572,0.1724,0.1866,0.2056,0.2212,0.2355,0.2496,0.2645,0.2772,0.2917,0.3081,0.3242,0.3419,0.3598,0.3761,0.3987,0.4163,0.4391
VM_ale_central_concrblk_half,0.0000,0.0005,0.0011,0.0016,0.0019,0.0022,0.0027,0.0035,0.0052,0.0087,0.0141,0.0230,0.0338,0.0489,0.0670,0.0859,0.1065,0.1264,0.1426,0.1577,0.1722,0.1882,0.2003,0.2164,0.2289,0.2464,0.2661,0.2844,0.3029,0.3244,0.3460,0.3663,0.3828,0.4077,0.4295,0.4501,0.4699,0.4893,0.5108,0.5278,0.5481

Output: result_output_example_Result_Total_example.txt

Summary of Files:

Both files contain same matrices and values

Flowchart

Figure 5.1.12: Option C1 of the Java program for checking the vulnerability matrices.
[bookmark: _Toc346555827]References

[1] 2004 National Renovation & Insurance Repair Estimator, J. Russell, Craftsman Book Company, Carlsbad, CA
[2] CEIA Cost 2002, R. Langedyk, V. Ticola, Construction Estimating Institute, Sarasota, FL

[bookmark: _Toc346555828]Insurance Loss Module for Commercial Residential Policies

[bookmark: _Toc346555829]General Description of ILM-CR

Insurance Loss Model for Residential Policies (ILM-CR) calculates the expected losses during storms for commercial residential risks. There are two variations of ILM: ILM for commercial residential low-rise policies (ILM-LB) and ILM for commercial residential mid-/high-rise buildings ILM-MHB.

Both, ILM-LB and ILM-MHB, take actual, observed, or model wind speeds per each policy and calculate the expected losses using the corresponding vulnerability matrices, provided by the engineering team, per loss type given the input exposure/insurance policy data. For ILM-LB, the vulnerability matrices are provided by the VM-LB model, and for ILM-MHB, the vulnerability curves are provided by VM-MHB. The winds for the policies are obtained from the Wind Speed Correction use case which computes winds at the latitude/longitude level and thus enables the ILM-PR to compute losses at the geocoding level. For ILM-CR, the Wind Speed Correction use case computes winds at 15 height levels, starting at 10m with increments of 10m.

[bookmark: _Toc346555830]Detailed Design and Implementation of ILM-CR

Insurance Loss Model for Commercial Residential Low-Rise Model

This section refers to the algorithm for estimating expected loss costs of low-rise (3 or less stories) commercial residential buildings for a given scenario. Typically the scenario refers to a particular hurricane with a given set of characteristics. Hence, both the exposure data and the wind speeds by policy are available. The vulnerability curves, which are provided by the engineering team, express the expected damage ratios for different wind speeds separately for both the overall (exterior plus interior) and interior damage. The wind speed database is provided by the meteorological team. The algorithm is implemented for each storm in the set.

(1) Start with a particular insurance company.

(2) Next, pick a policy exposure unit from the insurance database. If a policy has multiple risks, each risk will be processed individually as a policy.

(3) Determine the location (latitude/longitude coordinates) from the policy address. If the address is not available, the latitude-longitude for the population weighted zip code centroid is used.

(4) Retrieve the wind speed applied to the policy from the wind database for the given hurricane.

(5) For the current policy, acquire from database: the construction type, construction date, number of stories, roof shape (if available), roof cover (if available), opening protection (if available) .

(6) To estimate overall building damage, select the vulnerability curve for the policy based on the attributes mentioned in (5). The vulnerability curve consists of simulated mean overall damage ratios evaluated at increasing wind speeds. Draw the estimate structure EDRS (Expected Damage Ratio) caused by the wind speed to the building from the vulnerability curve.

(7) To estimate the Contents damage, select the building interior vulnerability curve based on the attributes mentioned in (5). The interior vulnerability curve consists of the simulated expected damage ratios of building interior evaluated at increasing wind speeds. The contents EDR is assumed proportional to the interior damage by a factor LR. Therefore the interior EDRI is multiplied by a constant to get the Contents EDRC.

(8) Get the property value (V), policy limits (LM), and deductible (D) for the policy. The limit LM is assumed to be the value of the property (i.e. V = LM) if value is not available. Value is contingent on the type of policy specified and is either replacement cost or actual cash value (replacement cost minus depreciation).

(9)
Apply the structure overall expected damage ratio EDRS to the policy to calculate the structure loss: . This dollar loss damage is associated with the observed wind speed.

(10)
Apply the content expected damage ratio EDRc to the property value to calculate the dollar content damage . This dollar damage is associated with the observed wind speed.

(11)
For the observed wind speed, estimate the row vector of wind conditional mean dollar appurtenant (AP) damage, where each element is the expected AP damage for the given wind speed: .

(12)
Apply the expected time related expenses (TRE) ratio EDRTRE to the TRE limit to calculate the dollar TRE: . This dollar expense is associated with the following mapping:

[image: TRE_map]

(13) Using the wind conditional mean dollar structure damage DMS, and combining it with the wind conditional dollar content mean damage C, and mean AP : calculate the deductibles DS, DC, DAP on a pro-rata basis to the respective damages as follows:

(14)
Apply the pro-rata structure deductible Ds and limits LMs to the mean structure damage. Calculate the net of deductible structure loss, Ls = (DMs - Ds), and truncate it on the upside by LMs and on the downside by Ds. If Ls is LMs, then Ls = LMs - . If calculated Ls is 0, then let Ls = 0 .

(15) Repeat step (13) for C, AP, and TRE. Generate Lc, LAP, and LTRE.

(16) To apply the proper demand surge factors, determine the county of the policy, get their demand surge factors, and apply it:

If after applying the demand surge factors any expected loss (S, C, APP, TRE) is greater than its corresponding limit, then each L = LM.

(17)

(18) Repeat steps (2) through (16) for all policies to get the Expected Aggregate Loss.

Insurance Loss Model for Commercial Residential Mid-/High-Rise Model

This section refers to the algorithm for estimating expected loss costs for a given scenario for mid-high rise (more than 3 stories) commercial residential buildings. Typically the scenario refers to a particular hurricane with a given set of characteristics. Hence, both the exposure data and the wind speeds by policy are available. The vulnerability curves provide the mean damage ratios for different wind speeds separately for both the exterior and interior damage. The algorithm is implemented for each storm in the set.

The following glossary is used to define the variables in the steps below:

(1) Start selecting an insurance company m.

(2) Next pick a policy exposure unit from the insurance database. If a policy has multiple risks each risk would be processed individually as a policy.

(3) Determine the latitude/longitude coordinates j of the policy from the policy address. If the address is not provided, the vertical wind profile of the latitude-longitude for the population weighted zip code centroid is used.

(4) Retrieve the vertical wind profile for policy from the wind database for the given hurricane. The vertical wind profile gives the maximum wind at 10m height increments from 10m to 150m.

(5) Get the year built, opening protection, number of units, number of stories, and layout for the selected policy.

(6) Determine apartments (units) per story by dividing total number of units by number of stories.

(7) The building layout is either open or closed. Based on the layout, the number of corner and middle units are assigned. If the layout is open, there are 2 corner units and the rest are middle units at each floor. If the layout is closed, there are 4 corner units and the rest are middle units at each floor.

(8) Determine window type based on opening protection. The options for opening protection are impact-resistant glass (IRG), normal glass with metal shutters (Shutters), and unknown. Use the following flowchart logic to determine the window type:

(9) Compute the cost of damage to the opening at each story as a function of wind speed at story height and the story opening vulnerability curves.

		The total expected cost of external damage to openings across all the stories is

	

(10) Calculate the area of breaches for the corner and middle units at each story using the following flowchart:

where BW,D,SC,M represent breach curves for windows, door, and slider openings for corner and middle units respectively. Both are evaluated at wind speed W0 for the story. The aggregated BW,D,SC,M are multiplied by their corresponding number of units. The variables AW, AD, and AS represent the size of individual windows, doors, and sliders.

(11) Estimate impingin rain. In order to estimate the impinging rain at each story two wind driven rain functions are used. The first provides the accumulated rain from initial time to time of breach. The second provides the accumulated rain from time of breach to the end. Use the following flowchart:

See Definitions of variables in Glossary.

(12) Calculate average water ingressed per story using the following formulas:

where AWIC and AWIM represent average water ingress per story for corner and middle units respectively.

(13) For each story calculate the aggregate water ingressed (AWIC + AWIM) in inches. This represents the amount of water coming into each story from the breaches and defects.

(14) In addition, water is leaked into each story from the floor above through a percolation mechanism. It is assumed that 10% of the ingress water is leaked to the floor below on a cumulative basis.

(15) The next step converts aggregate water ingressed into expected interior damage ratios per story. If the AWIk is greater than or equal to one inch then the expected interior damage ratio is 1.0. If AWIk is less than one inch then the expected interior damage ratio is equal to the fraction of an inch of water.

(16) Calculate the expected interior damage ratio (EIDR) averaged across all story damage ratios. Steps 17 through 20 are represented by the following:

(17) Calculate the expected interior damage ratio (EIDR) averaging across all story damage ratios EDRS.
(18) The expected damage value for the structure of the building EDVB is equal to the total expected cost of damage to the openings plus a constant factor KI of the expected interior damage ratio times the building value.
(19) The expected damage value for the contents EDVC is equal to a constant factor of the expected interior damage ratio times the contents coverage. Steps 18 and 19 are represented by the following:

(20)
For the observed wind speed, estimate the row vector of wind conditional mean dollar appurtenant structure AP damages, where each element is the mean AP damage for the given wind speed: ratio.

(21) Using the wind conditional mean dollar structural damage DMs, and combining it with the wind conditional mean C, and mean AP : calculate the deductibles DS, DC, DAP on a pro-rata basis to the respective damages as follows:

(22)
Apply the pro-rata structure deductible Ds and limits LMs to the mean structure damage. Calculate the net of deductible structure loss, Ls = DMs - Ds, and truncate it on the upside by LMs and on the downside by Ds. If Ls is LMs, then Ls = LMs - . If calculated Ls is 0, then let Ls = 0.

(23) Repeat step (22) for C, and AP. Generate Lc, and LAP.

(24) To apply the proper demand surge factors, determine the county of the policy, get its demand surge factors, and apply it:

If after applying the demand surge factors, any expected loss (S, C, APP) is greater than its corresponding limit, then each L = LM.

(25) Expected Loss = L = LS + LC + LAP for property k

(26) Repeat steps (2) through (25) for all policies to get the Expected Aggregate Loss

[bookmark: _Toc346555831]Computer Model Design

[bookmark: _Toc346555832]Use Case View of the Insurance Loss Model for CR buildings (ILM-CR)

A.	Actors:

There is one actor (engineers) in ILM. Engineers use this use case to find the expected losses for particular companies of commercial residential policies for all wind speeds.

B.	Use Case:

It represents the calculation of expected losses for particular companies for given wind speeds. The companies’ portfolios must provide commercial residential policies. The total expected loss is actually the summation of the expected losses of the property for a given wind speed, which is calculated by aggregating the losses at different intervals with respect to the corresponding damage probabilities.

C.	Use Case Diagram:

Figure 5.1.1 shows the use case diagram for ILM-CR.

[image: ILM_Usecase]
[bookmark: _Ref294774452]Figure 5.2.1: Use case for ILM-CR

[bookmark: _Toc346555833]System Design

This portion describes the system design. The overall flowchart, classes, and activities for ILM-CR are provided. The figure below provides the detailed flowchart for the loss computation process in both ILM-LB and ILM-MHB.

Figure 5.2.2: Detailed flowchart for ILM-CR
As referenced in the detailed flowchart (Figure 5.2.1), the ILM-LB needs to map a given policy to a specific vulnerability matrix. The processing for this mapping is depicted in the flowchart below:
Mapping Flowchart for Existing Commercial Residential Vulnerability Matrices V2.1

Figure 5.2.3: Vulnerability mapping for ILM-LB
As previously covered, the ILM-CR is divided into ILM-LB and ILM-MHB, and since the logics for these two components are quite different, separate programs were developed for them. The programs were developed in C++ mainly due to performance considerations. Subsequent sections provide more insight into implementation of these components via the class and data flow diagrams.
[bookmark: _Toc346555834]Class Diagram for ILM-CR

ILM-LB

Figure 5.2.4: Class diagram for ILM-LB
Class Description
This section addresses the functionalities of the major classes that were not already described in part A.

· ILM:
This class serves as a base class for the SILM class. ILM provides the ability to have different versions of SILM and share common variables.

· IMatrices:
This class serves as a base class for the class SILM_IMatrices.

· DamageRatio:
This class reads and stores the damage ratio values required in calculating the mean average damage from the vulnerability matrices.

· ZipcodeChecker:
This class stores the list of valid Zip codes and is used by PreProcessChecker to determine if a Zip code is valid.

· Windborne:
This class stores the windborne Zip codes.

· IPolicy:
IPolicy objects represent policy records from a company portfolio.

· CountySurge:
A CountySurge object contains the demand surge factors for a specific county (see section for demand surge factors).

· CountySurgeVector:
This class holds the demand surge factors of all counties in Florida as a list of CountySurge objects.

· ICompany:
This class serves as the base class for the SILM_ICompany class.

· Zone:
This class holds the list of Zip codes that are in Zone 2 of manufactured homes.

· ParameterInfo:
This class serves as a base class for the class SILMInfo.

· PreProcessChecker
This class is in charge of processing a company portfolio for SILM input. To improve the program’s efficiency and performance, the ILM architecture was re-designed to check a company portfolio only once and transfer the processed data to SILM, which then just loops through the storms and compute loss costs without having to repeat checks at every storm. The class PreProcessChecker carries out the pre-processing which involves checking for invalid Zip codes and augmenting the policy data with the indexes of the matrices the policy data set will require throughout the entire loss computation (which involves processing thousands of storms).

· SILMExecutor:
This class servers as a driver for the SILM class. The SILMExecutor creates the SILM_ICompany, SILMInfo, DamageRatio, and CountySurgeVectors and then iterates through all the storms. For storm, the SILMExecutor class creates a SILM object and passes to the SILM_ICompany, SILMInfo, DamageRatio, and CountySurgeVectors.

· SILM:
This class inherits from ILM and directs the SILM loss estimation through the methods companyProcess() and policyProcess(). The SILM computation requires that all necessary checking and pre-processing on the policy data set was performed by the PreProcessChecker class.

· Windspeeds:
This class stores the wind speed corresponding to each policy in a particular storm.

· SILM_ICompany:
This class inherits from ICompany and reads from the disk the exposure input data.

· SILMInfo:
This class represents the parameter file needed to execute SILM.

· PreProcess_IMatrices:
This class inherits from IMatrices and takes care of storing the list of available matrices.

· SILM_IMatrices:
This class inherits from IMatrices and takes care of storing the list of available matrices.

ILM-MHB

Figure 5.2.5: Class diagram for ILM-MHB
Class Description
This section addresses the functionalities of the major classes that were not already described in part A.

· Matrix:
This class represents a general two-dimensional matrix.

· DamageRatio:
This class represents the damage ratio vector utilized when computing estimated losses.

· ParaInfoHigh
This class represents the parameter file passed to ILM-MHB.

· PreProcessChecker
This class implements all pre-process checking of ILM data for ILM-MHB. More specifically, this class checks for invalid Zip codes, year built values, determines open or closed corridor for each risk, and selects the exterior damage vulnerability curves for corner units. As a result, the “clean” policy data augmented with information for ILM processing is outputted to the disk.

· WindSpeedFile:
This class represents the wind speed and policy information of a WSC file.

· CountySurgeVector:
This class is a vector that holds a CountySurge object for each county; in addition, it loads the information from the file “county-surge.csv”

· CountySurge:
This class represents the demand surge factors for a specific county.

· VulnerabilityCurveSet:
This class represents all vulnerability curves in ILM-MHB

· CompanyHigh:
This class represents an exposure file for ILM-MHB.

· PolicyHigh:
This class represents a policy in a mid-/high-rise portfolio.

· RiskHigh:
This class represents a risk in a mid-/high-rise portfolio.

· CRILMHigh:
This class implements loss computation for ILM-MHB.

· ZipcodeChecker:
This class represents all valid Zip codes.

· ParaInfo:
Represents the parameter file passed to ILM

[bookmark: _Toc346555835]Data Flow Diagram for ILM-CR

ILM-LB

Figure 5.2.6: Data flow diagram for ILM-LB
ILM-MHB

Figure 5.2.7: Data flow for ILM-MHB

[bookmark: _Toc346555836]Glossary

ILM-LB

The following table maps variables in the code to equations/algorithmic steps of ILM-LB.

	
Variables/Terms
	
Description
	
Mathematical Equation/Algorithm

	
- companyHolder
 Type: SILM_ICompany*
 File: Forms.cpp
- pol
 Type: IPolicy*
 File: ILM.cpp
	
The policy data set is processed in both the PreProcess_Checker class and the SILM class. The former checks that the policy’s zip code is valid and determines the indexes of the matrices to be used in SILM to compute the estimated loss for the policy.

In PreProcess_Checker class, the variable pol iterates through all the policies in the company data set.

In SILM, the variable companyHolder, a pointer to SILM_ICompany, stores every policy from the user-selected input file (SILMInfo::policyFile) into objects of type IPolicy.

	
(1) Start with a particular insurance company.

	
- m_Policies_arr
 Type: IPolicy[]
 File: ILM.cpp
- pol
 Type: IPolicy
 File: ILM.cpp

	
In PreProcess_Checker class, the variable pol iterates through all the policies.

In SILM, the method SILM::companyProcess receives as part of its parameters the companyHolder, which stores the array m_Policies_arr. The array m_Policies_arr is used to iterate through all the records (policies) stored in companyHolder. IPolicy object stored in the array is passed to SILM::policyProcess which computes the expected losses. In SILM::policyProcess, the IPolicy object is referenced by pol.

	
(2) Next, pick a policy exposure unit from the insurance database. If a policy has multiple risks, each risk will be processed individually as a policy.

	
N/A

	
The latitude/longitude coordinates of the policies are determined in the geocoding use case which converts the policy’s street address to latitude/longitude values. These coordinates are utilized by the Wind Speed Correction use case to determine the 3-sec gust wind for the policy, and the SILM process just receives the obtained wind. Therefore, this step is transparent to SILM.

	
(3) Determine the location (latitude/longitude coordinates) of the policy.

	
- winds
 Type: WindSpeeds*
 File: ILM.h
- wind
 Type: double
 File: ILM.cpp
- winds->m_Pol_Wind_arr
 Type: pair<int,double>*
 File: ILM.cpp
- i
 Type: int
 File: ILM.cpp
	
In its initialization step, the SILM class loads into winds, a member variable, all the policies’ ids and their corresponding 3 sec gust winds from the wind speed file. Then, when processing a particular policy in SILM::policyProcess, the wind speed that corresponds to the policy is obtained using the array winds->m_Pol_Wind_arr[i] where i is the index of the policy.
	
(4) Retrieve the wind speed applied to the policy from the wind database for the given hurricane.

	
- pol.consType
 Type: string
 File: Inputs.h
- pol.yearBuilt
 Type: long double
 File: Inputs.h
- numStories
 Type: int
 File: Inputs.h
- pol.roofShape
 Type: string
 File: Inputs.h
- pol.roofCover
 Type: string
 File: Inputs.h
- pol.openingProtection
 Type: string
 File: Inputs.h

	
The IPolicy class’s member variables consType, yearBuilt, numStories, roofShape, roofCover, and openingProtection contain the picked policy’s attributes. These variables are used by PreProcess_Checker.
	
(5) For the current policy, acquire from database: the construction type, construction date, number of stories, roof shape (if available), roof cover (if available), opening protection (if available) .

	
- matrices
 Type: IMatrices*
 File: ILM.h
- matrices.VMs
- matrices.VMc,
 Type: double * [32]
 File: Inputs.h
- eDR_S
- eDR_c
 Type: long double
 File: ILM.cpp
- alphaLR
Type: long double
File: ILM.cpp

	
Declared outside of the SILM class, when the variable matrices is created it contains the file names of the set of vulnerability curves.

The process of determining which vulnerability curve correspond to the policy is performed by PreProcess_Checker which augments the policy information with the indices of the vulnerability curve to be used for the policy’s expected loss calculation.

In SILM is where the actual contents of the vulnerability curves are loaded using the policy’s matrix indices.

The method IMatrices::populateMatrices is used to load the vulnerability curves’ data into memory, and the pointer VMs of the IMatrices class exposes the mean damage ratio (matrices->VMs) which a are saved into the variable eDR_S. Similarly for contents.

	
(6) To estimate overall building damage, select the vulnerability curve for the policy based on the attributes mentioned in (5). The vulnerability curve consists of simulated mean overall damage ratios evaluated at increasing wind speeds.

(7) To estimate the Contents damage, select the building interior vulnerability curve based on the attributes mentioned in (5). The interior vulnerability curve consists of the simulated expected damage ratios of building interior evaluated at increasing wind speeds. The contents EDR is assumed proportional to the interior damage by a factor LR. Therefore the interior EDRI is multiplied by a constant to get the Contents EDRC.

	
- pol.Vi, pol.LMs, pol.LMc,
 pol.LMapp, pol.LMtre, pol.HD
 Type: long double
 File: Inputs.h

	
The variables pol.Vi, pol.LMs, pol.LMc, pol.LMapp, pol.LMtre, and pol.HD are member variables of the IPolicy class and hold the current policy’s property value, structure limit, contents limit, appurtenant limits, and hurricane deductible respectively (because pol is the current policy being processed). These values are read from the policy input file.

	
(8) Get the property value (V), policy limits (LM), and deductible (D) for the policy. The limit LM is assumed to be the value of the property (i.e. V = LM) if value is not available. Value is contingent on the type of policy specified and is either replacement cost or actual cash value (replacement cost minus depreciation).

	
- eDR_S
 Type: long double
 File: ILM.cpp
- DMs_ave
 Type: long double
 File: ILM.cpp

	
The observed wind speed (wind) is used to select the column of the vulnerability curves that must be used for calculating the losses; each column of the vulnerability curves represents a certain wind speed. By calculating polHolder.Vi*eDR_S, the dollar building damage is stored in DMs_ave which is a local variable of SILM::policyProcess.
	

(9) Apply the structure overall expected damage ratio EDRS to the policy to calculate the structure loss: . This dollar loss damage is associated with the observed wind speed.

	
- eDR_c
 Type: long double
 File: ILM.cpp
- alphaLR
 Type: const long double
 File: ILM.cpp
- DMc_ave
 Type: long double
 File: ILM.cpp
	
Following the same approach as with the structure damage, by calculating polHolder.LMc*eDR_c*alphaLR, the dollar contents damage is stored in DMc_ave.

	

(10) Apply the content expected damage ratio EDRc to the property value to calculate the dollar content damage . This dollar damage is associated with the observed wind speed.

	
- m_X_v
 Type: vector<long double>
 File: ILM.h
- eDR_app
 Type: long double
 File: ILM.cpp
- DMap_ave
 Type: long double
 File: ILM.cpp

	
The mean appurtenant damage is stored in DMap_ave, it is filled by calculating polHolder.LMapp* m_X_v.at(i)*eDR_app for each damage ratio.
	

(11) For the observed wind speed, estimate the row vector of wind conditional mean dollar appurtenant (AP) damage, where each element is the expected AP damage for the given wind speed: .

	- eDR_tre
 Type: long double
 File: ILM.cpp
- DMtre_ave
 Type: long double
 File: ILM.cpp

	Following the mapping in step (12) to get eDR_tre, by calculating polHolder.LMtre*eDR_tre, the dollar TRE damage is stored in DMtre_ave.

	
(12) Apply the expected time related expenses (TRE) ratio EDRTRE to the TRE limit to calculate the dollar TRE: . This dollar expense is associated with the following mapping.

	
- m_SumDM
 Type: long double
 File: ILM.h
- m_Ds, m_Dc, m_Dapp, m_Dtre
 Type: long double
 File: ILM.h
	

The variable m_SumDM is local to SILM::policyProcess equals to DMs_ave + DMc_ave + DMap_ave. The SILM class’s member variables m_Ds, m_Dc, m_Dapp, m_Dtre correspond to , , , and .
	
(13) Using the wind conditional mean $ structural damage DMs, and combining it with the wind conditional mean C, and mean AP : calculate the deductibles DS, DC, DAP on a pro-rata basis to the respective damages as follows:

	
- m_SumLs
 Type: long double
 File: ILM.h
	
The SILM class’s member variable m_SumLs is a long double and corresponds to L.

	

(14) Apply the pro-rata structure deductible Ds and limits LMs to the mean structure damage. Calculate the net of deductible structure loss, Ls = (DMs - Ds), and truncate it on the upside by LMs and on the downside by Ds. If Ls is LMs, then Ls = LMs - . If calculated Ls is 0, then let Ls = 0 .	Comment by Gonzalo: Building

	
- m_SumLc, m_SumLap,
 m_SumLtre
 Type: long double
 File: ILM.h
	
The variables m_SumLc, m_SumLap, and m_SumLtre are declared in the SILM class and correspond to Lc, LAP, and LTRE respectively.

	
(15) Repeat step (13) for C, AP, and TRE. Generate LC, LAP, and LTRE.

	
- pol
 Type: IPolicy
 File: Inputs.h
-countyDSArr
Type: CountySurgeVector
File: Inputs.h
	
After the estimated losses (without DS) are estimated for all the policies in the data set, the method SILM::companyProcessDS is called. This method applies the demand surge factors to all the policies by calling the method policyProcessDS for each policy. The method SILM::policyProcessDS receives as parameters the policy object, pol, and an object, countyDSArr, which holds the demand surge factors for each county.

	(16) To apply the proper demand surge factors, determine the county of the policy, get its demand surge factors, and apply it:

If after applying the demand surge factors, any expected loss (S, C, APP, TRE) is greater than its corresponding limit, then each L = LM.

	
- m_SumEL
 Type: long double
 File: ILM.h
	

The variable m_SumEL is a member of the SILM class and corresponds to
	

(17)

	
- m_SumAEL
 Type: long double
 File: ILM.h
	
After SILM::companyProcess finishes processing, the SILM class’s member variable m_SumAEL holds the expected aggregate loss.
	
(18) Repeat steps (2) through (16) for all policies to get the Expected Aggregate Loss.

ILM-MHB

The following table maps variables in the code to equations/algorithmic steps of ILM-MHB.

	
Variables/Terms
	
Description
	
Mathematical Equation/Algorithm

	
- risk
 Type: RiskHigh*
 File: PreProcessChecker.cpp
- companyPtr
 Type: CompanyHigh*
 File: CRILMManager.cpp
	
The policy data set is processed in both the PreProcessChecker class and the CRILMManager::processHigh method. The former checks that the policy’s zip code is valid and determines the indexes of the vulnerability curves to be used in CRILMManager::processHigh to compute the estimated loss for the policy.

In PreProcessChecker class, the variable risk iterates through all the policies in the company data set.

In processHigh, the variable companyPtr, a pointer to CompanyHigh, stores every policy from the user-selected input file (ParaInfo::policyFile) into objects of type RiskHigh.

	
(1) Start with a particular insurance company.

	
- companyPtr
 Type: CompanyHigh*
 File: CRILMManager.cpp
- allPolicies
 Type: map<std::string, PolicyHigh * > *
 File: CompanyHigh.h
- allRisks
 Type: vector<RiskHigh> *
 File: CompanyHigh.h
- risk
 Type: RiskHigh*
 File: PreProcessChecker.cpp

	
In PreProcessChecker class, the variable risk iterates through all the policies.

In CRILMManager, the constructor CRILMHigh receives as part of its parameters the companyPtr, which stores the map allPolicies. The map allPolicies stores all the PolicyHigh objects. The PolicyHigh object has a vector, allRisks, of RiskHigh objects that represent all risks (policy in step (2)). The companyPtr is used in CRILMHigh::companyProcess which computes the expected losses.

	
(2) Next pick a mid-high rise commercial residential policy exposure unit k from the insurance policy database. The mid-high rise is defined by number of stories greater than three. If a policy has multiple risks each risk would be processed individually as a policy.

	
N/A

	
The latitude/longitude coordinates of the policies are determined in the geocoding use case which converts the policy’s street address to latitude/longitude values. These coordinates are utilized by the Wind Speed Correction use case to determine the 3-sec gust wind for the policy, and the SILM process just receives the obtained wind. Therefore, this step is transparent to SILM.

	
(3) Determine the location (latitude/longitude coordinates) of the policy.

	
- windPtr
 Type: WindSpeedFile*
 File: CRILMManager.cpp

	
In its initialization step, the CRILMManager::processHigh method loads into windPtr, all the policies’ ids and their corresponding 3 sec gust winds from the wind speed file.
	
(4) Extract the vertical wind profile for policy from the wind database for the given hurricane. The vertical wind profile gives the maximum wind at 10m height increments from 10m to 150m.

	
- risk.yearBuilt
 Type: int
 File: Risk.h
- risk.iRW
 Type: string
 File: RiskHigh.h
- risk.numUnits
 Type: int
 File: RiskHigh.h
- risk.numStories
 Type: int
 File: Risk.h
- risk.layout
 Type: string
 File: RiskHigh.h
	
The RiskHigh class’s member variables yearBuilt, iRW, numUnits, numStories, and layout contain the picked policy’s attributes. These variables are used by PreProcessChecker.
	
(5) Get the year built, opening protection, number of units, number of stories, and layout for the selected policy.

	- uS
 Type: int
 File: PreProcessChecker.cpp
	In PreProcessChecker::planLayout the apartment per story, uS is calculated.
	(6) Determine apartments (units) per story by dividing total units by number of stories. (Us = # units / # stories)

	- aC
 Type: int
 File: PreProcessChecker.cpp
- aM
 Type: int
 File: PreProcessChecker.cpp
	In PreProcessChecker::planLayout the number of corner and middle units is determined, aC and aM respectively.
	(7) The building layout is either open or closed. Based on the layout, the number of corner and middle units are assigned. If the layout is open, there are 2 corner units and the rest are middle units at each floor. If the layout is closed, there are 4 corner units and the rest are middle units at each floor.

	- risk
 Type: RiskHigh
 File: PreProcessChecker.cpp

	In PreProcessChecker::getWindowType the logic for selecting the window type for the parameter risk is implemented.
	(8) Determine window type based on opening protection. The options for opening protection are impact-resistant glass (IRG), normal glass (NG), metal shutters, and unknown.

	-cdoStory (CDO(s))
Type: long double
File: CRILMHigh.cpp
- numCornerUnits (ajc)
Type: int
File: RiskHigh.cpp
- numMiddleUnits (ajm)
Type: int
File: RiskHigh.cpp
- windProfile (w(zs))
Type: Matrix
File: CRILMHigh.cpp
- rcWindow(Ciw)
Type:int
File:CRILMHigh.cpp
- rcSlider(Cis)
Type:int
File:CRILMHigh.cpp
- rcEntry(Cis)
Type:int
File: CRILMHigh.cpp
- vcCoHDIW, vcCoHDIS, vcCoHDIE, vcCoMDIW, vcCoMDIS, vcCoMDIE,
vcCoLDIW, vcCoLDIS, vcCoLDIE, vcMiHDIW, vcMiHDIS, vcMiHDIE,
vcMiMDIW, vcMiMDIS, vcMiMDIE, vcMiLDIW, vcMiLDIS, vcMiLDIE (Vij)
Type: Matrix
File: CRILMHigh.cpp
-tecdo
Type: long double
File: CRILMHigh.cpp
	In CRILMHigh::riskProcess(RiskHigh & risk) the logic for computing the expected cost of damage to the openings for each story and the total expected cost of damage for the building is implemented.
	(9) Compute the cost of damage to the openings at each story as a function of wind speed at story height and the story opening vulnerability curves. The total expected cost of external damage to openings across all the stories is also computed.

	- bcCoHDIW, bcCoMDIW, bcCoLDIW, bcCoHDIS, bcCoMDIS, bcCoLDIS,
bcCoHDIE, bcCoMDIE, bcCoLDIE (Bw,d,s C and Bw,d,sM)
Type: Matrix
File: CRILMHigh.cpp
- breachCorner (Breach(s,C))
Type: Matrix*
File: CRILMHigh.cpp
-breachMiddle (Breach(s,M))
Type: Matrix*
File: CRILMHigh.cpp
- dW
Type: long double
File: CRILMHigh.cpp
-dD
Type: long double
File: CRILMHigh.cpp
-ds
Type: long double
File: CRILMHigh.cpp
- AW
Type: long double
File: CRILMHigh.cpp
- AD
Type: long double
File: CRILMHigh.cpp
- AS
Type: long double
File: CRILMHigh.cpp
- defectsAreas (DefectsallC)
Type: Matrix*
File: CRILMHigh.cpp
- defectsAreas (DefectsallM)
Type: Matrix*
File: CRILMHigh.cpp
- breachAreas (Breach(s))
Type: Matrix*
File: CRILMHigh.cpp

	The method CRILMHigh::generateBreach generates unit's breaching square footage for each story using wind speed profile, and window, slider, and entry door curves.

	(10) Calculate the area of breaches (sqf) for the corner and middle units at each story. The total breach area includes defects and the breach area caused by wind pressure.

	- ir1 (r(s,1))
 Type: Matrix
 File: CRILMHigh.cpp
- ir2 (r(s,2))
 Type: Matrix
 File: CRILMHigh.cpp
-windProfile (Wo(s))
Type: Matrix
File: CRILMHigh.cpp
- ALPHA (alpha)
Type: long double
File: CRILMHigh.cpp
- BETA (beta)
Type: long double
File: CRILMHigh.cpp
- F_SIM (fsim)
 Type: const long double
File: CRILMHigh.cpp
- F_RUN (frun)
 Type: const long double
File: CRILMHigh.cpp
- RAF (frun)
 Type: const long double
File: CRILMHigh.cpp

	The impinging rain is generated by method generateIR of class CRILMHigh.cpp and saved in rI1 and rI2 for time period 1 and 2 respectively.
	(11) In order to estimate the impinging rain at each story two wind driven rain functions are used. The first provides the accumulated rain from initial time to time of breach. The second provides the accumulated rain from time of breach to the end.

	- aWICorner (AWI(s)c)
 Type: Matrix
 File: CRILMHigh.cpp
- aWIMiddle (AWI(s)m)
 Type: Matrix
 File: CRILMHigh.cpp
- unitAreaC (Unit Area c)
Type: double
File: CRILMHigh.cpp
- unitAreaM (Unit Area M)
Type: double
File: CRILMHigh.cpp

	The average water ingressed is calculated from method calculateEIDR and stored in aWICorner and aWIMiddle.
	(12) Calculate average water ingressed per story
for corner and middle units.

	- aWITotal
 Type: Matrix
 File: CRILMHigh.cpp
- eIDR
 Type: long double
 File: CRILMHigh.h
- TID (Interior Damage Threshold)
Type: const long double
File: CRILMHigh.cpp
- PERCOLATION_FACTOR (p) Type: const double
File: CRILMHigh.cpp

	The aggregate water ingressed is calculated in method calculateEIDR and stored in aWITotal. Then the vertical water leakage is applied. The aWITotal is converted into expected interior damage ratio for each story, eIDR. Then all stories are averaged into the same variable eIDR.
	(13) For each story calculate the average water ingressed (AWIC + AWIM) in inches. This represents the amount of water coming into each story from the openings.
(14) In addition, water is leaked into each story from the floor above through a propagation mechanism. It is assumed that 10% of the ingressed water is leaked to the floor below on a cumulative basis.
(15) The next step converts average water ingress into expected interior damage ratios per story. If the AWIk is greater than or equal to one inch then the expected interior damage ratio is 1.0. If AWIk is less than one inch then the expected interior damage ratio is equal to the fraction of an inch of water.
(16) Calculate the expected interior damage ratio (EIDR) averaged across all story damage ratios.

	
- eIDR
 Type: long double
 File: CRILMHigh.h

	
The expected interior damage ratio, EIDR, is calculated in method CRILMHigh::calculateEIDR.
	
(17) Calculate the expected interior damage ratio (EIDR) averaging across all story damage ratios EDRS.

	- r_buildingEDV ()
 Type: long double
 File: CRILM.h
- r_contentEDV
 Type: long double
 File: CRILM.h
- ki
 Type: long double
 File: CRILMHigh.cpp
- kICB
 Type: double
 File: CRILMHigh.h
- kIAB
 Type: double
 File: CRILMHigh.h
- ALPHA (alpha MR)
 Type: const double
 File: CRILMHigh.h
- lmS (BV)
 Type: long double
 File: Risk.cpp
- lmC (CV)
 Type: long double
 File: Risk.cpp

	The expected dollar building and content damage is calculated in method aggregationTypeOfRisk, into variables r_buildingEDV and r_contentEDV using weights kICB, kIAB, and constant ALPHA (αMR).
	
(18) The expected damage value for the structure of the building EDVB is equal to the total expected cost of damage to the openings plus a constant factor KI of the expected interior damage ratio times the building value.

(19) The expected damage value for the contents EDVC is equal to a constant factor of the expected interior damage ratio times the contents coverage.

	- r_appurtenantEDV
 Type: long double
 File: CRILM.h

	The mean appurtenant damage is calculated in calculateAppEDV and stored in r_appurtenantEDV.
	
(20) For the observed wind speed, estimate the row vector of wind conditional mean dollar appurtenant structure AP damages, where each element is the mean AP damage for the given wind speed: ratio.	Comment by Gonzalo: Define somewhere

	
- r_buildingDeduc
 Type: long double
 File: CRILM.h
- r_contentDeduc
 Type: long double
 File: CRILM.h
- r_appurtenantDeduc
 Type: long double
 File: CRILM.h
	
The prorated deductibles are calculated in method prorateDeduc and stored in r_buildingDeduc, r_contentDeduc, and r_appurtenantDeduc.
	
(21) Using the wind conditional mean $ structural damage DMs, and combining it with the wind conditional mean C, and mean AP : calculate the deductibles DS, DC, DAP on a pro-rata basis to the respective damages as follows:	Comment by Gonzalo: Cumbersome definition of variable

	- sumLossS_NetDeduc
 Type: long double
 File: Risk.h
- sumLossAPP_NetDeduc
 Type: long double
 File: Risk.h
- sumLossC_NetDeduc
 Type: long double
 File: Risk.h
	
The prorated deductible are applied in method applyDeduc and stored in sumLossS_NetDeduc, sumLossAPP_NetDeduc, and sumLossC_NetDeduc.
	

(22) Apply the pro-rata structure deductible Ds and limits LMs to the mean structure damage. Calculate the net of deductible structure loss, Ls = DMs - Ds, and truncate it on the upside by LMs and on the downside by Ds. If Ls is LMs, then Ls = LMs - . If calculated Ls is 0, then let Ls = 0 .
(23) Repeat step (22) for C, and AP. Generate Lc, and LAP.

	
- sumLossS_NetDeduc_DS
 Type: long double
 File: Risk.h
- sumLossAPP_NetDeduc_DS
 Type: long double
 File: Risk.h
- sumLossC_NetDeduc_DS
 Type: long double
 File: Risk.h
	
The expected losses with DS are calculated in riskProcessDS of class CRILMHigh and saved in sumLossS_NetDeduc_DS, sumLossAPP_NetDeduc_DS, and sumLossC_NetDeduc_DS.
	(24) To apply the proper demand surge factors, determine the county of the policy, get its demand surge factors, and apply it:

If after applying the demand surge factors, any expected loss (S, C, APP) is greater than its corresponding limit, then each L = LM.

	
- r_totalEDV
 Type: long double
 File: CRILM.h
	

The variable r_totalEDV is a member of the CRILM class and corresponds to
	
(25) for property k

	
- stormLoss
 Type: long double
 File: CRILMManager.h
	
After CRILMHigh::companyProcess finishes processing, the CRILMManager class’s member variable stormLoss holds the expected aggregate loss.
	
(26) Repeat steps (2) through (25) for all policies to get the Expected Aggregate Loss

Vol.V-54
[bookmark: _Toc346555837]Volume VI. Database Document

Revision History
	Date
	Person
	Summary

	02/01/2007
	Min Chen
	Created the document

	02/22/2008
	Fausto Fleites
	Updated number of years of the HURDAT database

	02/20/2009
	Fausto Fleites
	Updated number of years of the HURDAT database

	08/15/2010
	Fausto Fleites
	Updated number of years of the HURDAT database

	01/15/2013
	Fausto Fleites
	Updated PR and CR database diagrams

	01/15/2013
	Diana Machado
	Updated number of years of the HURDAT database.
Updated the description of the 2007 Cat Fund exposure data file.

1. [bookmark: _Toc346382961][bookmark: _Toc346383690][bookmark: _Toc346384039][bookmark: _Toc346384325][bookmark: _Toc346384613][bookmark: _Toc346384900][bookmark: _Toc346385187][bookmark: _Toc346385473][bookmark: _Toc346385760][bookmark: _Toc346400081][bookmark: _Toc346408539][bookmark: _Toc346555838]

6. [bookmark: _Toc346555839]Database for AHO use case

0. [bookmark: _Toc346555840]Specification for the Project

The North Atlantic ‘best track’ is maintained by the forecasters and researchers at the National Hurricane Center in Miami, Florida and the National Climatic Data Center in Asheville, North Carolina. Currently, the Database extends from 1851 to 2011. Based on the provided data, we developed database system using Oracle software so that the user of the application can query the database and get the statistic reports from the database.

In this project, an interface is provided for the users to select any data series from five data sets. The application then retrieves data from Oracle Database, uses two probability distributions to fit the selected data set, and returns the fit result to users. The simulation results are plotted as graphs.

0. [bookmark: _Toc346555841]Data Modeling

Since the data modeling is the most important part of the system’s development process, the characteristics of data captured during data modeling are crucial in the design of database, programs, and other system components. The facts and rules captured during the process of data modeling are essential to assuring data integrity in an information system.

Data rather than processes are the most complex aspects of many modern information systems, and hence play a central role in structuring system requirements. An Object Relational Model is based on the traditional Oracle Relational Database and is extended to include Object Oriented concepts and structures, such as abstract data types, nested tables and varying arrays.

In this project we use the Object Oriented concept due to the following reasons:

1. Object Reuse: Creating Object Oriented Database objects will facilitate the reuse of the Database objects.
1. Standard Adherence: If multiple applications or tables use the same set of Database objects, a standard must be created for those Database objects. For example, you can create a standard data type used for all address data.
1. Defined Access Paths: For each object you can define the procedures and functions that act upon it, which means you can unite the data object and the methods that access it. Having the access paths defined in this manner allows you to standardize the data access methods and enhances the reusability of the objects.

Figure 6.1: Database schema diagram
0. [bookmark: _Toc346555842]Description of the Objects and Tables

There are 12 object types in HURDAT Schema:

1.

TYPE: NEWFIX
latitude_deg			NUMBER(10,4)
longitude_deg			NUMBER(10,4)
max_windspeed_mps		NUMBER(10,4)
min_pressure_mb		NUMBER(6)
height_m			NUMBER(8,3)
stage				NUMBER(2)
rmax				NUMBER(4)
crossing			VARCHAR2(10)

2.

TYPE: STORMFIX
fix_id			NUMBER
when_t			DATE
at_time			CHAR(6)
fixtype NUMBER(2)
event_id			NUMBER(6)
for_event			REF ATMOSEVENT
produced_id			NUMBER(4)
produced_by			REF PLATFORM_TYPE
fixobj				NEWFIX

3.

TYPE: ATMOSEVENT
key_id				NUMBER(6)
stm_nbr			NUMBER(6)
when_t				DATE
name				VARCHAR2(30)
type				NUMBER(2)
basin				NUMBER(2)
ATCF_name			VARCHAR2(20)

4.

TYPE: PLATFORM_TYPE
key_id				NUMBER(4)
type				VARCHAR2(50)
description			VARCHAR2(50)
5.

TYPE: LANDFALL_TYPE
category_no			NUMBER(2)
state_code			RCHAR2(4)

6.

TYPE: LANDFALL_TYPE_ARR
category_no			NUMBER(2)
state_code			RCHAR2(4)
This object is an array of the LANDFALL_TYPE object
7.

TYPE: NEWSTORMFIX
fix_id			NUMBER
when_t			DATE
at_time			CHAR(6)
event_id		NUMBER(6)
for_event		REF ATMOSEVENT
produced_id		NUMBER(4)
produced_by		REF PLATFORM_TYPE
fixobj			NEWFIX

8.

TYPE: FIX
latitude_deg			NUMBER(10,4)
longitude_deg			NUMBER(10,4)
max_windspeed_mps		NUMBER(10,4)
min_pressure_mb		NUMBER(6)
height_m			NUMBER(8,3)
stage				NUMBER(2)TYPE

9.

TYPE: HOLLAND_B_RMAX
fix_id 		NUMBER
rmax 	NUMBER(4)
crossing VARCHAR2(10)
holland			NUMBER(5,3)

10.

TYPE: WS_PER_TIME
event_date 		DATE
event_time 		VARCHAR2(6)
windspeed_meter_ss 		NUMBER(14,6)
roughness_cor_wind_mile_hh 		NUMBER(14,6)
roughness_cor_wind_meter_ss 		NUMBER(14,6)
wind_direction_deg 		NUMBER(5)

11.

TYPE: WS_PER_TIMES
event_date 		DATE
event_time 		VARCHAR2(6)
windspeed_meter_ss 		NUMBER(14,6)
roughness_cor_wind_mile_hh 		NUMBER(14,6)
roughness_cor_wind_meter_ss 		NUMBER(14,6)
wind_direction_deg 		NUMBER(5)

WS_PER_TIMES table of WS_PER_TIME but is itself a type object.

12.

TYPE: ZIP_WS_PER_TIME
storm_id					 NUMBER(6)
zipcode 					 VARCHAR2(10)
wsts 					 WS_PER_TIMES
There are 13 tables in HURDAT Schema:

Table 1:

TABLE 1: PLATFORM_TYPE_LIST
Key_id				 PRIMARY KEY CONSTRAINT
This table is based on Object Platform_type

Table 2:

TABLE 2: STORMFIX_LIST
when_t				NOT NULL
constraint			FIX_ID_UN UNIQUE (FIX_ID)
constraint			EVENT_ID_FK FOREIGN KEY (EVENT_ID)
constraint			PRODUCED_ID_FK FOREIGN KEY
				(PRODUCED_ID)
constraint			FIX_ID_PK PRIMARY KEY
				(EVENT_ID,WHEN_T,AT_TIME)

Table 3:

TABLE 3: ATMOSEVENT_LIST
constraint			AL_KEY_ID_PK PRIMARY KEY(KEY_ID)
constraint			AL_stm_nbr_UN UNIQUE (STM_NBR)
constraint			AL_ATCF_name_UN UNIQUE (ATCF_NAME)

Table 4:

TABLE 4: STORM_CATEGORY
category_no			NUMBER(2)
constraint			S_CATEGORY_NO_UN UNIQUE
description			VARCHAR2(30)
constraint			S_DESCRIPTION_PK PRIMARY KEY)

Table 5:

TABLE 5: LANDFALL
storm_id			NUMBER(6)
landfall_obj			LANDFALL_TYPE_ARR
constraint			LD_EVENT_ID_FK FOREIGN KEY(STORM_ID)
				REFERENCES ATMOSEVENT_LIST(KEY_ID)
				ON DELETE CASCADE
NESTED TABLE landfall_obj STORE AS landfall_obj_list

Table 6:

TABLE 6: LANDFALL_STATE
state_code			VARCHAR2(4)
constraint			STATE_CODE_UN UNIQUE
name				VARCHAR2(30)
constraint			LD_NAME_PK PRIMARY KEY)

Table 7

TABLE 7: MULTI_DACADAL_CONSTANT_LIST
mu_id 		NUMBER(1)
mu_Low_year 	NUMBER(4)
mu_Hi_year 		NUMBER(4),
mu_type 		VARCHAR2(10)
Table 8

TABLE 8: OSCILATION_CONSTANT_LIST
os_id 	NUMBER(1),
os_year 	NUMBER(4),
description 	VARCHAR2(15)
Table 9

TABLE 9: ZIPCODELIST
 ZIPCODE NOT NULL VARCHAR2(10)
 CENTR_LATI_DEG NUMBER(12,8)
 CENTR_LONG_DEG NUMBER(12,8)

Table 10

TABLE 10: ZIP_WS_PER_TIMES
 STORM_ID NOT NULL NUMBER(6)
 ZIPCODE NOT NULL VARCHAR2(10)
 WSTS WS_PER_TIMES

Constraint ZWT_ZIPCODE_PK PRIMARY
 KEY(ZIPCODE, STORM_ID),
Constraint ZWT_ZIPCODE_FK FOREIGN KEY
 (ZIPCODE) REFERENCES ZIPCODELIST
 (ZIPCODE)
Constraint ZWT_STORM_ID_FK FOREIGN KEY
 (STORM_ID) REFERENCES
 ATMOSEVENT_LIST (KEY_ID)

Table 11

TABLE 11: YR_HURRI_THREAT_FIRSTFIX
EID NUMBER(6)
NAME VARCHAR2(30)
WHEN_T DATE
JULIANDATE VARCHAR2(10)
TIME CHAR(6)
LATITUDE NUMBER(10,4)
LONGITUDE NUMBER(10,4)
MAXWINDSPEED NUMBER(10,4)
MINPRESSURE NUMBER(6)

Table 12

TABLE 12: ATMOSEVENT_HURRI_THREAT_LIST
STM_NBR NUMBER(6)
WHEN_T DATE
NAME VARCHAR2(30)
TYPE NUMBER(2)
BASIN NUMBER(2)
ATCF_NAME VARCHAR2(20)
KEY_ID NUMBER(6)

TABLE 13

TABLE 13: ROUGHNESS
ZIP NOT NULL VARCHAR2(12)
Z01 NOT NULL NUMBER(12,10)
Z02 NOT NULL NUMBER(12,10)
Z03 NOT NULL NUMBER(12,10)
Z04 NOT NULL NUMBER(12,10)
Z05 NOT NULL NUMBER(12,10)
Z06 NOT NULL NUMBER(12,10)
Z07 NOT NULL NUMBER(12,10)
Z08 NOT NULL NUMBER(12,10)
0. [bookmark: _Toc346555843]Data Processing

3. [bookmark: _Toc346555844]Original Data Processing

Following is the data format of the original text file recording the storm tracks of Atlantic basin. In order to populate the data into the database schema, we have to process the data and convert them into some suitable format according to database schema.

00005 06/25/1851 M= 4 1 SNBR= 1 NOT NAMED XING=1 SSS=1
00010 06/25*280 948 80 0*280 954 80 0*280 960 80 0*281 965 80 0*
00015 06/26*282 970 70 0*283 976 60 0*284 983 60 0*286 989 50 0*
00020 06/27*290 994 50 0*295 998 40 0*3001000 40 0*3051001 40 0*
00025 06/28*3101002 40 0* 0 0 0 0* 0 0 0 0* 0 0 0 0*
00030 HRBTX1
00035 07/05/1851 M= 1 2 SNBR= 2 NOT NAMED XING=0
00040 07/05* 0 0 0 0* 0 0 0 0*222 976 80 0* 0 0 0 0*
00045 HR
00050 07/10/1851 M= 1 3 SNBR= 3 NOT NAMED XING=0
00055 07/10* 0 0 0 0* 0 0 0 0*120 600 50 0* 0 0 0 0*
00060 TS
00065 08/16/1851 M=12 4 SNBR= 4 NOT NAMED XING=1 SSS=3
00070 08/16*134 480 40 0*137 495 40 0*140 510 50 0*144 528 50 0*
00075 08/17*149 546 60 0*154 565 60 0*159 585 70 0*161 604 70 0*
00080 08/18*166 625 80 0*169 641 80 0*172 660 90 0*176 676 90 0*
00085 08/19*180 693 90 0*184 711 70 0*189 726 60 0*194 743 60 0*
00090 08/20*199 759 70 0*205 776 70 0*212 790 70 0*219 804 70 0*
00095 08/21*226 814 60 0*232 825 60 0*239 836 70 0*244 843 70 0*
00100 08/22*250 849 80 0*256 855 80 0*262 860 90 0*268 863 90 0*
00105 08/23*274 865 100 0*280 866 100 0*285 866 100 0*296 861 100 0*
00110 08/24*307 851 90 0*316 841 70 0*325 830 60 0*334 814 50 0*
00115 08/25*340 800 40 0*348 786 40 0*358 770 40 0*368 751 40 0*
00120 08/26*378 736 40 0*389 718 40 0*400 700 40 0*413 668 40 0*
00125 08/27*428 633 40 0*445 602 40 0*464 572 40 0*485 542 40 0*
00130 HRAFL3IGA1

There are three basic types of data lines in the original storm track file.

TYPE A:
92620 08/16/1992 M=13 2 SNBR= 899 ANDREW XING=1 SSS=4
1. 92620			Card#
1. 08/16/1992 		MM/DD/Year Days
1. M=13 			S#
1. 2				Total#
1. ANDREW		Name
1. XING=1			US Hit
1. SSS=4			Hi US category

	Card#:
	Sequential card number starting at 00010 in 1851

	MM/DD/Year:
	Month, Day, and Year of storm

	Days:
	Number of days in which positions are available (note that this also means number of lines to follow of type B and then one line of type C)

	S#:
	Storm number for that particular year (including subtropical storms)

	Total#:
	Storm number since the beginning of the record (since 1886)

	Name:
	Storms only given official names since 1950

	US Hit:
	'1' Made landfall over the United States as tropical storm or hurricane. '0' did not make U.S. landfall

	Hi US
category:
	'9' Used before 1899 to indicate U.S. landfall as a hurricane of unspecified Saffir-Simpson category. '0' Used to indicate U.S. landfall as tropical storm, but this has not been utilized in recent years '1' to '5' = Highest category on the Saffir-Simpson scale that the storm made landfall along the U.S. '1' is a minimal hurricane, '5' is a catastrophic hurricane

TYPE B:
92580 04/22S2450610 30 1003S2490615 45 1002S2520620 45 1002S2550624 45 1003*
1. 92580			Card#
1. 04/22			MM/DD
1. S 			Storm category
1. 2450610 30 1003		LatLongWindPress
1. 2490615 45 1002		LatLongWindPress
1. 2520620 45 1002		LatLongWindPress
1. 2550624 45 1003		LatLongWindPress

	Card#:
	Sequential card number starting at 00010 in 1851

	MM/DD
	Month, Day, and Year of storm

	Storm category
	'S' (Subtropical stage), '*' (tropical cyclone stage), 'E' (extra tropical stage), 'W' (wave stage - rarely used)

	LatLong
	Position of storm: 24.5N, 61.0W

	Wind
	Maximum sustained (1 minute) surface (10m) windspeed in knots (in general, these are to the nearest 5 knots).

	Press
	Central surface pressure of storm in mb (if available). Since 1979, central pressures are given every time even if a satellite estimation is needed.

	Position and intensity
	Positions and intensities are at 00Z, 06Z, 12Z, 18Z

TYPE C:

92760 HRCFL4BFL3 LA3
1. 92760 			Card#
1. HR			Tp
1. CFL, BFL, LA		Hit
1. 4, 3			Storm Category
	Card#:
	Sequential card number starting at 00010 in 1851

	Tp
	Maximum intensity of storm ('HR' = hurricane, 'TS' = tropical storm, 'SS' = subtropical storm)

	Hit
	U.S. landfallings as hurricane ('LA' = Louisiana, etc.) and Saffir-Simpson category at landfall ('1' = minimal hurricane '5' = super hurricane). (Note that Florida and Texas are split into smaller regions: 'AFL' = Northwest Florida, 'BFL' = Southwest Florida, 'CFL' = Southeast Florida, 'DFL' = Northeast Florida, 'ATX' = South Texas, 'BTX' = Central Texas, 'CTX' = North Texas.)

The first step is to extract the useful data and to remove the unwanted data or format symbols. For Table ‘atmosevent_list’ which records the high-level information for all storms, we need to extract the following corresponding data fields from the original data file:
1. Storm number
1. Begin date of that storm or hurricane
1. Type of the storm or hurricane (The type of the hurricane or storm is based on a category criterion.), which is calculated by converting the maximum wind speed of each storm to its corresponding storm category according to some criteria.

We use a C++ program to retrieve the data and then categorize the storm type based on its maximum wind speed.

Table ‘stormfix_list’ stores the detailed information about each storm or hurricane. For example, it records how many days a storm lasts, the exact latitude and longitude, the wind speed and the central pressure at different fix point of each day. We therefore need to obtain this information from the original data file. A java program is developed to achieve this goal.

In order to make sure the extracted data consistent with the original data file, we have done a lot of checking, either manually or by programs.

3. [bookmark: _Toc346555845]New Data Processing

On 04/24/03, we received a new data file “rmax.dat” which contains Rmax value for each fix and the crossing point for specific points. In addition, some intermediate fixes which are not in the HURDAT database have been included. Therefore, the data file needs to be processed and two attributes have to be added into the FIX object in the database as follows:

Name			Length
rmax			NUMBER(4)
Crossing		VARCHAR2(10)			
Following is the data format of the new text file:
Storm Name	# Year Mo Dy Time	 Lat Lon Wsp Pmn RMW Cat Crossg
NOT NAMED 	3 1903/ 9/ 9 0600 21.4 72.4 50 0 0 TSt
NOT NAMED 3 1903/ 9/ 9 1200 21.8 73.4 50 0 0 TSt
NOT NAMED 3 1903/ 9/ 9 1800 22.2 74.0 50 0 0 TSt
NOT NAMED 3 1903/ 9/10 0000 22.6 74.7 55 0 0 TSt
NOT NAMED 3 1903/ 9/10 0300 22.9 75.0 60 0 0 TSt ISLAND new
NOT NAMED 3 1903/ 9/10 0600 23.2 75.3 60 0 0 TSt
NOT NAMED 3 1903/ 9/10 1200 23.8 76.0 65 0 0 Hu1
NOT NAMED 3 1903/ 9/10 1800 24.0 76.5 70 0 0 Hu1
NOT NAMED 3 1903/ 9/11 0000 24.4 76.9 80 0 0 Hu1
NOT NAMED 3 1903/ 9/11 0600 24.9 77.5 85 0 0 Hu2
NOT NAMED 3 1903/ 9/11 1000 25.3 78.1 85 0 0 Hu2 ISLAND new
NOT NAMED 3 1903/ 9/11 1200 25.4 78.4 85 0 0 Hu2
NOT NAMED 3 1903/ 9/11 1800 25.8 79.1 85 0 0 Hu2
NOT NAMED 3 1903/ 9/11 2200 26.1 80.0 85 0 0 Hu2 LAND new
NOT NAMED 3 1903/ 9/12 0000 26.4 80.3 75 0 0 Hu1
NOT NAMED 3 1903/ 9/12 0600 26.9 81.2 65 0 0 Hu1
Where the “RMW” column represents the rmax value and the “Crossg” column represents the crossing value. And the word “new” next to the “Crossg” column indicates the new fixes.

The data processing steps are similar to the ones mentioned in the previous subsection.
0. [bookmark: _Toc346555846]Data Loading

4. [bookmark: _Toc346555847]Original Data Loading

The output of data pre-processing is the desired data format we need for populating the data into the new schema. For testing purpose, we first loaded the data into the FDOI at georges.cs.fiu.edu using SQL Loader. All the constraints in the database schema have been disabled in order to facilitate the loading process. The loading codes for the three major database tables (atmosevent_list, stormfix_list, and landfall) are listed as follows:

1. Loading data into Table ‘atmosevent_list’:
load data
infile 'atmosevent.dat'
append
into table atmosevent_list
fields terminated by ","
trailing nullcols
(stm_nbr,when_t date "mm/dd/yyyy",name,type,basin, key_id "atm_key_seq.nextval")

1. Loading data into Table ‘landfall’:
LOAD DATA
INFILE 'landfall.dat'
TRUNCATE INTO TABLE landfall
trailing nullcols
 (
 storm_id TERMINATED BY ',',
 landfall_obj nested table TERMINATED BY ','
 (
 dummy_name COLUMN OBJECT
 (
 state_code TERMINATED BY ':',
 category_no TERMINATED BY ':'
)
)
)

1. Loading data into Table ‘stormfix_list’:
load data
infile 'stormfix_list_test.dat'
append
into table STORMFIX_LIST_TEST
fields terminated by ","
trailing nullcols
(event_id, when_t date "mm/dd/yyyy",at_time,
fixobj column object
(
LATITUDE_DEG,
LONGITUDE_DEG,
MAX_WINDSPEED_MPS,
MIN_PRESSURE_MB,
stage),
fix_id "obsid_seq.nextval")

After finishing the data loading, all the constraints and data references will be enabled.

4. [bookmark: _Toc346555848]New Data Loading

Since “rmax.dat” contains only the updated or supplemented information for the hurricanes stored in the database, the new data loading process is different from the original data loading process. Basically, two tables in database need to be altered: atmosevent_list and stormfix_list. The updating steps are discussed as follows:

0. Create a temporary table oldstormfix_list by copying all the data from table stormfix_list:

	Create table oldstormfix_list as select * from stormfix_list

0. Create a new data type NEWFIX, which has two more attributes (rmax, crossing) than FIX.

0. Replace table stormfix_list by using new data type NEWFIX instead of the original data type FIX.

0. Copy all the data in table oldstormfix_list to table stormfix_list. The values are set as NULL for rmax and crossing:

insert into stormfix_list (fix_id,when_t,at_time,event_id,fixobj)
 select fix_id,when_t,at_time,event_id,
newfix(c.fixobj.latitude_deg,c.fixobj.longitude_deg,c.fixobj.max_windspeed_mps, c.fixobj.min_pressure_mb,null,c.fixobj.stage,null,null)
from oldstormfix_list c

0. Get the according fix_id in table stormfix_list for each record in “rmax.dat” except the records marked as new. Update table stormfix_list.

0. Append the records marked as new into table stormfix_list.

0. Update table atmosevent_list based on the updated table stormfix_list.

0. [bookmark: _Toc346555849]Export and Import the Data

The next step is to migrate the whole database from fdoi.georges.cs.fiu.edu to hldp.andrew.cs.fiu.edu. We make use of the Oracle export and import utility to complete the task.

Before we begin using the Export utility, the following steps are necessary:

Export the Schema:
Step 1: Run catexp.sql

This job is done by the DBA of HLDP database. The script performs the following tasks to prepare the database for export:

1. Creates the necessary export views in the data dictionary
1. Creates the EXP_FULL_DATEBASE role
1. Assigns all necessary privileges to the EXP_FULL_DATEBASE
1. Assigns EXP_FULL_DATEBASE to the DBA roll
1. Records the version of catexp.sql that has been installed

Step 2: Ensure that there is enough disk space to write the export file

Since our database is not very big in size, there is no problem about the storage.

Step 3: Verify that we have the required access privileges

To use Export, you must have the CREATE SESSION privilege on an Oracle database. To export tables owned by another user, the EXP_FULL_DATEBASE role has to be granted to the user who will perform the export.

Step 4: Prepare the parameter file

We specify all needed parameters and their values in a parameter file. Storing the parameters in a file allows the parameters to be easily modified or reused, which is the recommend method for invoking Export.

We create the parameter file using the DOS text editor as follows:
FILE=dba.dmp	 // the name of the Exported dump file
OWNER=czhang02 // we export the schema from czhang02’s account
GRANTS=y // exports objects grants
ROWS=y	 // rows of table data are exported
COMPRESS=y 	// compress the exported file
log=dbaemp // save export reports and error information to file dbaemp

Step 5: Invoking the Export Utility

In our case, we use the User mode to export the entire schema from Chengcui’s account on the FDOI to HLDP. As described above, the parameter file method was used to invoke the export utility.
Execute the following command in DOS:

> exp username/password PARFILE = params.dat

Import the Schema:
Through the above 5 steps, we successfully export the entire schema from Chengcui’s account. The next step is to use the Import utility to read dba.dmp file into the HLDP account.

Step 1: Verify that we have the required access privileges

To use Import, you must have the CREATE SESSION privilege on an Oracle database. To Import tables owned by another user, the IMP_FULL_DATEBASE role has to be granted to the user who will perform the export.

Step 2: Prepare the parameter file

We specify all needed parameters and their values in a parameter file. Storing the parameters in a file allows us to be easily modified or reused, and is the recommend method for invoking Import.

We create the parameter file using the DOS text editor as follow:
FILE=dba.dmp // the name of the export dump file
OWNER=czhang02 // we import the schema from czhang02’s account
IGNORE=n // display object creation errors
SHOW=y // list the contents of the export file which are not imported
GRANTS=y // imports objects grants
ROWS=y // rows of table data are imported
LOG=dbaemp // save the import report and error information to file dbaemp

Step 3: Invoking the Import Utility

In our case, we use the User mode to import the exported dump file dba.dmp to HLDP.
Execute the following command in DOS:
> imp username/password PARFILE = paramsi.dat

0. [bookmark: _Toc346555850]Maintenance task for each hurricane season

For each new base set, several steps are performed for database maintenance. The table hurricanefix_list is created from the table stormfix_list with records satisfying a particular criterion. Next the table yr_hurri_threat_firstfix is created and populated with a SQL script.

The steps used to perform this maintenance job are categorically listed as follows:

1. create table hurricanefix_list as select s.* from stormfix_list s where s.fixobj.MAX_WINDSPEED_MPS*1.151 >= 74;

1. Create table hurricanefix_list_test_1 as select s.* from hurricanefix_list s where 6367 * 2 * asin(sqrt((sin(((29.0*4*atan(1)/180) - (s.fixobj.latitude_deg*4*atan(1)/180))/2)) * (sin(((29.0*4*atan(1)/180) - (s.fixobj.latitude_deg*4*atan(1)/180))/2)) + cos((s.fixobj.latitude_deg*4*atan(1)/180)) * cos((29.0*4*atan(1)/180)) * (sin(((83.0*4*atan(1)/180) - (s.fixobj.longitude_deg*4*atan(1)/180))/2)) * (sin(((83.0*4*atan(1)/180) - (s.fixobj.longitude_deg*4*atan(1)/180))/2))))<=900;

1. create table hurricanefix_list_test_2 as select event_id, min(fix_id) as first_hurri_threat_fix_id from hurricanefix_list_test_1 group by event_id;

1. A table yr_hurri_threat_firstfix is created with the attributes EID, NAME, WHEN_T, JULIANDATE, TIME, LATITUDE, LONGITUDE, MAXWINDSPEED and MINPRESSURE.

 create table yr_hurri_threat_firstfix
 (eid		number(6),
 			name 		varchar2(30),
 		when_t 	date,
 juliandate 	varchar2(10),
 time char(6),
 latitude number(10,4),
 longitude number(10,4),
 maxwindspeed number(10,4),
 minpressure number(6))

1. run calculate_hurri_threat_firstfix.sql

0. [bookmark: _Toc346555851]Data Checking

Since the import was terminated with warnings, we have to check that the entire schema in the old account is moved to the new account. After importing, Chengcui (a team member) made a first pass check to make sure that the schema in the new account is the same as the one in the old account. Although there are warnings with the import, but actually all the data and tables as well as database objects are all successfully imported.

It is very important to ensure that the imported data is consistent with the original data file. We randomly retrieved some records from the table in the imported schema, and compared then with the original data file. Three main tables have been checked by this way, and two of them were found correctly imported. But for the third one (‘stormfix_list’), there is a problem with one of the attributes. Some values of that attribute are not consistent with the original data. So we double checked the database and realized that the problem is due to the format of the original file. After changing the program, the needed data can be extracted correctly.

0. [bookmark: _Toc346555852]Queries

8. [bookmark: _Toc346555853]Change the Query Based on the New Schema

Once the new schema has been successfully migrated onto the new database server, the next step is to provide the database queries based on new schema. Since the original queries are based on the old schema, we need to revise the original queries according to the new schema.

The following is the query for the old schema.
Select Year, count(1)
From
 select to_char(s.when_t, 'yyyy') Year
 from fdoifiu.stormfix_list s
 where s.for_event.basin=1 and when_t between '01-JAN-1851'
 and '31-DEC-2000' and
 (s.fixobj.stage like 'H%' or s.fixobj.stage='Tropical Storm')
 group by to_char(s.when_t, 'yyyy'), event_id)
 group by Year
 order by Year

In the old schema, the storm category is represented by string instead of category id. For example, the string “Hurricane” or “Tropical Storm” was used to record the type of tropical cyclones. But in the new schema, the numbered id is used to categorize the type of the tropical cyclones. Instead of using string, we can use number ‘4’ to represent a “tropical storm”, and number 5~11 to represent hurricane level 1~5.

According to the new schema, we change all s.fixobj.stage like 'H%' or s.fixobj.stage='Tropical Storm' statements in the old schema to s.fixobj.stage >=4. In the new schema, s.fixobj.stage >=4 functions the same way as the old one using string matching. Shown below is the revised query, which works correctly in the new schema and is more effective compared with the original queries.

select Year, count(*)"Cyclones"
from (select to_char(when_t,'yyyy') Year
	 from atmosevent_list s
	 where s.basin=1 and s.when_t between '01-JAN-1851'
 and '31-DEC-2001' and s.type >=4)
group by Year

We made the same changes for all the queries of Use Case One and Use Case Two. The execution speed of queries is nearly three times faster than before.

0. [bookmark: _Toc346555854]Database Tuning

9. [bookmark: _Toc346555855]Tuning SQL Statements

Although the execution speeds of the SQL statements have been greatly improved by revising the schema, additional SQL tuning efforts are necessary to improve the performance of the statements.

9. [bookmark: _Toc346555856]The Goals of SQL Tuning

Oracle SQL tuning is a phenomenally complex subject, and we will begin with a high-level description of the goals of SQL tuning and get into details later on. There are some general guidelines that all Oracle SQL developers must follow in order to improve the performance of their systems. The goals of SQL tuning are as follows:

Remove Unnecessary Large-table Full-table Scans

Unnecessary full-table scans cause a huge amount of I/O and can drag down an entire database. We first evaluate the SQL query statements in terms of the number of rows returned by the query. If the query returns less that 40 percent of the table rows on an ordered table, or 7 percent of the rows in an un-ordered table, the query can be tuned to use an index in lieu of the full-table scan. The most common tuning remedy for unnecessary full-table scan is adding indexes. Standard B-tree indexes, bitmapped indexes and function-based indexes can all be added into the tables in order to eliminate full-table scans. In some cases, an unnecessary full-table scan can be converted to an index scan by adding an indexes hint to the SQL statement.

Share SQL Statements

ORACLE holds SQL statements in memory after it has parsed them, so the parsing and analysis do not have to be repeated if the same statement is issued again. The single shared context area in the shared buffer pool of the System Global Area (SGA) is shared by all the users. We have to set the appropriate INIT.ORA parameters for the context areas. The larger the area, the more statements can be retained there and the more likely statements are to be shared.

Use Hints

In general, hints serve a dual purpose. They can be used to alter the execution plan for a SQL statement. They can be used as an alternative to stored outlines to permanently change the execution plan for a SQL statement. When a hint is added to a SQL statement during tuning, the tuning changes will take effect.

Verify Optimal Join Techniques

Some queries will perform faster with nested loop joins, while others may work better with Hash joins or merge/star joins. In general, it is better to use simple join whenever it is possible.

Review Sub queries

Every correlated and non-correlated sub query should be examined to determine if the SQL query could be rewritten as a simple table joins.

Having shown the goals of SQL tuning, the followed section is to tune the SQL statements for the database queries. Oracle Corporation has developed a lot of utilities to facilitate the SQL tuning process. In this project, we mainly use the SQL Trace, TKPROF, and the Timing Environments Parameter for SQL tuning.

9. [bookmark: _Toc346555857]Using the Timing Environments Parameter

SQL timing environments parameter is used to record total time elapsed for a SQL statement. For the purpose of testing, we turn on this timing parameter, and run the desired SQL statement. Based on the total time used, we change the structure of the SQL statement, and run it again. Then the two results are compared to decide which statement has a better performance.

Example:
Structure 1:
SQL> select /*+ first_rows */ Year, count(*)"Cyclones" from --to response with the first row quickly
 2 (select to_char(s.when_t, 'yyyy') Year
 3 from oscillation_constant_list o, atmosevent_list s
 4 where to_number(to_char(when_t,'yyyy'))=os_year and s.basin=1 and s.type >=4
 5)
 6 group by Year
 7 /
Elapsed: 00:00:00.02

Structure 2:

SQL> select /*+ first_rows */ Year, count(*)"Cyclones" from
 2 (select to_char(s.when_t, 'yyyy') Year
 3 from atmosevent_list s
 4 where exists
 5 (select os_year from oscillation_constant_list
 6 where os_year=to_number(to_char(when_t,'yyyy'))
 7) and s.basin=1 and s.type >=4
 8)
 9 group by Year
 10 /

Elapsed: 00:00:00.05

From the example above, it is obvious which statement has a better performance. However, this environment parameter cannot show us how much time the CPU uses for the issued statement, and how much time used on the I/O, and those detailed information is very important. We solve this problem by using SQL Trace and TKPROF facilities.

9. [bookmark: _Toc346555858]Using SQL Trace and TKPROF

The SQL trace and TKPROF facilities enable us to accurately assess the efficiency of the SQL statements.

SQL Trace Facility

The SQL trace facility provides performance information for individual SQL statements. It generates the following statistics for each SQL statement:
· [bookmark: 1062]Parse, execute, and fetch counts
· CPU elapsed time
· [bookmark: 1064]Physical reads and logical reads
· [bookmark: 1066]Number of rows processed
· [bookmark: 7148]Misses on the library cache
· [bookmark: 1070]Username under which each parse occurred
· [bookmark: 1072]Each commit and rollback
[bookmark: 1074]We can enable the SQL trace facility for a session or for an instance. When the SQL trace facility is enabled, performance statistics for all SQL statements executed in a user session or in an instance are placed into a trace file.

[bookmark: 1076]The additional overhead of running the SQL trace facility against an application with performance problems is normally insignificant, compared with the inherent overhead caused by the application's inefficiency.

TKPROF Facility
[bookmark: 1080]After executing the SQL trace, we need to run the TKPROF facility to format the contents of the trace file and to place the output into a readable output file. Optionally, TKPROF can also:
· [bookmark: 1082]Determine the execution plans for SQL statements
· [bookmark: 1084]Create a SQL script that stores the statistics in the database
[bookmark: 1086]TKPROF reports each statement executed with the resources it has consumed, the number of times it was called, and the number of rows it processed. This information lets us easily locate those statements that are using the most resource.
[bookmark: 4766]
The steps to use the SQL trace and TKPROF facilities:
1. [bookmark: 4767]Set initialization parameters for trace file management.
1. [bookmark: 1097]Enable the SQL trace facility for the desired session and run your application. This step produces a trace file containing statistics for the SQL statements issued by the application.
1. [bookmark: 1099]Run TKPROF to translate the trace file created in Step 2 into a readable output file. This step can optionally create a SQL script that stores the statistics in the database.
1. [bookmark: 1101]Interpret the output file created in Step 3.

[bookmark: 1103][bookmark: 1105][bookmark: 1108][bookmark: _Toc346555859]Step 1: Set Initialization Parameters for Trace File Management
[bookmark: 1110][bookmark: 1114]
[bookmark: 1116]Before enabling the SQL trace facility, one should check the settings of the TIMED_STATISTICS, USER_DUMP_DEST, and MAX_DUMP_FILE_SIZE parameters.
[bookmark: 7153][bookmark: 2422]
1. TIMED_STATISTICS
This parameter enables and disables the collection of timed statistics, such as CPU elapsed time by the SQL trace facility, and the collection of various statistics in the dynamic performance tables. The default value of FALSE disables timing. The value of TRUE enables timing. Enabling timing causes extra timing calls for low-level operations. This is a session parameter.

1. MAX_DUMP_FILE_SIZE
When the SQL trace facility is enabled at the instance level, every call to the server produces a text line in a file in your operating system's file format. The maximum size of these files (in operating system blocks) is limited by the initialization parameter MAX_DUMP_FILE_SIZE. The default is 500. If you find that your trace output is truncated, increase the value of this parameter before generating another trace file. This is a session parameter.

1. USER_DUMP_DEST
[bookmark: 1148][bookmark: 1163]This parameter specifies fully the destination for the trace file according to the conventions of your operating system. The default value for this parameter is the default destination for system dumps on your operating system. This value can be modified with ALTER SYSTEM SET USER_DUMP_DEST=newdir. This is a system parameter.

[bookmark: _Toc346555860]Step 2: Enable the SQL Trace Facility
Enabling the SQL Trace Facility for Current Session

[bookmark: 1169]To enable the SQL trace facility for our current session, we use the following command:

[bookmark: 1171][bookmark: 7028] 	ALTER SESSION SET SQL_TRACE = TRUE;
[bookmark: 1173]Alternatively, one can enable the SQL trace facility for a session by using the DBMS_SESSION.SET_SQL_TRACE procedure.
[bookmark: 1175]To disable the SQL trace facility, we use the following command:

[bookmark: 1177][bookmark: 7029] 	 ALTER SESSION SET SQL_TRACE = FALSE;
[bookmark: 1179]The SQL trace facility is automatically disabled for the tuning session when the application disconnects from Oracle.
[bookmark: 1216][bookmark: _Toc346555861]Step 3: Format Trace Files with TKPROF
[bookmark: 3745][bookmark: 7182]
[bookmark: 1224]TKPROF accepts as input a trace file produced by the SQL trace facility and produces a formatted output file. Once the SQL trace facility has generated a number of trace files, we can:
· [bookmark: 1226]Run TKPROF on each individual trace file, producing a number of formatted output files, one for each session.
· [bookmark: 1228]Concatenate the trace files and then run TKPROF on the result to produce a formatted output file for the entire instance.
[bookmark: 1230]TKPROF does not report COMMITs and ROLLBACKs that are recorded in the trace file. The syntax for TRPROF is as follows:
TRPROF <input_tracefile> <output_filename> Explain =user/password
[bookmark: 1232][bookmark: 7707][bookmark: 1311][bookmark: _Toc346555862][bookmark: 1317]Step 4: Interpret TKPROF OutputTabular Statistics
[bookmark: 1319]
TKPROF lists the statistics for a SQL statement returned by the SQL trace facility in rows and columns. Each row corresponds to one of the three steps of SQL statement processing. The step for which each row contains statistics is identified by the value of the CALL column:

1. PARSE
This step translates the SQL statement into an execution plan. This step includes checks for proper security authorization and checks for the existence of tables, columns, and other referenced objects.

1. EXECUTE
This step is the actual execution of the statement by Oracle. For INSERT, UPDATE, and DELETE statements, this step modifies the data. For SELECT statements, the step identifies the selected rows.

1. FETCH
This step retrieves rows returned by a query. Fetches are only performed for SELECT statements.

[bookmark: 2456][bookmark: 7217]The other columns of the SQL trace facility output are combined statistics for all parses, all executes, and all fetches of a statement. These values are zero (0) if TIMED_STATISTICS is not turned on. The sum of query and current is the total number of buffers accessed.

1. COUNT
Number of times a statement was parsed, executed, or fetched.
1. CPU
Total CPU time in seconds for all parses, executes, or fetch calls for the statement.

1. ELAPSED
Total elapsed time in seconds for all parses, executes, or fetch calls for the statement.

1. DISK
Total number of data blocks physically read from the data files on disk for all parses, executes, or fetch calls.

1. QUERY
Total number of buffers retrieved in consistent mode for all parses, executes, or fetch calls. Buffers are usually retrieved in consistent mode for queries.

1. CURRENT
Total number of buffers retrieved in current mode. Buffers are retrieved in current mode for statements such as INSERT, UPDATE, and DELETE.

Example:

select /*+ first_rows */ Year, count(*)"Cyclones" from --to response with the first row quickly
 (select to_char(s.when_t, 'yyyy') Year
 from atmosevent_list s, oscillation_constant_list o
 where os_year=to_number(to_char(when_t,'yyyy')) and s.basin=1
 and s.type >=4
)
 group by Year

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.18 0 0 0 0
Execute 1 0.00 0.01 0 0 0 0
Fetch 5 0.03 0.04 0 17 0 47
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 7 0.03 0.24 0 17 0 47

Misses in library cache during parse: 1
Optimizer goal: FIRST_ROWS
Parsing user id: 29 (CZHANG02)

Rows Row Source Operation
------- ---
 47 SORT GROUP BY
 466 NESTED LOOPS
 1274 TABLE ACCESS FULL ATMOSEVENT_LIST
 466 INDEX RANGE SCAN (object id 28035)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: HINT: FIRST_ROWS
 47 SORT (GROUP BY)
 466 NESTED LOOPS
 1274 TABLE ACCESS (FULL) OF 'ATMOSEVENT_LIST'
 466 INDEX (RANGE SCAN) OF 'ENSO_STORM_IDX' (NON-UNIQUE)

[bookmark: 3792]Rows
[bookmark: 3808]Statistics about the processed rows appear in the ROWS column.
1. ROWS
Total number of rows processed by the SQL statement. This total does not include the number of rows processed by sub-queries of the SQL statement.
[bookmark: 1387]
[bookmark: 1391]For SELECT statements, the number of rows returned appears for the fetch step. For UPDATE, DELETE, and INSERT statements, the number of rows processed appears for the execute step.

Resolution of Statistics
[bookmark: 1393]
Timing statistics have a resolution of one hundredth of a second; therefore, any operation on a cursor that takes a hundredth of a second or less may not be timed accurately. Keep this in mind when interpreting statistics. In particular, one should be careful when interpreting the results from simple queries that execute very quickly.
[bookmark: 1395]
Recursive Calls
[bookmark: 1399]Sometimes in order to execute a SQL statement issued by a user, Oracle must issue additional statements. Such statements are called recursive calls or recursive SQL statements. For example, if you insert a row into a table that does not have enough space to hold that row, Oracle makes recursive calls to allocate the space dynamically. Recursive calls are also generated when data dictionary information is not available in the data dictionary cache and must be retrieved from disk.
[bookmark: 1401]
If recursive calls occur while the SQL trace facility is enabled, TKPROF produces statistics for the recursive SQL statements and marks them clearly as recursive SQL statements in the output file. You can suppress the listing of recursive calls in the output file by setting the SYS statement-line parameter to NO. The statistics for a recursive SQL statement are included in the listing for that statement, not in the listing for the SQL statement that caused the recursive call. So when you are calculating the total resources required to process a SQL statement, you should consider the statistics for that statement as well as those for recursive calls caused by that statement.
 The following examples are two formatted SQL statements with TRPROF:

Example:
Structure 1

select /*+ first_rows */ Year, count(*)"Cyclones" from --to response with the first row quickly
 (select to_char(s.when_t, 'yyyy') Year
 from atmosevent_list s, oscillation_constant_list o
 where os_year=to_number(to_char(when_t,'yyyy')) and s.basin=1
 and s.type >=4
)
 group by Year

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.18 0 0 0 0
Execute 1 0.00 0.01 0 0 0 0
Fetch 5 0.03 0.04 0 17 0 47
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 7 0.03 0.24 0 17 0 47

Misses in library cache during parse: 1
Optimizer goal: FIRST_ROWS
Parsing user id: 29 (CZHANG02)

Rows Row Source Operation
------- ---
 47 SORT GROUP BY
 466 NESTED LOOPS
 1274 TABLE ACCESS FULL ATMOSEVENT_LIST
 466 INDEX RANGE SCAN (object id 28035)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: HINT: FIRST_ROWS
 47 SORT (GROUP BY)
 466 NESTED LOOPS
 1274 TABLE ACCESS (FULL) OF 'ATMOSEVENT_LIST'
 466 INDEX (RANGE SCAN) OF 'ENSO_STORM_IDX' (NON-UNIQUE)

Structure 2
select /*+ first_rows */ Year, count(*)"Cyclones" from
 (select to_char(s.when_t, 'yyyy') Year
 from atmosevent_list s
 where exists
 (select os_year from oscillation_constant_list
 where os_year=to_number(to_char(when_t,'yyyy'))
 and s.basin=1 and s.type >=4
)
)
group by Year

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.05 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 5 0.06 0.07 0 1286 0 47
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 7 0.06 0.12 0 1286 0 47

Misses in library cache during parse: 1
Optimizer goal: FIRST_ROWS
Parsing user id: 29 (CZHANG02)

Rows Row Source Operation
------- ---
 47 SORT GROUP BY
 466 FILTER
 1274 TABLE ACCESS FULL ATMOSEVENT_LIST
 464 FILTER
 464 INDEX RANGE SCAN (object id 28035)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: HINT: FIRST_ROWS
 47 SORT (GROUP BY)
 466 FILTER
 1274 TABLE ACCESS (FULL) OF 'ATMOSEVENT_LIST'
 464 FILTER
1. INDEX (RANGE SCAN) OF 'ENSO_STORM_IDX' (NON-UNIQUE)
We examined the trace file carefully, and chose the statement that consumes less resource and has the better overall performance.
6. [bookmark: _Toc346555863]Database for 2007 Cat Fund Processing

1. [bookmark: _Toc346555864]General Description

As specified in the 2011 ROA, the input data used for some of the forms is the 2007 Florida Hurricane Catastrophe Fund’s (Cat Fund) aggregate personal and commercial residential exposure data provided in the file “hlpm2007c.exe”. All records from 2007 Cat Fund need to be processed and all codes need to be mapped to the required values used in the FPHLM. First, a description of the complete file is provided, followed by the description of the processing for the Residential data and for the Commercial data.

1. [bookmark: _Toc346555865]Data Description

FILE DESCRIPTION

The enclosed file “hlpm2007c.exe” contains the 2007 Florida Hurricane Catastrophe Fund (FHCF) Personal and Commercial Residential Industry Data aggregated by Type of Business, Line of Business, Construction Type, Deductible Group, County Code, ZIP Code, Year Built, BCEG Code, Florida Building Code Indicator, Structure Opening Protection, Roof Shape, Roof-Wall Connection, and Roof-Deck Attachment. The data was taken from the 2007 FHCF database as of 10/15/07 and includes Commercial, Residential, Mobile Home, Tenants (renters), and Condominium Owners exposure. Data excludes exposure with invalid ZIP Codes.

COVERED POLICIES

Residential, Mobile Home, Tenants (renters), Condominium Owners and Commercial types of business are included in this data set.

OPENING THE FILES

Save the file “hlpm2007c.exe” to your computer. Double click on the file name from Explorer. The file will automatically be inflated into a comma-delimited file named “hlpm2007com.txt.”

CONTROL TOTALS BY TYPE OF BUSINESS

	Type of
Business
	Insured Risks
	
Building
	Appt. Structures
	
Contents
	
ALE
	Total
Exposure

	Commercial
	185,503
	178,523,408,929
	2,459,366,053
	1,128,246,015
	4,000
	$182,111,024,997

	Residential
	4,537,097
	967,826,617,592
	82,570,016,885
	483,267,380,885
	168,690,327,874
	$1,702,354,343,236

	Mobile Home
	493,221
	22,117,716,147
	1,619,757,727
	10,484,704,783
	2,972,199,880
	$37,194,378,537

	Tenants (renters)
	479,297
	20,534,269
	9,982,815
	15,245,310,269
	2,317,478,999
	$17,593,306,352

	Condominium
Owners
	739,924
	30,240,940,052
	1,026,019,025
	37,431,237,799
	9,567,313,894
	$78,265,510,770

	Total
	6,435,042
	$1,198,729,216,989
	$87,685,142,505
	$547,556,879,751
	$183,547,324,647
	$2,017,518,563,892

CONTROL TOTALS BY LINE OF BUSINESS

	Line of
Business
	Insured Risks
	
Building
	Appt. Structures
	
Contents
	
ALE
	Total
Exposure

	Fire & Allied
	1,316,674
	340,733,063,267
	19,703,105,278
	38,650,581,183
	9,907,848,754
	$408,994,598,482

	Homeowners
	4,359,665
	807,254,962,029
	66,151,054,940
	486,614,776,530
	170,439,552,204
	$1,530,460,345,703

	Farmowners
	6,466
	1,243,438,782
	131,381,644
	692,546,152
	227,651,305
	$2,295,017,883

	CMP
	30,331
	30,725,583,952
	167,166,866
	374,550,272
	68,564,738
	$31,335,865,828

	Mobile Home
	394,994
	18,772,168,959
	1,532,389,777
	9,260,608,924
	2,903,707,646
	$32,468,875,306

	Inland Marine
	326,912
	0
	44,000
	11,963,816,690
	0
	$11,963,860,690

	Total
	6,435,042
	$1,198,729,216,989
	$87,685,142,505
	$547,556,879,751
	$183,547,324,647
	$2,017,518,563,892

Total number of records: 389,760

FILE LAYOUT

	Field Number
	Field Description

	
	

	1
	Type of Business

	2
	Line of Business

	3
	Construction Type

	4
	Deductible Group

	5
	County Code

	6
	ZIP Code

	7
	Total Insured Risks

	8
	Total Insured Value - Building

	9
	Total Insured Value - Appurtenant Structures

	10
	Total Insured Value - Contents

	11
	Total Insured Value – ALE

	12
	Year Built

	13
	BCEG Code

	14
	Florida Building Code Indicator

	15
	Structure Opening Protection

	16
	Roof Shape

	17
	Roof-Wall Connection

	18
	Roof-Deck Attachment

DATA ELEMENT DEFINITIONS

	Type of Business

	Code

	Commercial
	1

	Residential
	2

	Mobile Home
	3

	Tenants (renters)
	4

	Condominium Owners
	6

	Line of Business

	Code

	Fire and Allied Lines
	1

	Homeowners Multiple Peril
	2

	Farmowners Multiple Peril
	3

	Commercial Multiple Peril
	4

	Mobile Homeowners
	5

	Inland Marine
	6

	
	

	
Construction Type/Description

	
Code

	Frame
	1

	Buildings where the exterior walls are wood or other combustible materials, including wood iron-clad, stucco on wood, or plaster on combustible supports. Also includes aluminum or plastic siding over frame.

	

	Masonry
	2

	Buildings where the exterior walls are constructed of masonry, non-combustible, or fire resistive materials such as adobe, brick, concrete, gypsum block, hollow concrete block, stone, tile or other non-combustible materials.

	

	Superior
	7

	Masonry, non-combustible, or fire resistive construction where one of the following additional conditions exist:
· Roof deck has a minimum thickness of 2 inches with roof supports having a minimum dimension of 6 inches; or
· Floors and roof constructed of 2 inches of masonry on steel supports or documented to be constructed of 22 gauge metal or heavier on steel supports; or
· Roof assembly is documented to have a UL wind uplift classification of 90 or equivalent; or
Building is 6 or more stories.

	

	
Masonry Veneer
	10

	Buildings with exterior walls of combustible construction veneered with brick, masonry, or stone.

	

	Unknown
Unknown commercial or residential construction.

	11

	Non-Mobile Home Default Construction
	12

	Construction information collected for the policy, but company is eligible to report all non-mobile home exposure using this default code.

	

	Mobile Home - Fully Tied Down, manufactured before 7/13/94
	21

	Mobile/Manufactured Housing which has anchors and tie-downs as required by Section 320.8325, Florida Statutes.

	

	Mobile Home – Fully Tied Down, manufactured on or after 7/13/94
	22

	Mobile/Manufactured Housing which has anchors and tie-downs as required by Section 320.8325, Florida Statutes or documented to be in compliance with ANSI/ASCE 7-88.

	

	Mobile Home – Unknown
Unknown if the mobile home is tied down, or nature of the tie-downs is unknown.

	25

	Mobile Home Default Construction
Construction information collected for the policy, but company is eligible to report all mobile home exposure using this default code.
	26

Deductible Groups
	Deductible Group – Commercial

	
	
Code

	
	
Rate As*

	$0 to $2,500
	
	CA
	
	$1,000

	$2,501 to $7,500
	
	CB
	
	$5,000

	$7,501 to $15,000
	
	CC
	
	$10,000

	$15,001 to $50,000
	
	CD
	
	$25,000

	1%
	
	C1
	
	1%

	2%
	
	C2
	
	2%

	3%
	
	C3
	
	3%

	4%
	
	C4
	
	4%

	5%
	
	C5
	
	5%

	6%
	
	C6
	
	6%

	7%
	
	C7
	
	7%

	8%
	
	C8
	
	8%

	9%
	
	C9
	
	9%

	10% or Greater
	
	C0
	
	10%

	
Deductible Group – Residential, Tenants (renters), Condominium Owners

	
	
Code

	
	
Rate As*

	$0
	
	RM
	
	$0

	$1 to $500
	
	RA
	
	$500

	$501 to $1,500
	
	RB
	
	$1,000

	$1,501 to $2,500
	
	RC
	
	$2,000

	Greater Than $2,500
	
	RD
	
	$3,000

	1%
	
	R1
	
	1%

	2%
	
	R2
	
	2%

	3%
	
	R3
	
	3%

	4%
	
	R4
	
	4%

	5%
	
	R5
	
	5%

	6%
	
	R6
	
	6%

	7%
	
	R7
	
	7%

	8%
	
	R8
	
	8%

	9%
	
	R9
	
	9%

	10% to14%
	
	R0
	
	10%

	15% or Greater
	
	RZ
	
	15%

	Deductible Group – Mobile Home

	
	Code
	
	Rate As*

	$0
	
	MM
	
	$0

	$1 to $250
	
	MA
	
	$250

	$251 to $500
	
	MB
	
	$500

	Greater Than $500
	
	MC
	
	$1,000

	1%
	
	M1
	
	1%

	2%
	
	M2
	
	2%

	3%
	
	M3
	
	3%

	4%
	
	M4
	
	4%

	5%
	
	M5
	
	5%

	6%
	
	M6
	
	6%

	7%
	
	M7
	
	7%

	8%
	
	M8
	
	8%

	9%
	
	M9
	
	9%

	10% or greater
	
	M0
	
	10%

* Percent deductibles for Commercial, Residential, and Mobile Home types of business are a percent of Coverage A (building) exposure, unless there is none. In that case, the deductible is a percent of Coverage C (contents) exposure. If there is not Coverage A or C exposure, the deductible is that percent of Coverage B (appurtenant structures) exposure.

Percent deductibles for Tenants (renters) and Condominium Owners types of business are a percent of Coverage C (contents) exposure, unless there is none. In that case, the deductible is a percent of Coverage A (building) exposure. If there is no Coverage C or A exposure, the deductible is that percent of Coverage B (appurtenant structures) exposure.

Year Built

	Year Built
	FHCF Code

	Unknown or Mobile Home
	0

	1994 or earlier
	1

	1995 - 2001
	2

	2002 or later
	3

Building Code Effectiveness Grading (BCEG) Code

	Actual BCEG Code
	FHCF Credit

	00
	None

	01 - 03
	12%

	04 - 07
	8%

	08 - 09
	4%

	10
	None

	FHCF Default: 50*
	None

Florida Building Code Indicator

	Florida Building Code Indicator
	FHCF Code

	Meets 2002 Florida Building Code
	1

	Does not Meet Florida Building Code or Unknown
	2

Structure Opening Protection

	Structure Opening Protection
	FHCF Code

	None or Unknown
	0

	Basic Shutters
	1

	Hurricane or Engineered Shutters or FBC-Equivalent*
	2

* Requires that all openings must be protected with impact resistant coverings, impact resistant doors, and/or impact resistant glazing that meets the requirements of one of: SSTD 12; ASTM E 1886 and ASTM E 1996, Miami-Dade PA 201, 202, and 203; or Florida Building Code Testing Application Standards (TAS) 201, 202, and 203.

Roof Shape
[bookmark: OLE_LINK2][bookmark: OLE_LINK1]
	Roof Shape
	FHCF Code

	Hip, Mansard, or Pyramid
	1

	Gable, Other, or Unknown
	2

Roof-Wall Connection

	Roof-Wall Connection
	FHCF Code

	Anchor Bolts, Hurricane Ties, Clips, Single Wraps, Double Wraps or Structurally Connected
	1

	Nails, Toe Nails, Screws, Gravity, Friction, Adhesive Epoxy, Other, or Unknown
	2

Roof-Deck Attachment

	Roof-Deck Attachment
	FHCF Code

	Reinforced Concrete Roof Deck
	4

	Other or Unknown
	8

County Codes

	County
	County
	
	County
	County
	
	County
	County

	Code
	Name
	
	Code
	Name
	
	Code
	Name

	
	
	
	
	
	
	
	

	001
	Alachua
	
	049
	Hardee
	
	093
	Okeechobee

	003
	Baker
	
	051
	Hendry
	
	095
	Orange

	005
	Bay
	
	053
	Hernando
	
	097
	Osceola

	007
	Bradford
	
	055
	Highlands
	
	099
	Palm Beach

	009
	Brevard
	
	057
	Hillsborough
	
	101
	Pasco

	011
	Broward
	
	059
	Holmes
	
	103
	Pinellas

	013
	Calhoun
	
	061
	Indian River
	
	105
	Polk

	015
	Charlotte
	
	063
	Jackson
	
	107
	Putnam

	017
	Citrus
	
	065
	Jefferson
	
	109
	St. Johns

	019
	Clay
	
	067
	Lafayette
	
	111
	St. Lucie

	021
	Collier
	
	069
	Lake
	
	113
	Santa Rosa

	023
	Columbia
	
	071
	Lee
	
	115
	Sarasota

	027
	De Soto
	
	073
	Leon
	
	117
	Seminole

	029
	Dixie
	
	075
	Levy
	
	119
	Sumter

	031
	Duval
	
	077
	Liberty
	
	121
	Suwannee

	033
	Escambia
	
	079
	Madison
	
	123
	Taylor

	035
	Flagler
	
	081
	Manatee
	
	125
	Union

	037
	Franklin
	
	083
	Marion
	
	127
	Volusia

	039
	Gadsden
	
	085
	Martin
	
	129
	Wakulla

	041
	Gilchrist
	
	086
	Miami-Dade*
	
	131
	Walton

	043
	Glades
	
	087
	Monroe
	
	133
	Washington

	045
	Gulf
	
	089
	Nassau
	
	
	

	047
	Hamilton
	
	091
	Okaloosa
	
	
	

	
	
	
	
	
	
	
	

Note: These codes are derived from the Federal Information Processing Standards (FIPS) Codes.

ZIP Codes

Data with unknown ZIP Codes according to 2007 FHCF rating is not included in this data set.
1. [bookmark: _Toc346555866]Expert Instructions (Residential)

The “hlpm2007com.txt” file is processed so it can be used in the Insurance Loss Model (ILM) of the FPHLM. The ILM Personal Residential (PR) requires a comma-separated text file having the following fields:

	Field Number
	Field Description

	
	

	1
	Policy ID

	2
	ZIP Code

	3
	Year Built

	4
	FPHLM Construction Type

	5
	Property Value

	6
	Structure Limit

	7
	Appurtenant Structures Limit

	8
	Contents Limit

	9
	ALE Limit

	10
	Deductible

	11
	Hurricane Deductible

	12
	Type of Coverage

	13
	County

	14
15
	Region
Units

The procedure used to process the “hlpm2007com.txt” file for its usage in the PR-ILM consists of the following steps:

1. Get the personal residential records, i.e., those records whose type of business is not 1.
1. Delete records whose construction type is 12-i.e., Non-Mobile Home Default Construction.
1. Set the field total insured risks to 1 for those records that have 0 for this field
1. Set the field year built to 1 for those records with construction type 21
1. Set the field year built to 3 for those records with construction type 22
1. Map the construction codes provided in the 2007 Cat Fund exposure to the construction types used in the FPHLM, as described in the following table:

	Code
	Construction Type
	FPHLM Construction Type

	1
	Frame
	Frame

	2
	Masonry
	Masonry

	7
	Superior
	Masonry

	10
	Masonry Veneer
	Frame

	11
	Unknown
	Other

	21
	Mobile Home – Fully Tied Down, before 94
	Manufactured

	22
	Mobile Home – Fully Tied Down, on or after 94
	Manufactured

	25
	Mobile Home - Unknown
	Manufactured

1. Map year built ranges to actual year built values as in the table below:

	FHCF Year Built Code
	Year Built
	FPHLM Year Built

	0
	Unknown or Mobile Home
	0

	1
	1994 or earlier
	1992

	2
	1995 - 2001
	1995

	3
	2002 or later
	2002

Note: Codes 0 and 1 will be assigned randomly based on county statistics

1. Map county codes to county names
1. Find the region for each record
1. Set hurricane deductible to $0 for all records
1. Expand records by total insured risks
1. Update the exposures to exposure divided by total insured risks
1. Assign random year built for codes 0 and 1 based on county statistics
1. Aggregate records by ZIP code, year built, construction type, county, and region
1. Export the processed files following the format required by the Insurance Loss Model.

1. [bookmark: _Toc346555867]Data Processing (Residential)

The 2007 Cat Fund data can be found in the file “hlpm2007com.txt.” A sample set of this data is the following:
2.00,1.00,1.00,R0,1.00,32605.00,1.00,121000.00,0.00,0.00,0.00,1.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,1.00,32608.00,1.00,255000.00,5100.00,0.00,25500.00,2.00,4.00,2.00,0,1,2,8
2.00,1.00,1.00,R0,1.00,32608.00,1.00,200000.00,4000.00,5000.00,0.00,3.00,4.00,1.00,0,2,2,8
2.00,1.00,1.00,R0,1.00,32640.00,1.00,114000.00,11400.00,0.00,11400.00,1.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32401.00,1.00,138426.00,13842.00,0.00,0.00,1.00,0.00,2.00,0,1,2,8
2.00,1.00,1.00,R0,5.00,32401.00,4.00,719500.00,58140.00,2000.00,0.00,1.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32405.00,2.00,339400.00,13600.00,1000.00,0.00,1.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32407.00,4.00,576800.00,57680.00,188000.00,46880.00,1.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32408.00,1.00,95186.00,9519.00,10000.00,9519.00,1.00,0.00,2.00,0,1,2,8
2.00,1.00,1.00,R0,5.00,32408.00,6.00,1234200.00,96900.00,214100.00,86900.00,1.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32408.00,1.00,227000.00,22700.00,112956.00,22700.00,2.00,4.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32408.00,2.00,318000.00,31800.00,10000.00,0.00,3.00,4.00,1.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32408.00,2.00,890000.00,89000.00,295000.00,39000.00,3.00,5.00,1.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32409.00,1.00,202577.00,20257.00,5000.00,0.00,3.00,4.00,1.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32410.00,3.00,544600.00,54460.00,55300.00,54460.00,1.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32413.00,1.00,733000.00,73300.00,366500.00,73300.00,1.00,0.00,2.00,0,1,2,8
2.00,1.00,1.00,R0,5.00,32413.00,9.00,1469000.00,146900.00,559000.00,146900.00,1.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32413.00,1.00,656000.00,65600.00,64000.00,0.00,2.00,0.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32413.00,1.00,502645.00,50265.00,61655.00,0.00,2.00,4.00,2.00,0,1,2,8
2.00,1.00,1.00,R0,5.00,32413.00,1.00,279000.00,27900.00,0.00,27900.00,2.00,5.00,2.00,0,1,1,8
2.00,1.00,1.00,R0,5.00,32413.00,1.00,218000.00,21800.00,109000.00,21800.00,2.00,5.00,2.00,0,1,2,8
2.00,1.00,1.00,R0,5.00,32413.00,1.00,215000.00,21500.00,0.00,0.00,2.00,8.00,2.00,0,2,2,8
2.00,1.00,1.00,R0,5.00,32413.00,2.00,1128000.00,112800.00,295000.00,55000.00,3.00,0.00,1.00,0,1,2,8

In order to expand records to the magnitude of millions and be able to assign random year built values a database schema was implemented in PostgreSQL version 8.4.4.
The following is the database schema diagram:

The following is a description of the tables used in the database:
Table 1: year_built_conversion

 year_built_code 	numeric(3,2) 	NOT NULL,
 "value" 		integer 	NOT NULL,

Table 2: county_code_2_county_name_2_region

 county_code 		numeric(5,2) 	NOT NULL,
 county 		character varying(50),
 region 		character varying(50),

Table 3: flzip2008

 zip 	integer 	NOT NULL,
 lat 	numeric(8,6) 	NOT NULL,
 lon 	numeric(8,6) 	NOT NULL,

Table 4: construction_type_conversion

 construction_code 	numeric(4,2) 			NOT NULL,
 construction_type 	character varying(50) 		NOT NULL,
 fphlm_const_type 	character varying(50) 		NOT NULL,

Table 5: year_built_prior_probs

 county_code 		numeric(5,2) 			NOT NULL,
 county		character varying(50) 		NOT NULL,
 probs 			numeric[] 			NOT NULL,

Table 6: year_built_prior_probs_values

 id 		integer 			NOT NULL,
 era 		character varying(30) 		NOT NULL,
 "value" 	integer 			NOT NULL,

Table 7: catfund2007

 id 					bigint 			NOT NULL,
 type_of_business 			numeric(3,2) 		NOT NULL,
 line_of_business 			numeric(3,2) 		NOT NULL,
 construction_type 			numeric(4,2) 		NOT NULL,
 deductible_group 			character(2) 		NOT NULL,
 county_code 				numeric(5,2) 		NOT NULL,
 zipcode 				numeric(7,2) 		NOT NULL,
 total_insured_risks 			numeric(7,2) 		NOT NULL,
 total_insured_risks_building 	numeric(20,4) 		NOT NULL,
 total_insured_risks_appurtenant 	numeric(20,4) 		NOT NULL,
 total_insured_risks_contents 	numeric(20,4) 		NOT NULL,
 total_insured_risks_ale 		numeric(20,4) 		NOT NULL,
 year_built_code 			numeric(3,2) 		NOT NULL,
 bceg_code 				numeric(4,2) 		NOT NULL,
 florida_building_code_indicator 	numeric(3,2) 		NOT NULL,
 structure_opening_protection 	numeric(3,2) 		NOT NULL,
 roof_shape 				numeric(3,2) 		NOT NULL,
 roof_wall_connection 		numeric(3,2) 		NOT NULL,
 roof_deck_attachment 		numeric(3,2) 		NOT NULL,

Table 8: hlpm2007data_updated_1

 policy_id 			bigint,
 zipcode 			numeric(7,2),
 year_built_code 		numeric(3,2),
 year_built 			integer,
 construction_code 		numeric(4,2),
 const_type			character varying(50),
 prop_value 			numeric(20,4),
 lms 				numeric(20,4),
 lmapp 			numeric(20,4),
 lmc 				numeric(20,4),
 lmale 				numeric(20,4),
 deductible_group 		character(2),
 deduc 			numeric,
 hurr_deduc 			numeric,
 coverage 			character varying(5),
 county_code 			numeric(5,2),
 county 			character varying(50),
 region 			character varying(50),
 num_units 			numeric(7,2),
 type_of_business 		numeric(3,2),
 roof_wall_connection 	numeric(3,2),
 roof2wall 			character varying(50),
 num_stories 			character varying(50),
 roof_shape_code 		numeric(3,2),
 roof_shape 			character varying(50),
 roof_cover 			character varying(50),
 roof_deck_code 		numeric(3,2),
 deck_attachment 		character varying(50),
 stud2sill 			character varying(50),
 underlayment 		character varying(50),
 garage 			character varying(50),
 door_protection 		character varying(50),
 opening_protection_code 	numeric(3,2),
 opening_protection 		character varying(50),
 building_shape 		character varying(50),

Table 9: hlpm2007data_updated_1_expanded

 policy_id 			bigint 			NOT NULL,
 zipcode 			numeric(7,2),
 year_built_code 		numeric(3,2),
 year_built 			integer,
 construction_code 		numeric(4,2),
 const_type 			character varying(50),
 prop_value 			numeric(26,10),
 lms 				numeric(26,10),
 lmapp 			numeric(26,10),
 lmc 				numeric(26,10),
 lmale 				numeric(26,10),
 deductible_group 		character(2),
 deduc 			numeric,
 hurr_deduc 			numeric,
 coverage 			character varying(5),
 county_code 			numeric(5,2),
 county 			character varying(50),
 region 			character varying(50),
 num_units 			numeric(7,2),
 type_of_business 		numeric(3,2),
 roof_wall_connection 	numeric(3,2),
 roof2wall 			character varying(50),
 num_stories 			character varying(50),
 roof_shape_code 		numeric(3,2),
 roof_shape 			character varying(50),
 roof_cover 			character varying(50),
 roof_deck_code 		numeric(3,2),
 deck_attachment 		character varying(50),
 stud2sill 			character varying(50),
 underlayment 		character varying(50),
 garage 			character varying(50),
 door_protection 		character varying(50),
 opening_protection_code 	numeric(3,2),
 opening_protection 		character varying(50),
 building_shape 		character varying(50),
 subregion			character varying(30),
 era				character varying(30),

Table 10: hlpm2007data_aggregated_0deduc

 policy_id 		bigint NOT NULL,
 zipcode 		numeric(7,2),
 year_built 		integer,
 const_type 		character varying(50),
 prop_value 		numeric,
 lms 			numeric,
 lmapp 		numeric,
 lmc 			numeric,
 lmale 			numeric,
 deduc 		numeric,
 hurr_deduc 		numeric,
 coverage 		character varying(5),
 county 		character varying(50),
 region 		character varying(50),
 num_units 		numeric,
 type_of_business	numeric(3,2),

Table 11: hlpm2007data_aggregated_0deduc_geo

 policy_id 		bigint NOT NULL,
 zipcode 		numeric(7,2),
 year_built 		integer,
 const_type 		character varying(50),
 prop_value 		numeric,
 lms 			numeric,
 lmapp 		numeric,
 lmc 			numeric,
 lmale 			numeric,
 deduc 		numeric,
 hurr_deduc 		numeric,
 coverage 		character varying(5),
 county 		character varying(50),
 region 		character varying(50),
 num_units 		numeric,
 type_of_business	numeric(3,2),
 lat 			numeric(8,6),
 lon 			numeric(8,6),

The following are the processing steps along with the queries and functions used in the database:

1. Load the 2007 Cat Fund exposure data:

COPY catfund2007 (type_of_business, line_of_business, construction_type, deductible_group, county_code, zipcode, total_insured_risks, total_insured_risks_building, total_insured_risks_appurtenant, total_insured_risks_contents, total_insured_risks_ale, year_built_code, bceg_code, florida_building_code_indicator, structure_opening_protection, roof_shape, roof_wall_connection, roof_deck_attachment)
FROM ' /home/mitch-a/dmis-projects/fphlm/versions/v5.0/2011_ROA/ hlpm2007com.txt' WITH DELIMITER ',';

1. Create a copy of the original data:

SELECT * INTO hlpm2007data_updated FROM catfund2007;

1. Delete commercial policies.

[bookmark: _GoBack]DELETE FROM hlpm2007data_updated WHERE type_of_business = 1.00;

1. Delete construction type 12:

DELETE FROM hlpm2007data_updated WHERE construction_type=12.00;

1. Update all zero total insured risks to one:

UPDATE hlpm2007data_updated SET total_insured_risks=1.00 WHERE total_insured_risks=0.00;

1. Create table hlpm2007data_updated_1 with additional attributes needed for FPHLM mappings:

SELECT id as policy_id, zipcode, year_built_code, 0 as year_built, construction_type as construction_code, '' as const_type, total_insured_risks_building as prop_value, total_insured_risks_building as lms, total_insured_risks_appurtenant as lmapp, total_insured_risks_contents as lmc, total_insured_risks_ale as lmale, deductible_group, 0.00 as deduc, 0.00 as hurr_deduc, 'R' as coverage, county_code, '' as county, '' as region,
total_insured_risks as num_units, type_of_business, roof_wall_connection, '' AS roof2wall, 'UNKNOWN' AS num_stories, roof_shape AS roof_shape_code, '' AS roof_shape, 'UNKNOWN' AS roof_cover, roof_deck_attachment AS roof_deck_code, '' AS deck_attachment, 'UNKNOWN' AS stud2sill, 'UNKNOWN' AS underlayment, 'UNKNOWN' AS garage, 'UNKNOWN' AS door_protection, structure_opening_protection AS opening_protection_code, '' AS opening_protection, 'UNKNOWN' AS building_shape INTO hlpm2007data_updated_1
FROM hlpm2007data_updated;

ALTER TABLE hlpm2007data_updated_1 ALTER COLUMN year_built TYPE integer,
ALTER COLUMN const_type TYPE varchar(50),
ALTER COLUMN deduc TYPE numeric(3,2),
ALTER COLUMN hurr_deduc TYPE numeric(3,2),
ALTER COLUMN coverage TYPE varchar(5),
ALTER COLUMN county TYPE varchar(50),
ALTER COLUMN region TYPE varchar(50),
ALTER COLUMN roof2wall TYPE varchar(50),
ALTER COLUMN num_stories TYPE varchar(50),
ALTER COLUMN roof_shape TYPE varchar(50),
ALTER COLUMN roof_cover TYPE varchar(50),
ALTER COLUMN deck_attachment TYPE varchar(50),
ALTER COLUMN stud2sill TYPE varchar(50),
ALTER COLUMN underlayment TYPE varchar(50),
ALTER COLUMN garage TYPE varchar(50),
ALTER COLUMN door_protection TYPE varchar(50),
ALTER COLUMN opening_protection TYPE varchar(50),
ALTER COLUMN building_shape TYPE varchar(50);

1. Update year built code to 1 for construction type 21:

UPDATE hlpm2007data_updated_1 SET year_built_code=1.00
WHERE construction_code=21.00;

1. Update year built code to 3 for construction type 22:

UPDATE hlpm2007data_updated_1
SET year_built_code=3.00
WHERE construction_code=22.00;

1. Update construction type to a valid FPHLM value:

UPDATE hlpm2007data_updated_1 AS a SET const_type = (select fphlm_const_type from construction_type_conversion as b
WHERE b.construction_code = a.construction_code);

1. Update year built to a valid FPHLM value:

UPDATE hlpm2007data_updated_1 AS a
SET year_built = (SELECT value FROM year_built_conversion AS b
WHERE b.year_built_code = a.year_built_code);

1. Update county name to valid FPHLM value:

UPDATE hlpm2007data_updated_1 AS a
SET county = (SELECT b.county
FROM county_code_2_county_name_2_region AS b WHERE b.county_code = a.county_code);

1. Update region to a valid FPHLM value:

UPDATE hlpm2007data_updated_1 AS a
SET region = (SELECT b.region
FROM county_code_2_county_name_2_region AS b WHERE b.county_code = a.county_code);

Expand records by total insured risks and update exposures to exposure divided by total insured risks using the following plpgsql function:

DECLARE
	cur1 CURSOR FOR SELECT * FROM hlpm2007data_updated_1 order by policy_id asc;
	number_units numeric(7,2);
	countnum	numeric(7,2);
	lms_upd		numeric(26,10);
	lmapp_upd	numeric(26,10);
	lmc_upd		numeric(26,10);
	lmale_upd	numeric(26,10);
	total_count	bigint;
	new_id		bigint;
BEGIN
	
	CREATE TABLE hlpm2007data_updated_1_expanded (
		policy_id bigint,
		zipcode numeric(7,2),
		year_built_code numeric(3,2),
		year_built integer,
		construction_code numeric(4,2),
		const_type varchar(50),
		prop_value numeric(26,10),
		lms numeric(26,10),
		lmapp numeric(26,10),
		lmc numeric(26,10),
		lmale numeric(26,10),
		deductible_group character(2),
		deduc numeric,
		hurr_deduc numeric,
		coverage varchar(5),
		county_code numeric(5,2),
		county varchar(50),
		region varchar(50),
		num_units numeric(7,2),
		type_of_business numeric(3,2),
		roof_wall_connection numeric(3,2),
		roof2wall character varying(50),
		num_stories character varying(50),
		roof_shape_code numeric(3,2),
		roof_shape character varying(50),
		roof_cover character varying(50),
		roof_deck_code numeric(3,2),
		deck_attachment character varying(50),
		stud2sill character varying(50),
		underlayment character varying(50),
		garage character varying(50),
		door_protection character varying(50),
		opening_protection_code numeric(3,2),
		opening_protection character varying(50),
		building_shape character varying(50),
		orig_id bigint,
		CONSTRAINT pk_hlpm2007data_updated_1_expanded PRIMARY KEY (policy_id)
);
	ALTER TABLE hlpm2007data_updated_1_expanded OWNER TO fdoi;

	SELECT max(policy_id) INTO total_count FROM hlpm2007data_updated_1;
	new_id := total_count + 1;
	
	FOR recvar IN cur1 LOOP
		number_units := recvar.num_units;
		IF number_units = 1.00
		THEN
			INSERT INTO hlpm2007data_updated_1_expanded
				VALUES(
					recvar.policy_id,
					recvar.zipcode,
					recvar.year_built_code,
					recvar.year_built,
					recvar.construction_code,
					recvar.const_type,
					recvar.lms,
					recvar.lms,
					recvar.lmapp,
					recvar.lmc,
					recvar.lmale,
					recvar.deductible_group,
					recvar.deduc,
					recvar.hurr_deduc,
					recvar.coverage,
					recvar.county_code,
					recvar.county,
					recvar.region,
					1.00,
					recvar.type_of_business,
					recvar.roof_wall_connection,
					recvar.roof2wall,
					recvar.num_stories,
					recvar.roof_shape_code,
					recvar.roof_shape,
					recvar.roof_cover,
					recvar.roof_deck_code,
					recvar.deck_attachment,
					recvar.stud2sill,
					recvar.underlayment,
					recvar.garage,
					recvar.door_protection,
					recvar.opening_protection_code,
					recvar.opening_protection,
					recvar.building_shape,
					recvar.policy_id
);
		ELSE
			lms_upd := recvar.lms / number_units;
			lmapp_upd := recvar.lmapp / number_units;
			lmc_upd := recvar.lmc / number_units;
			lmale_upd := recvar.lmale / number_units;
			
			countnum := 0.00;
			WHILE countnum < number_units LOOP
				INSERT INTO hlpm2007data_updated_1_expanded
				VALUES(
					new_id,
					recvar.zipcode,
					recvar.year_built_code,
					recvar.year_built,
					recvar.construction_code,
					recvar.const_type,
					lms_upd,
					lms_upd,
					lmapp_upd,
					lmc_upd,
					lmale_upd,
					recvar.deductible_group,
					recvar.deduc,
					recvar.hurr_deduc,
					recvar.coverage,
					recvar.county_code,
					recvar.county,
					recvar.region,
					1.00,
					recvar.type_of_business,
					recvar.roof_wall_connection,
					recvar.roof2wall,
					recvar.num_stories,
					recvar.roof_shape_code,
					recvar.roof_shape,
					recvar.roof_cover,
					recvar.roof_deck_code,
					recvar.deck_attachment,
					recvar.stud2sill,
					recvar.underlayment,
					recvar.garage,
					recvar.door_protection,
					recvar.opening_protection_code,
					recvar.opening_protection,
					recvar.building_shape,
					recvar.policy_id
);
				countnum := countnum + 1;
				new_id := new_id + 1;
			END LOOP;
		END IF;
	END LOOP;

	CREATE INDEX index_county_2 ON hlpm2007data_updated_1_expanded USING btree (county_code);
	CREATE INDEX index_policy_2 ON hlpm2007data_updated_1_expanded USING btree (policy_id);
END;

1. Assign random year built for codes 0 and 1 based on county statistics using the following plpgsql function:

DECLARE
	cur1 CURSOR FOR SELECT * FROM year_built_prior_probs;
	cur2 CURSOR (county_param numeric(5,2)) IS SELECT * FROM hlpm2007data_updated_1 WHERE county_code = county_param
		AND const_type <> 'Manufactured' AND (year_built_code = 0.00 OR year_built_code = 1.00);
	cur3 CURSOR FOR SELECT * FROM year_built_prior_probs_values;
	record_policies0 bigint[];
	record_policies1 bigint[];
	rec_count0 bigint;
	rec_count1 bigint;
	tmp bigint;
	amounts0 bigint[];
	amounts1 bigint[];
	randnum integer;
	num_to_get bigint;
	temp_max bigint;
	prev_temp_max bigint;
	polid bigint;
	str text;
	yb_values integer[];
	probs1 numeric(5,4)[4];
	total_prob1 numeric(5,4);
	yb_to_assign integer;
BEGIN
	PERFORM setseed(0.5);

	tmp := 1;
	FOR ybvals IN cur3 LOOP
		yb_values[tmp] := ybvals.value;
		tmp := tmp + 1;
	END LOOP;

	--RAISE NOTICE 'yb_values = % ', yb_values;

	FOR ybprob IN cur1 LOOP
		rec_count0 := 0;
		rec_count1 := 0;
		FOR recvar IN cur2(ybprob.county_code) LOOP
			IF recvar.year_built_code = 0
			THEN
				rec_count0 := rec_count0 + 1;
				record_policies0[rec_count0] := recvar.policy_id;	
			ELSE --then year built code 1
				rec_count1 := rec_count1 + 1;
				record_policies1[rec_count1] := recvar.policy_id;
			END IF;
		END LOOP;

		temp_max := rec_count0;
		prev_temp_max := rec_count0;
		FOR i IN 1..5 LOOP
			num_to_get := round(rec_count0 * ybprob.probs[i]);
			tmp := 1;
			WHILE tmp <= num_to_get LOOP
				randnum := get_random(temp_max);
				polid := record_policies0[randnum];
				record_policies0[randnum] := record_policies0[temp_max];
				record_policies0[temp_max] := polid;
				
				temp_max := temp_max - 1;
				tmp := tmp + 1;
			END LOOP;

			UPDATE hlpm2007data_updated_1_expanded SET year_built = yb_values[i] WHERE policy_id IN
				(SELECT record_policies0[s] FROM (SELECT generate_subscripts(record_policies0, 1)
				AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
				
			prev_temp_max := temp_max;		
		END LOOP;

		UPDATE hlpm2007data_updated_1_expanded SET year_built = yb_values[6] WHERE
			policy_id IN (SELECT record_policies0[s] FROM (SELECT generate_subscripts(record_policies0, 1) AS s)
				 AS foo WHERE s <= temp_max);

		total_prob1 := 0.0;
		FOR i IN 1..4 LOOP
			total_prob1 := total_prob1 + ybprob.probs[i];
		END LOOP;
		FOR i IN 1..4 LOOP
			probs1[i] := ybprob.probs[i] / total_prob1;
		END LOOP;
		
		temp_max := rec_count1;
		prev_temp_max := rec_count1;
		FOR i IN 1..3 LOOP
			num_to_get := round(rec_count1 * probs1[i]);
			tmp := 1;
			WHILE tmp <= num_to_get LOOP
				randnum = get_random(temp_max);
				polid := record_policies1[randnum];
				record_policies1[randnum] := record_policies1[temp_max];
				record_policies1[temp_max] := polid;
				
				temp_max := temp_max - 1;
				tmp := tmp + 1;
			END LOOP;

			UPDATE hlpm2007data_updated_1_expanded SET year_built = yb_values[i] WHERE policy_id IN
				(SELECT record_policies1[s] FROM (SELECT generate_subscripts(record_policies1, 1)
				AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
			prev_temp_max := temp_max;
			
		END LOOP;

		UPDATE hlpm2007data_updated_1_expanded SET year_built = yb_values[4] WHERE
			policy_id IN (SELECT record_policies1[s] FROM (SELECT generate_subscripts(record_policies1, 1) AS s)
				 AS foo WHERE s <= temp_max);
		
		RAISE NOTICE 'Finsihed county %', ybprob.county;
	END LOOP;
END;

Definition of get_random() function used above:
DECLARE
	randnum numeric(7,6);
	res integer;
BEGIN
	SELECT random() INTO randnum;

	res = floor(randnum * upper_bound + 1);

	RETURN res;
END;

1. Aggregate records by ZIP code, year built, construction type, county, and region:

CREATE SEQUENCE hlpm2007data_aggregated_seq
	INCREMENT 1
	MINVALUE 1
	START 1;
ALTER TABLE hlpm2007data_aggregated_seq OWNER TO fdoi;

SELECT zipcode, year_built, const_type, sum(lms) as prop_value, sum(lms) as lms, sum(lmapp) as lmapp, sum(lmc) as lmc, sum(lmale) as lmale, 0.00 as deduc, 0.00 as hurr_deduc, coverage, county, region, sum(num_units) as num_units, type_of_business
INTO hlpm2007data_aggregated_0deduc_tmp
FROM hlpm2007data_updated_1_expanded
GROUP BY zipcode, year_built, const_type, coverage, county, region, type_of_business;

ALTER TABLE hlpm2007data_aggregated_0deduc_tmp ADD COLUMN policy_id bigint NOT NULL DEFAULT nextval('hlpm2007data_aggregated_seq'::regclass);

SELECT policy_id, zipcode, year_built, const_type, prop_value, lms, lmapp, lmc, lmale, deduc, hurr_deduc, coverage, county, region, num_units, type_of_business
INTO hlpm2007data_aggregated_0deduc
FROM hlpm2007data_aggregated_0deduc_tmp;

ALTER TABLE hlpm2007data_aggregated_0deduc OWNER TO fdoi;
ALTER TABLE hlpm2007data_aggregated_0deduc ADD CONSTRAINT pk_hlpm2007data_aggregated_0deduc PRIMARY KEY (policy_id);

DROP TABLE hlpm2007data_aggregated_0deduc_tmp;

1. Create table hlpm2007data_aggregated_0deduc_geo with latitude and longitude coordinates needed for WSC:

CREATE SEQUENCE hlpm2007data_aggregated_0deduc_seq
	INCREMENT 1
	MINVALUE 1
	START 1;
ALTER TABLE hlpm2007data_aggregated_0deduc_seq OWNER TO fdoi;

SELECT nextval('hlpm2007data_aggregated_0deduc_seq'::regclass) as policy_id, a.zipcode,
a.year_built, a.const_type, a.prop_value, a.lms, a.lmapp, a.lmc, a.lmale, a.deduc, a.hurr_deduc,
a.coverage, a.county, a.region, a.num_units, a.type_of_business, b.lat, b.lon
INTO hlpm2007data_aggregated_0deduc_geo
FROM hlpm2007data_aggregated_0deduc as a, flzip2008 as b
WHERE a.zipcode=b.zip;

ALTER TABLE hlpm2007data_aggregated_0deduc_geo OWNER TO fdoi;
ALTER TABLE hlpm2007data_aggregated_0deduc_geo ADD CONSTRAINT pk_hlpm2007data_aggregated_0deduc_geo PRIMARY KEY (policy_id);

1. Export the table hlpm2007data_aggregated_0deduc_geo:

COPY hlpm2007data_aggregated_0deduc_geo TO '/home/phrlm-storage-17/PostgresCatFund/queries/hlpm2007data_aggregated_0deduc_geo.txt' WITH CSV;

A sample set of the final Residential Cat Fund input data is the following:
1,32003.00,2002,Other,1974418.7500000000,1974418.7500000000,292441.8750000000,5223505.4523191328,1497336.1538461531,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
2,32003.00,2002,Masonry,128160489.6666666714,128160489.6666666714,10344190.6666666645,78564366.1960784369,25051070.6666666693,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
3,32003.00,2002,Manufactured,293481.0000000000,293481.0000000000,8000.0000000000,62500.0000000000,17500.0000000000,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
4,32003.00,2002,Frame,645446942.3333333572,645446942.3333333572,48372836.3333332930,386670172.8959627296,139187269.3333333035,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
5,32003.00,1996,Other,1450137.5000000000,1450137.5000000000,224503.7500000000,1670133.3170444029,63668.2051282050,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
6,32003.00,1996,Masonry,958200.0000000000,958200.0000000000,98520.0000000000,904551.2941176480,215200.0000000000,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
7,32003.00,1996,Frame,2974986.6666666666,2974986.6666666666,299498.6666666666,2146813.4596273296,539331.3333333334,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
8,32003.00,1995,Other,0.0000000000,0.0000000000,0.0000000000,5234299.9999999968,2055319.9999999976,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
9,32003.00,1995,Masonry,149382979.0000000028,149382979.0000000028,13430336.9999999858,96536576.0000000086,32690879.0000000050,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
10,32003.00,1995,Frame,521170734.0000000142,521170734.0000000142,43806966.9999999930,328449963.0000000122,118339467.0000000023,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
11,32003.00,1992,Manufactured,333825.0000000002,333825.0000000002,42700.0000000001,152625.0000000001,39000.0000000000,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
12,32003.00,1985,Other,1736062.5000000000,1736062.5000000000,173606.2500000000,3173847.8490968233,277289.4425863984,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
13,32003.00,1985,Masonry,75174383.1553744487,75174383.1553744487,7438717.6873357738,49225904.1892235717,18312792.4120062059,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
14,32003.00,1985,Frame,160462690.4306199874,160462690.4306199874,15083114.0813046851,105159450.8561232961,38784812.0682792280,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285
15,32003.00,1975,Other,546356.2500000000,546356.2500000000,54635.6250000000,1897689.8053663569,214195.1616499437,0.00,0.00,R,Clay,North,1.00,30.102156,-81.718285

1. [bookmark: _Toc346555868]Data Description (Commercial)

Reimbursement Contract: Article V – Selected Definitions

1. Additional Living Expenses (ALE)
ALE losses covered by the FHCF are not to exceed 40 percent of the insured value of a Residential Structure or its contents based on the coverage provided in the policy. Fair rental value, loss of use, loss of rents, or business interruption losses are not covered by the FHCF.
(10)	Covered Policy or Covered Policies
(a) Covered Policy, as defined in Section 215.555(2)(c), Florida Statutes, is further clarified to mean only that portion of a binder, policy or contract of insurance that insures real or personal property located in the State of Florida to the extent such policy insures a Residential Structure, as defined in definition (27) herein, or the contents of a Residential Structure located in the State of Florida.
(b) Due to the specialized nature of the definition of Covered Policies, Covered Policies are not limited to only one line of business in the Company’s annual statement required to be filed by Section 624.424, Florida Statutes. Instead, Covered Policies are found in several lines of business on the Company’s annual statement. Covered Policies will at a minimum be reported in the Company’s statutory annual statement as:
· Fire
· Allied Lines
· Farmowners Multiple Peril
· Homeowners Multiple Peril
· Commercial Multiple Peril (non liability portion, covering condominiums and apartments)
· Inland Marine
Note that where particular insurance exposures are reported, e.g. mobile home, on an annual statement is not dispositive of whether or not the exposure is a Covered Policy.
1. This definition applies only to the first-party property section of a policy pertaining strictly to the structure, its contents, appurtenant structures, or ALE coverage.
1. Covered Policy also includes any collateral protection insurance policy covering personal residences which protects both the borrower’s and the lender’s financial interest, in an amount at least equal to the coverage for the dwelling in place under the lapsed homeowner’s policy, if such policy can be accurately reported as required in Section 215.555(5), Florida Statutes. A Company will be deemed to be able to accurately report data if the required data, as specified in the Premium Formula adopted in Section 215.555(5), Florida Statutes, is available.
1. See Article VI of this Contract for specific exclusions.
(13)	Excess Policies
This term, for the purposes of this Contract, means a policy that provides insurance protection for large commercial property risks that provide a layer of coverage above a primary layer (which is insured by a different insurer) that acts much the same as a very large deductible.
(27)	Residential Structures
This term means dwelling units used as a home or residence for other than transient occupancy, as that term is defined in Section 83.43(10), Florida Statutes. These include the primary structure and appurtenant structures insured under the same policy and any other structure covered under endorsements associated with a policy covering a residential structure, the principal function of which at the time of loss was as a primary or secondary residence. Covered Residential Structures do not include any structures listed under Article VI herein.

6. [bookmark: _Toc287792764][bookmark: _Toc346555869]Reimbursement Contract: Article VI – Exclusions

The following selected exclusions from Article VI of the Reimbursement Contract pertain to exposure that should not be reported under this Data Call.

1. Any policy which excludes wind or hurricane coverage.
1. Any Excess Policy or Deductible Buy-Back Policy that requires individual ratemaking.
1. Any liability of the Company attributable to losses for fair rental value, loss of use, loss of rents, or business interruption.
1. Any collateral protection policy that does not meet the definition of Covered Policy as defined in Article V(10)(d) herein.
1. Any reinsurance assumed by the Company.
1. Any exposure for: hotels, motels, timeshares, or other similar structures that are rented out daily, weekly, or monthly; homeowner associations, if no habitational structures are insured under the policy; and shelters, camps or retreats.
1. Commercial healthcare facilities and nursing homes; however, a nursing home which is an integral part of a retirement community consisting of primarily habitational structures that are not nursing homes will not be subject to this exclusion.
1. Any exposure under commercial policies covering only appurtenant structures or structures that do not function as a habitational structure (e.g. a policy covering only the pool of an apartment complex).
1. Personal contents in a commercial storage facility covered under a policy that covers only those personal contents.
1. Policies covering only Additional Living Expense.
1. Any exposure for barns or barns with apartments.
1. Any exposure for builders risk coverage or new residential structures still under construction.
1. Any exposure described as a vacant property under a commercial policy.
1. Any exposure for recreational vehicles or boats (including boat related equipment) requiring licensing and written on a separate policy or endorsement.
1. Any liability assumed by the Company from Pools, Associations, and Syndicates. Exception: Covered Policies assumed from Citizens under the terms and conditions of an executed assumption agreement between the Authorized Insurer and Citizens are covered by this Contract.
22. Specialized Fine Arts Risks as defined in Rule 19-8.028(4)(d), F.A.C.

CONTROL TOTALS BY TYPE OF BUSINESS

	Type of
Business
	Insured Risks
	
Building
	Appt. Structures
	
Contents
	
ALE
	Total
Exposure

	Commercial
	185,503
	178,523,408,929
	2,459,366,053
	1,128,246,015
	4,000
	$182,111,024,997

	Residential
	4,537,097
	967,826,617,592
	82,570,016,885
	483,267,380,885
	168,690,327,874
	$1,702,354,343,236

	Mobile Home
	493,221
	22,117,716,147
	1,619,757,727
	10,484,704,783
	2,972,199,880
	$37,194,378,537

	Tenants (renters)
	479,297
	20,534,269
	9,982,815
	15,245,310,269
	2,317,478,999
	$17,593,306,352

	Condominium
Owners
	739,924
	30,240,940,052
	1,026,019,025
	37,431,237,799
	9,567,313,894
	$78,265,510,770

	Total
	6,435,042
	$1,198,729,216,989
	$87,685,142,505
	$547,556,879,751
	$183,547,324,647
	$2,017,518,563,892

CONTROL TOTALS BY LINE OF BUSINESS

	Line of
Business
	Insured Risks
	
Building
	Appt. Structures
	
Contents
	
ALE
	Total
Exposure

	Fire & Allied
	1,316,674
	340,733,063,267
	19,703,105,278
	38,650,581,183
	9,907,848,754
	$408,994,598,482

	Homeowners
	4,359,665
	807,254,962,029
	66,151,054,940
	486,614,776,530
	170,439,552,204
	$1,530,460,345,703

	Farmowners
	6,466
	1,243,438,782
	131,381,644
	692,546,152
	227,651,305
	$2,295,017,883

	CMP
	30,331
	30,725,583,952
	167,166,866
	374,550,272
	68,564,738
	$31,335,865,828

	Mobile Home
	394,994
	18,772,168,959
	1,532,389,777
	9,260,608,924
	2,903,707,646
	$32,468,875,306

	Inland Marine
	326,912
	0
	44,000
	11,963,816,690
	0
	$11,963,860,690

	Total
	6,435,042
	$1,198,729,216,989
	$87,685,142,505
	$547,556,879,751
	$183,547,324,647
	$2,017,518,563,892

Total number of records: 389,760

FILE LAYOUT

	Field Number
	Field Description

	
	

	1
	Type of Business

	2
	Line of Business

	3
	Construction Type

	4
	Deductible Group

	5
	County Code

	6
	ZIP Code

	7
	Total Insured Risks

	8
	Total Insured Value - Building

	9
	Total Insured Value - Appurtenant Structures

	10
	Total Insured Value - Contents

	11
	Total Insured Value – ALE

	12
	Year Built

	13
	BCEG Code

	14
	Florida Building Code Indicator

	15
	Structure Opening Protection

	16
	Roof Shape

	17
	Roof-Wall Connection

	18
	Roof-Deck Attachment

DATA ELEMENT DEFINITIONS

	Type of Business

	Code

	Commercial
	1

	Residential
	2

	Mobile Home
	3

	Tenants (renters)
	4

	Condominium Owners
	6

	Line of Business

	Code

	Fire and Allied Lines
	1

	Homeowners Multiple Peril
	2

	Farmowners Multiple Peril
	3

	Commercial Multiple Peril
	4

	Mobile Homeowners
	5

	Inland Marine
	6

	
	

	
	

	Construction Type/Description

	Code

	[bookmark: _Toc287792765][bookmark: _Toc346555870]Frame
	1

	Buildings where the exterior walls are wood or other combustible materials, including wood iron-clad, stucco on wood, or plaster on combustible supports. Also includes aluminum or plastic siding over frame.

	

	Masonry
	2

	Buildings where the exterior walls are constructed of masonry, non-combustible, or fire resistive materials such as adobe, brick, concrete, gypsum block, hollow concrete block, stone, tile or other non-combustible materials.

	

	Superior
	7

	Masonry, non-combustible, or fire resistive construction where one of the following additional conditions exist:
· Roof deck has a minimum thickness of 2 inches with roof supports having a minimum dimension of 6 inches; or
· Floors and roof constructed of 2 inches of masonry on steel supports or documented to be constructed of 22 gauge metal or heavier on steel supports; or
· Roof assembly is documented to have a UL wind uplift classification of 90 or equivalent; or
Building is 6 or more stories.
	

	Masonry Veneer
	10

	Buildings with exterior walls of combustible construction veneered with brick, masonry, or stone.

	

	Unknown
Unknown commercial or residential construction.

	11

	Non-Mobile Home Default Construction
	12

	Construction information collected for the policy, but company is eligible to report all non-mobile home exposure using this default code.

	

	Mobile Home - Fully Tied Down, manufactured before 7/13/94
	21

	Mobile/Manufactured Housing which has anchors and tie-downs as required by Section 320.8325, Florida Statutes.
	

	Mobile Home - Fully Tied Down, manufactured on or after 7/13/94
Mobile/Manufactured Housing which has anchors and tie-downs as required by Section 320.8325, Florida Statutes.
	22

	
	

	Mobile Home – Unknown
Unknown if the mobile home is tied down, or nature of the tie-downs is unknown.
	25

	
	

Deductible Groups

	Deductible Group – Commercial

	
	
Code

	
	
Rate As*

	$0 to $2,500
	
	CA
	
	$1,000

	$2,501 to $7,500
	
	CB
	
	$5,000

	$7,501 to $15,000
	
	CC
	
	$10,000

	$15,001 to $50,000
	
	CD
	
	$25,000

	1%
	
	C1
	
	1%

	2%
	
	C2
	
	2%

	3%
	
	C3
	
	3%

	4%
	
	C4
	
	4%

	5%
	
	C5
	
	5%

	6%
	
	C6
	
	6%

	7%
	
	C7
	
	7%

	8%
	
	C8
	
	8%

	9%
	
	C9
	
	9%

	10% or Greater
	
	C0
	
	10%

	
Deductible Group – Residential,
Tenants (renters), Condominium Owners

	
	
Code

	
	
Rate As*

	$0
	
	RM
	
	$0

	$1 to $500
	
	RA
	
	$500

	$501 to $1,500
	
	RB
	
	$1,000

	$1,501 to $2,500
	
	RC
	
	$2,000

	Greater Than $2,500
	
	RD
	
	$3,000

	1%
	
	R1
	
	1%

	2%
	
	R2
	
	2%

	3%
	
	R3
	
	3%

	4%
	
	R4
	
	4%

	5%
	
	R5
	
	5%

	6%
	
	R6
	
	6%

	7%
	
	R7
	
	7%

	8%
	
	R8
	
	8%

	9%
	
	R9
	
	9%

	10% to14%
	
	R0
	
	10%

	15% or Greater
	
	RZ
	
	15%

	Deductible Group – Mobile Home

	
	Code
	
	Rate As*

	$0
	
	MM
	
	$0

	$1 to $250
	
	MA
	
	$250

	$251 to $500
	
	MB
	
	$500

	Greater Than $500
	
	MC
	
	$1,000

	1%
	
	M1
	
	1%

	2%
	
	M2
	
	2%

	3%
	
	M3
	
	3%

	4%
	
	M4
	
	4%

	5%
	
	M5
	
	5%

	6%
	
	M6
	
	6%

	7%
	
	M7
	
	7%

	8%
	
	M8
	
	8%

	9%
	
	M9
	
	9%

	10% or greater
	
	M0
	
	10%

* Percent deductibles for Commercial, Residential, and Mobile Home types of business are a percent of Coverage A (building) exposure, unless there is none. In that case, the deductible is a percent of Coverage C (contents) exposure. If there is not Coverage A or C exposure, the deductible is that percent of Coverage B (appurtenant structures) exposure.

Percent deductibles for Tenants (renters) and Condominium Owners types of business are a percent of Coverage C (contents) exposure, unless there is none. In that case, the deductible is a percent of Coverage A (building) exposure. If there is no Coverage C or A exposure, the deductible is that percent of Coverage B (appurtenant structures) exposure.

	
	
	

Year Built

	Year Built
	FHCF Code

	Unknown or Mobile Home
	0

	1994 or earlier
	1

	1995 - 2001
	2

	2002 or later
	3

Building Code Effectiveness Grading (BCEG) Code

	Actual BCEG Code
	FHCF Credit

	00
	None

	01 - 03
	12%

	04 - 07
	8%

	08 - 09
	4%

	10
	None

	FHCF Default: 50*
	None

Florida Building Code Indicator

	Florida Building Code Indicator
	FHCF Code

	Meets 2002 Florida Building Code
	1

	Does not Meet Florida Building Code or Unknown
	2

Structure Opening Protection

	Structure Opening Protection
	FHCF Code

	None or Unknown
	0

	Basic Shutters
	1

	Hurricane or Engineered Shutters or FBC-Equivalent*
	2

* Requires that all openings must be protected with impact resistant coverings, impact resistant doors, and/or impact resistant glazing that meets the requirements of one of: SSTD 12; ASTM E 1886 and ASTM E 1996, Miami-Dade PA 201, 202, and 203; or Florida Building Code Testing Application Standards (TAS) 201, 202, and 203.

Roof Shape

	Roof Shape
	FHCF Code

	Hip, Mansard, or Pyramid
	1

	Gable, Other, or Unknown
	2

Roof-Wall Connection

	Roof-Wall Connection
	FHCF Code

	Anchor Bolts, Hurricane Ties, Clips, Single Wraps, Double Wraps or Structurally Connected
	1

	Nails, Toe Nails, Screws, Gravity, Friction, Adhesive Epoxy, Other, or Unknown
	2

Roof-Deck Attachment
	Roof-Deck Attachment
	FHCF Code

	Reinforced Concrete Roof Deck
	4

	Other or Unknown
	8

County Codes

	County
	County
	
	County
	County
	
	County
	County

	Code
	Name
	
	Code
	Name
	
	Code
	Name

	
	
	
	
	
	
	
	

	001
	Alachua
	
	049
	Hardee
	
	093
	Okeechobee

	003
	Baker
	
	051
	Hendry
	
	095
	Orange

	005
	Bay
	
	053
	Hernando
	
	097
	Osceola

	007
	Bradford
	
	055
	Highlands
	
	099
	Palm Beach

	009
	Brevard
	
	057
	Hillsborough
	
	101
	Pasco

	011
	Broward
	
	059
	Holmes
	
	103
	Pinellas

	013
	Calhoun
	
	061
	Indian River
	
	105
	Polk

	015
	Charlotte
	
	063
	Jackson
	
	107
	Putnam

	017
	Citrus
	
	065
	Jefferson
	
	109
	St. Johns

	019
	Clay
	
	067
	Lafayette
	
	111
	St. Lucie

	021
	Collier
	
	069
	Lake
	
	113
	Santa Rosa

	023
	Columbia
	
	071
	Lee
	
	115
	Sarasota

	027
	De Soto
	
	073
	Leon
	
	117
	Seminole

	029
	Dixie
	
	075
	Levy
	
	119
	Sumter

	031
	Duval
	
	077
	Liberty
	
	121
	Suwannee

	033
	Escambia
	
	079
	Madison
	
	123
	Taylor

	035
	Flagler
	
	081
	Manatee
	
	125
	Union

	037
	Franklin
	
	083
	Marion
	
	127
	Volusia

	039
	Gadsden
	
	085
	Martin
	
	129
	Wakulla

	041
	Gilchrist
	
	086
	Miami-Dade*
	
	131
	Walton

	043
	Glades
	
	087
	Monroe
	
	133
	Washington

	045
	Gulf
	
	089
	Nassau
	
	
	

	047
	Hamilton
	
	091
	Okaloosa
	
	
	

	
	
	
	
	
	
	
	

Note: These codes are derived from the Federal Information Processing Standards (FIPS) Codes.

ZIP Codes

Data with unknown ZIP Codes according to 2007 FHCF rating is not included in this data set.
2. [bookmark: _Toc346555871]Expert Instructions (Commercial)

The “hlpm2007com.txt” file is processed so it can be used in the Commercial Residential Insurance Loss Model (CRILM) of the FPHLM. The CRILM has a low rise module for data records with less than 4 stories and a mid-high rise module for records with 4 stories or greater.

The CRILM low rise module requires a comma-separated text file having the following fields:

	Field Number
	Field Description

	
	

	1
	Policy ID

	2
	ZIP Code

	3
	Year Built

	4
	FPHLM Construction Type

	5
	Property Value

	6
	Structure Limit

	7
	Appurtenant Structures Limit

	8
9
	Contents Limit
Additional Living Expenses Limit

	10
	Deductible

	11
	Hurricane Deductible

	12
	County

	13
14
	Region
Units

	15
	Number of Stories

	16
	Roof Shape

	17
	Roof Cover

	18
	Opening Protection

The CRILM mid-high rise module requires a comma-separated text file having the following fields:

	Field Number
	Field Description

	
	

	1
	Policy ID

	2
	Location ID

	3
	ZIP Code

	4
	Year Built

	5
	Property Value

	6
	Structure Limit

	7
	Appurtenant Structures Limit

	8
	Contents Limit

	9
	Deductible

	10
	Hurricane Deductible

	11
	County

	12
13
	Region
Units

	14
	Number of Stories

	15
	Opening Protection

	16
	Sliding Door

	17
	Type of Risk

	18
	Layout

The attributes above that are different from the low rise module are Location ID and Layout. The Location ID identifies multiple risks within a policy. The Layout defines a closed building with interior entry doors or open building with exterior entry doors.

The procedure used to process the “hlpm2007com.txt” file for its usage in the CRILM consists of the following steps:

1. Delete records whose type of business is not 1-i.e., Non-Commercial records
1. Map the construction codes provided in the 2007 Cat Fund exposure to the construction types used in the FPHLM, as described in the following table:

	Code
	Construction Type
	FPHLM Construction Type

	1
	Frame
	Frame

	2
	Masonry
	Masonry

	7
	Superior
	Masonry

	10
	Masonry Veneer
	Frame

	11
	Unknown
	Other

1. Map year built ranges to actual year built values as in the table below:

	FHCF Year Built Code
	Year Built
	FPHLM Year Built

	0
	Unknown or Mobile Home
	0

	1
	1994 or earlier
	1992

	2
	1995 - 2001
	1995

	3
	2002 or later
	2002

Note: Codes 0 and 1 will be assigned randomly based on county statistics

1. Map county codes to county names
1. Find the region for each record
1. Map roof shape codes to FPHLM values as described in the table below:

	Roof Shape Code
	Roof Shape
	FPHLM Roof Shape

	1
	Hip, Mansard, or Pyramid
	Hip

	2
	Gable, Other, or Unknown
	Unknown

Note: Code 2 will use vulnerability curve with weighted roof shape

1. Map opening protection codes to FPHLM values as in the table below:

	Opening Protection Code
	Opening Protection
	FPHLM Opening Protection

	0
	None or Unknown
	Unknown

	1
	Basic Shutters
	Plywood

	2
	Hurricane or Engineered Shutters or FBC-Equivalent
	Plywood

Note: Code 0 will use vulnerability curve with weighted opening protection

1. Set hurricane deductible to $0 for all records
1. Expand records by total insured risks
1. Update the exposures to exposure divided by total insured risks
1. Assign random year built for codes 0 and 1 based on county statistics
1. Assign random number of stories based on county statistics
1. Assign random layout based on number of stories and coastal or inland ZIP code statistics for mid-high rise records
1. Aggregate low rise records by ZIP code, year built, construction type, county, region, number of stories, roof shape, roof cover, and opening protection
1. Aggregate mid-high rise records by ZIP code, year built, county, region, number of stories, opening protection, and layout
1. Assign number of units based on number of stories for mid-high rise records following the table below:

	Number of Stories
	Apartments per story

	4
	8

	5
	10

	6
	9

	7
	7

	8
	6

	9
	9

	>9
	7

1. Export the low rise and mid-high rise processed files following the format required by the CRILM.

2. [bookmark: _Toc346555872]Data Processing (Commercial)

The 2007 Cat Fund Commercial data can be found in the file “hlpm2007com.txt.” A sample set of this data is the following:
1.00,1.00,1.00,C0,5.00,32408.00,1.00,257000.00,0.00,0.00,0.00,1.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,5.00,32413.00,1.00,867000.00,0.00,0.00,0.00,2.00,5.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,21.00,34102.00,1.00,417000.00,0.00,0.00,0.00,1.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,33.00,32503.00,1.00,185850.00,0.00,2000.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,33.00,32506.00,11.00,3498000.00,0.00,0.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,33.00,32526.00,1.00,500000.00,0.00,0.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,33.00,32577.00,1.00,2500000.00,0.00,0.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,45.00,32456.00,1.00,915000.00,0.00,0.00,0.00,1.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,57.00,33635.00,1.00,2500000.00,0.00,0.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,57.00,33647.00,1.00,2500000.00,0.00,0.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,71.00,33914.00,2.00,205000.00,0.00,40000.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,81.00,34217.00,1.00,295000.00,0.00,0.00,0.00,1.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,87.00,33036.00,2.00,0.00,40250.00,8500.00,0.00,1.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,87.00,33040.00,5.00,3325000.00,0.00,0.00,0.00,1.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,87.00,33040.00,1.00,1072000.00,0.00,0.00,0.00,2.00,0.00,2.00,0,1,1,8
1.00,1.00,1.00,C0,87.00,33040.00,20.00,19570800.00,0.00,0.00,0.00,2.00,0.00,2.00,0,2,1,8
1.00,1.00,1.00,C0,91.00,32541.00,8.00,3161000.00,0.00,0.00,0.00,2.00,8.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,99.00,33405.00,1.00,144000.00,0.00,10000.00,0.00,1.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,101.00,33525.00,9.00,2997000.00,0.00,0.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,103.00,33701.00,4.00,1500000.00,0.00,0.00,0.00,0.00,3.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,103.00,33771.00,5.00,0.00,48000.00,0.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,113.00,32571.00,4.00,1164000.00,0.00,0.00,0.00,0.00,0.00,2.00,0,2,2,8
1.00,1.00,1.00,C0,115.00,34223.00,3.00,5947191.00,0.00,0.00,0.00,2.00,3.00,2.00,0,1,1,8

In order to expand records and be able to assign random year built, number of stories, and layout values a database schema was implemented in PostgreSQL version 8.4.4.

The following is the database schema diagram:

The following is a description of the tables used in the database:
Table 1: year_built_conversion

 year_built_code 	numeric(3,2) 	NOT NULL,
 "value" 		integer 	NOT NULL,

Table 2: county_code_2_county_name_2_region

 county_code 		numeric(5,2) 	NOT NULL,
 county 		character varying(50),
 region 		character varying(50),

Table 3: flzip2008

 zip 	integer 	NOT NULL,
 lat 	numeric(8,6) 	NOT NULL,
 lon 	numeric(8,6) 	NOT NULL,

Table 4: construction_type_conversion

 construction_code 	numeric(4,2) 			NOT NULL,
 construction_type 	character varying(50) 		NOT NULL,
 fphlm_const_type 	character varying(50) 		NOT NULL,

Table 5: roof_shape_conversion

 roof_shape_code 	integer 			NOT NULL,
 "value" 		character varying(50) 		NOT NULL,

Table 6: opening_protection_conversion

 opening_protection_code 	integer 			NOT NULL,
 "value" 			character varying(50) 		NOT NULL,

Table 7: year_built_probs_com

 county_code 		numeric(5,2) 			NOT NULL,
 county		character varying(50) 		NOT NULL,
 probs 			numeric[] 			NOT NULL,

Table 8: year_built_prior_probs_values

 id 		integer 			NOT NULL,
 era 		character varying(30) 		NOT NULL,
 "value" 	integer 			NOT NULL,

Table 9: num_stories_probs_com

 county_code 		numeric(5,2) 			NOT NULL,
 county 		character varying(50) 		NOT NULL,
 probs 			numeric[] 			NOT NULL,

Table 10: num_stories_probs_com_values

 id 		integer 			NOT NULL,
 stories 	character varying(30) 		NOT NULL,
 "value" 	integer 			NOT NULL,

Table 11: catfund2007com

 id 					bigint 			NOT NULL,
 type_of_business 			numeric(3,2) 		NOT NULL,
 line_of_business 			numeric(3,2) 		NOT NULL,
 construction_type 			numeric(4,2) 		NOT NULL,
 deductible_group 			character(2) 		NOT NULL,
 county_code 				numeric(5,2) 		NOT NULL,
 zipcode 				numeric(7,2) 		NOT NULL,
 total_insured_risks 			numeric(7,2) 		NOT NULL,
 total_insured_risks_building 	numeric(20,4) 		NOT NULL,
 total_insured_risks_appurtenant 	numeric(20,4) 		NOT NULL,
 total_insured_risks_contents 	numeric(20,4) 		NOT NULL,
 total_insured_risks_ale 		numeric(20,4) 		NOT NULL,
 year_built_code 			numeric(3,2) 		NOT NULL,
 bceg_code 				numeric(4,2) 		NOT NULL,
 florida_building_code_indicator 	numeric(3,2) 		NOT NULL,
 structure_opening_protection 	numeric(3,2) 		NOT NULL,
 roof_shape 				numeric(3,2) 		NOT NULL,
 roof_wall_connection 		numeric(3,2) 		NOT NULL,
 roof_deck_attachment 		numeric(3,2) 		NOT NULL,

Table 12: hlpm2007com_updated_1

policy_id 			bigint,
 zipcode 			numeric(7,2),
 year_built_code 		numeric(3,2),
 year_built 			integer,
 construction_code 		numeric(4,2),
 const_type			character varying(50),
 prop_value 			numeric(20,4),
 lms 				numeric(20,4),
 lmapp 			numeric(20,4),
 lmc 				numeric(20,4),
 lmale 				numeric(20,4),
 deductible_group 		character(2),
 deduc 			numeric,
 hurr_deduc 			numeric,
 county_code 			numeric(5,2),
 county 			character varying(50),
 region 			character varying(50),
 num_units 			numeric(7,2),
 type_of_business 		numeric(3,2),
 roof_wall_connection 	numeric(3,2),
 roof2wall 			character varying(50),
 num_stories 			character varying(50),
 roof_shape_code 		numeric(3,2),
 roof_shape 			character varying(50),
 roof_cover 			character varying(50),
 roof_deck_code 		numeric(3,2),
 deck_attachment 		character varying(50),
 stud2sill 			character varying(50),
 underlayment 		character varying(50),
 garage 			character varying(50),
 door_protection 		character varying(50),
 opening_protection_code 	numeric(3,2),
 opening_protection 		character varying(50),
 building_shape 		character varying(50),

Table 13: num_units_conversion_com_mhr

 num_stories 		integer 	NOT NULL,
 "value" 		integer 	NOT NULL,

Table 14: coastal_2008

 zipcode 		numeric(7,2) 		NOT NULL,

Table 15: hlpm2007com_updated_1_expanded

 policy_id 			bigint 			NOT NULL,
 zipcode 			numeric(7,2),
 year_built_code 		numeric(3,2),
 year_built 			integer,
 construction_code 		numeric(4,2),
 const_type 			character varying(50),
 prop_value 			numeric(26,10),
 lms 				numeric(26,10),
 lmapp 			numeric(26,10),
 lmc 				numeric(26,10),
 lmale 				numeric(26,10),
 deductible_group 		character(2),
 deduc 			numeric,
 hurr_deduc 			numeric,
 county_code 			numeric(5,2),
 county 			character varying(50),
 region 			character varying(50),
 num_units 			numeric(7,2),
 type_of_business 		numeric(3,2),
 roof_wall_connection 	numeric(3,2),
 roof2wall 			character varying(50),
 num_stories 			character varying(50),
 roof_shape_code 		numeric(3,2),
 roof_shape 			character varying(50),
 roof_cover 			character varying(50),
 roof_deck_code 		numeric(3,2),
 deck_attachment 		character varying(50),
 stud2sill 			character varying(50),
 underlayment 		character varying(50),
 garage 			character varying(50),
 door_protection 		character varying(50),
 opening_protection_code 	numeric(3,2),
 opening_protection 		character varying(50),
 building_shape 		character varying(50),
 subregion 			character varying(30),
 era 				character varying(30),
 layout 			character varying(30),

Table 16: hlpm2007com_aggregated_0deduc_lr

 policy_id 		bigint 			NOT NULL,
 zipcode 		numeric(7,2),
 year_built 		integer,
 const_type 		character varying(50),
 prop_value 		numeric,
 lms 			numeric,
 lmapp 		numeric,
 lmc 			numeric,
 deduc 		numeric,
 hurr_deduc 		numeric,
 county 		character varying(50),
 region 		character varying(50),
 num_units 		numeric,
 num_stories 		integer,
 roof_shape 		character varying(50),
 roof_cover 		character varying(50),
 opening_protection 	character varying(50),
 num_units_orig	numeric,

Table 17: hlpm2007com_aggregated_0deduc_lr_geo

 policy_id 		bigint 			NOT NULL,
 zipcode 		numeric(7,2),
 year_built 		integer,
 const_type 		character varying(50),
 prop_value 		numeric,
 lms 			numeric,
 lmapp 		numeric,
 lmc 			numeric,
 deduc 		numeric,
 hurr_deduc 		numeric,
 county 		character varying(50),
 region 		character varying(50),
 num_units 		numeric,
 num_stories 		integer,
 roof_shape		character varying(50),
 roof_cover 		character varying(50),
 opening_protection 	character varying(50),
 num_units_orig	numeric,
 lat 			numeric(8,6),
 lon 			numeric(8,6),

Table 18: hlpm2007com_aggregated_0deduc_mhr

 policy_id 		bigint 			NOT NULL,
 loc 			integer,
 zipcode 		numeric(7,2),
 year_built 		integer,
 prop_value 		numeric,
 lms 			numeric,
 lmapp 		numeric,
 lmc 			numeric,
 deduc 		numeric,
 hurr_deduc 		numeric,
 county 		character varying(50),
 region 		character varying(50),
 num_units 		numeric,
 num_stories 		integer,
 opening_protection 	character varying(50),
 irw 			character varying(50),
 type_of_risk 		character varying(30),
 layout 		character varying(30),
 num_units_orig	numeric,

Table 19: hlpm2007com_aggregated_0deduc_mhr_geo

 policy_id 		bigint 			NOT NULL,
 loc 			integer,
 zipcode 		numeric(7,2),
 year_built 		integer,
 prop_value 		numeric,
 lms 			numeric,
 lmapp 		numeric,
 lmc 			numeric,
 deduc 		numeric,
 hurr_deduc 		numeric,
 county 		character varying(50),
 region 		character varying(50),
 num_units 		numeric,
 num_stories 		integer,
 opening_protection 	character varying(50),
 irw 			character varying(50),
 type_of_risk 		character varying(30),
 layout 		character varying(30),
 num_units_orig	numeric,
 lat 			numeric(8,6),
 lon 			numeric(8,6),

The following are the processing steps along with the queries and functions used in the database:

1. Load the 2007 Cat Fund Commercial data:

COPY catfund2007com (type_of_business, line_of_business, construction_type, deductible_group, county_code, zipcode, total_insured_risks, total_insured_risks_building, total_insured_risks_appurtenant, total_insured_risks_contents, total_insured_risks_ale, year_built_code, bceg_code, florida_building_code_indicator, structure_opening_protection, roof_shape, roof_wall_connection, roof_deck_attachment)
FROM '/home/phrlm-storage-09/V4.0/2009_ROA/hlpm2007com.txt' WITH DELIMITER ',';

1. Create a copy of the original data:

SELECT * INTO hlpm2007com_updated FROM catfund2007com;

1. Delete non-commercial records:

DELETE FROM hlpm2007com_updated WHERE type_of_business<>1.00;

1. Create table hlpm2007com_updated_1 with additional attributes needed for FPHLM mappings:

SELECT id as policy_id, zipcode, year_built_code, 0 as year_built, construction_type as construction_code,
'' as const_type, total_insured_risks_building as prop_value, total_insured_risks_building as lms,
total_insured_risks_appurtenant as lmapp, total_insured_risks_contents as lmc, total_insured_risks_ale as lmale,
deductible_group, 0.00 as deduc, 0.00 as hurr_deduc, county_code, '' as county, '' as region,
total_insured_risks as num_units, type_of_business, roof_wall_connection, '' AS roof2wall, 0 AS num_stories,
roof_shape AS roof_shape_code, '' AS roof_shape, 'UNKNOWN' AS roof_cover, roof_deck_attachment AS roof_deck_code, 'UNKNOWN' AS deck_attachment,
'UNKNOWN' AS stud2sill, 'UNKNOWN' AS underlayment, 'UNKNOWN' AS garage, 'UNKNOWN' AS door_protection,
structure_opening_protection AS opening_protection_code, '' AS opening_protection, 'UNKNOWN' AS building_shape INTO hlpm2007com_updated_1
FROM hlpm2007com_updated;

ALTER TABLE hlpm2007com_updated_1 ALTER COLUMN year_built TYPE integer,
ALTER COLUMN const_type TYPE varchar(50),
ALTER COLUMN deduc TYPE numeric(3,2),
ALTER COLUMN hurr_deduc TYPE numeric(3,2),
ALTER COLUMN county TYPE varchar(50),
ALTER COLUMN region TYPE varchar(50),
ALTER COLUMN roof2wall TYPE varchar(50),
ALTER COLUMN num_stories TYPE integer,
ALTER COLUMN roof_shape TYPE varchar(50),
ALTER COLUMN roof_cover TYPE varchar(50),
ALTER COLUMN deck_attachment TYPE varchar(50),
ALTER COLUMN stud2sill TYPE varchar(50),
ALTER COLUMN underlayment TYPE varchar(50),
ALTER COLUMN garage TYPE varchar(50),
ALTER COLUMN door_protection TYPE varchar(50),
ALTER COLUMN opening_protection TYPE varchar(50),
ALTER COLUMN building_shape TYPE varchar(50);

1. Update construction type to a valid FPHLM value:

UPDATE hlpm2007com_updated_1 AS a SET const_type = (select fphlm_const_type from construction_type_conversion as b
WHERE b.construction_code = a.construction_code);

1. Update year built to a valid FPHLM value:

UPDATE hlpm2007com_updated_1 AS a
SET year_built = (SELECT value FROM year_built_conversion AS b
WHERE b.year_built_code = a.year_built_code);

1. Update county name to valid FPHLM value:

UPDATE hlpm2007com_updated_1 AS a
SET county = (SELECT b.county
FROM county_code_2_county_name_2_region AS b WHERE b.county_code = a.county_code);

1. Update region to a valid FPHLM value:

UPDATE hlpm2007com_updated_1 AS a
SET region = (SELECT b.region
FROM county_code_2_county_name_2_region AS b WHERE b.county_code = a.county_code);

1. Update roof shape to a valid FPHLM value:

UPDATE hlpm2007com_updated_1 AS a SET roof_shape = (select b.value from roof_shape_conversion AS b
where a.roof_shape_code=b.roof_shape_code);

1. Update opening protection to a valid FPHLM value:

UPDATE hlpm2007com_updated_1 AS a SET opening_protection = (select b.value from opening_protection_conversion AS b
where a.opening_protection_code=b.opening_protection_code);

1. Expand records by total insured risks and update exposures to exposure divided by total insured risks using the following plpgsql function:

DECLARE
	cur1 CURSOR FOR SELECT * FROM hlpm2007com_updated_1 order by policy_id asc;
	number_units numeric(7,2);
	countnum	numeric(7,2);
	lms_upd		numeric(26,10);
	lmapp_upd	numeric(26,10);
	lmc_upd		numeric(26,10);
	lmale_upd	numeric(26,10);
	total_count	bigint;
	new_id		bigint;
BEGIN
	
	CREATE TABLE hlpm2007com_updated_1_expanded (
		policy_id bigint,
		zipcode numeric(7,2),
		year_built_code numeric(3,2),
		year_built integer,
		construction_code numeric(4,2),
		const_type character varying(50),
		prop_value numeric(20,4),
		lms numeric(20,4),
		lmapp numeric(20,4),
		lmc numeric(20,4),
		lmale numeric(20,4),
		deductible_group character(2),
		deduc numeric(3,2),
		hurr_deduc numeric(3,2),
		county_code numeric(5,2),
		county character varying(50),
		region character varying(50),
		num_units numeric(7,2),
		type_of_business numeric(3,2),
		roof_wall_connection numeric(3,2),
		roof2wall character varying(50),
		num_stories integer,
		roof_shape_code numeric(3,2),
		roof_shape character varying(50),
		roof_cover character varying(50),
		roof_deck_code numeric(3,2),
		deck_attachment character varying(50),
		stud2sill character varying(50),
		underlayment character varying(50),
		garage character varying(50),
		door_protection character varying(50),
		opening_protection_code numeric(3,2),
		opening_protection character varying(50),
		building_shape character varying(50),
		subregion character varying(30),
		era character varying(30),
		CONSTRAINT pk_hlpm2007com_updated_1_expanded PRIMARY KEY (policy_id)
);
	ALTER TABLE hlpm2007com_updated_1_expanded OWNER TO fdoi;

	SELECT max(policy_id) INTO total_count FROM hlpm2007com_updated_1;
	new_id := total_count + 1;
	
	FOR recvar IN cur1 LOOP
		number_units := recvar.num_units;
		IF number_units = 1.00
		THEN
			INSERT INTO hlpm2007com_updated_1_expanded
				VALUES(
					recvar.policy_id,
					recvar.zipcode,
					recvar.year_built_code,
					recvar.year_built,
					recvar.construction_code,
					recvar.const_type,
					recvar.lms,
					recvar.lms,
					recvar.lmapp,
					recvar.lmc,
					recvar.lmale,
					recvar.deductible_group,
					recvar.deduc,
					recvar.hurr_deduc,
					recvar.county_code,
					recvar.county,
					recvar.region,
					1.00,
					recvar.type_of_business,
					recvar.roof_wall_connection,
					recvar.roof2wall,
					recvar.num_stories,
					recvar.roof_shape_code,
					recvar.roof_shape,
					recvar.roof_cover,
					recvar.roof_deck_code,
					recvar.deck_attachment,
					recvar.stud2sill,
					recvar.underlayment,
					recvar.garage,
					recvar.door_protection,
					recvar.opening_protection_code,
					recvar.opening_protection,
					recvar.building_shape
);
		ELSE
			lms_upd := recvar.lms / number_units;
			lmapp_upd := recvar.lmapp / number_units;
			lmc_upd := recvar.lmc / number_units;
			lmale_upd := recvar.lmale / number_units;
			
			countnum := 0.00;
			WHILE countnum < number_units LOOP
				INSERT INTO hlpm2007com_updated_1_expanded
				VALUES(
					new_id,
					recvar.zipcode,
					recvar.year_built_code,
					recvar.year_built,
					recvar.construction_code,
					recvar.const_type,
					lms_upd,
					lms_upd,
					lmapp_upd,
					lmc_upd,
					lmale_upd,
					recvar.deductible_group,
					recvar.deduc,
					recvar.hurr_deduc,
					recvar.county_code,
					recvar.county,
					recvar.region,
					1.00,
					recvar.type_of_business,
					recvar.roof_wall_connection,
					recvar.roof2wall,
					recvar.num_stories,
					recvar.roof_shape_code,
					recvar.roof_shape,
					recvar.roof_cover,
					recvar.roof_deck_code,
					recvar.deck_attachment,
					recvar.stud2sill,
					recvar.underlayment,
					recvar.garage,
					recvar.door_protection,
					recvar.opening_protection_code,
					recvar.opening_protection,
					recvar.building_shape
);
				countnum := countnum + 1;
				new_id := new_id + 1;
			END LOOP;
		END IF;

		RAISE NOTICE 'new_id: %', new_id;
		
	END LOOP;

	CREATE INDEX index_county_1_hlpm2007com_updated_1_expanded ON hlpm2007com_updated_1_expanded USING btree (county_code);
	CREATE INDEX index_policy_1_hlpm2007com_updated_1_expanded ON hlpm2007com_updated_1_expanded USING btree (policy_id);
END;

1. Assign random year built for codes 0 and 1 based on county statistics using the following plpgsql function:

DECLARE
	cur1 CURSOR FOR SELECT * FROM year_built_probs_com;
	cur2 CURSOR (county_param numeric(5,2)) IS SELECT * FROM hlpm2007com_updated_1_expanded WHERE county_code = county_param
		AND upper(const_type) <> 'MANUFACTURED' AND (year_built_code = 0.00 OR year_built_code = 1.00);
	cur3 CURSOR FOR SELECT * FROM year_built_prior_probs_values;
	record_policies0 bigint[];
	record_policies1 bigint[];
	rec_count0 bigint;
	rec_count1 bigint;
	tmp bigint;
	amounts0 bigint[];
	amounts1 bigint[];
	randnum integer;
	num_to_get bigint;
	temp_max bigint;
	prev_temp_max bigint;
	polid bigint;
	str text;
	yb_values integer[];
	probs1 numeric(5,4)[4];
	total_prob1 numeric(5,4);
	yb_to_assign integer;
BEGIN
	PERFORM setseed(0.5);

	tmp := 1;
	FOR ybvals IN cur3 LOOP
		yb_values[tmp] := ybvals.value;
		tmp := tmp + 1;
	END LOOP;

	--RAISE NOTICE 'yb_values = % ', yb_values;

	FOR ybprob IN cur1 LOOP
		rec_count0 := 0;
		rec_count1 := 0;
		FOR recvar IN cur2(ybprob.county_code) LOOP
			IF recvar.year_built_code = 0
			THEN
				rec_count0 := rec_count0 + 1;
				record_policies0[rec_count0] := recvar.policy_id;	
			ELSE --then year built code 1
				rec_count1 := rec_count1 + 1;
				record_policies1[rec_count1] := recvar.policy_id;
			END IF;
		END LOOP;

		temp_max := rec_count0;
		prev_temp_max := rec_count0;
		FOR i IN 1..5 LOOP
			num_to_get := round(rec_count0 * ybprob.probs[i]);
			tmp := 1;
			WHILE tmp <= num_to_get LOOP
				randnum := get_random(temp_max);
				polid := record_policies0[randnum];
				record_policies0[randnum] := record_policies0[temp_max];
				record_policies0[temp_max] := polid;
				
				temp_max := temp_max - 1;
				tmp := tmp + 1;
			END LOOP;

			UPDATE hlpm2007com_updated_1_expanded SET year_built = yb_values[i] WHERE policy_id IN
				(SELECT record_policies0[s] FROM (SELECT generate_subscripts(record_policies0, 1)
				AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
				
			prev_temp_max := temp_max;		
		END LOOP;

		UPDATE hlpm2007com_updated_1_expanded SET year_built = yb_values[6] WHERE
			policy_id IN (SELECT record_policies0[s] FROM (SELECT generate_subscripts(record_policies0, 1) AS s)
				 AS foo WHERE s <= temp_max);

		total_prob1 := 0.0;
		FOR i IN 1..4 LOOP
			total_prob1 := total_prob1 + ybprob.probs[i];
		END LOOP;
		FOR i IN 1..4 LOOP
			probs1[i] := ybprob.probs[i] / total_prob1;
		END LOOP;
		
		temp_max := rec_count1;
		prev_temp_max := rec_count1;
		FOR i IN 1..3 LOOP
			num_to_get := round(rec_count1 * probs1[i]);
			tmp := 1;
			WHILE tmp <= num_to_get LOOP
				randnum = get_random(temp_max);
				polid := record_policies1[randnum];
				record_policies1[randnum] := record_policies1[temp_max];
				record_policies1[temp_max] := polid;
				
				temp_max := temp_max - 1;
				tmp := tmp + 1;
			END LOOP;

			UPDATE hlpm2007com_updated_1_expanded SET year_built = yb_values[i] WHERE policy_id IN
				(SELECT record_policies1[s] FROM (SELECT generate_subscripts(record_policies1, 1)
				AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
			prev_temp_max := temp_max;
			
		END LOOP;

		UPDATE hlpm2007com_updated_1_expanded SET year_built = yb_values[4] WHERE
			policy_id IN (SELECT record_policies1[s] FROM (SELECT generate_subscripts(record_policies1, 1) AS s)
				 AS foo WHERE s <= temp_max);
		
		RAISE NOTICE 'Finished county %', ybprob.county;
	END LOOP;
END;

Definition of get_random() function used above:
DECLARE
	randnum numeric(7,6);
	res integer;
BEGIN
	SELECT random() INTO randnum;

	res = floor(randnum * upper_bound + 1);

	RETURN res;
END;

1. Assign random number of stories based on county statistics using the following plpgsql functions:

DECLARE
	cur1 CURSOR FOR SELECT * FROM num_stories_probs_com;
	cur2 CURSOR (county_param numeric(5,2)) IS SELECT * FROM hlpm2007com_updated_1_expanded WHERE county_code = county_param
		AND upper(const_type) <> 'MANUFACTURED' AND num_stories=0;
	cur3 CURSOR FOR SELECT * FROM num_stories_probs_com_values;
	record_policies bigint[];
	rec_count bigint;
	tmp bigint;
	amounts bigint[];
	randnum integer;
	num_to_get bigint;
	temp_max bigint;
	prev_temp_max bigint;
	polid bigint;
	ns_values integer[];
BEGIN
	PERFORM setseed(0.5);

	tmp := 1;
	FOR nsvals IN cur3 LOOP
		ns_values[tmp] := nsvals.value;
		tmp := tmp + 1;
	END LOOP;

	RAISE NOTICE 'ns_values = % ', ns_values;

	FOR nsprob IN cur1 LOOP
		rec_count := 0;
		FOR recvar IN cur2(nsprob.county_code) LOOP
			rec_count := rec_count + 1;
			record_policies[rec_count] := recvar.policy_id;	
		END LOOP;

		temp_max := rec_count;
		prev_temp_max := rec_count;
		FOR i IN 1..9 LOOP
			num_to_get := round(rec_count * nsprob.probs[i]);
			tmp := 1;
			WHILE tmp <= num_to_get LOOP
				randnum := get_random(temp_max);
				polid := record_policies[randnum];
				record_policies[randnum] := record_policies[temp_max];
				record_policies[temp_max] := polid;
				
				temp_max := temp_max - 1;
				tmp := tmp + 1;
			END LOOP;

			UPDATE hlpm2007com_updated_1_expanded SET num_stories = ns_values[i] WHERE policy_id IN
				(SELECT record_policies[s] FROM (SELECT generate_subscripts(record_policies, 1)
				AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
				
			prev_temp_max := temp_max;		
		END LOOP;

		UPDATE hlpm2007com_updated_1_expanded SET num_stories = ns_values[10] WHERE
			policy_id IN (SELECT record_policies[s] FROM (SELECT generate_subscripts(record_policies, 1) AS s)
				 AS foo WHERE s <= temp_max);
		
		RAISE NOTICE 'Finished county %', nsprob.county;
	END LOOP;
END;

DECLARE
	cur1 CURSOR FOR SELECT * FROM hlpm2007com_updated_1_expanded WHERE num_stories=10 FOR UPDATE;
	randnum numeric(7,6);
	randstory integer;
BEGIN
	PERFORM setseed(0.5);

	for recvar in cur1 loop
		SELECT random() INTO randnum;
		--get random story between 10 and 33
		randstory = floor(33 - sqrt(randnum * 529.0));
		UPDATE hlpm2007com_updated_1_expanded SET num_stories=randstory WHERE CURRENT OF cur1;
	end loop;
END;

1. Assign random layout based on number of stories and coastal or inland ZIP code statistics for mid-high rise records using the following plpgsql function:

DECLARE
	--Coastal 4-6
	cur1 CURSOR FOR SELECT policy_id FROM hlpm2007com_updated_1_expanded WHERE zipcode IN (select zipcode from coastal_2008)
		AND (num_stories between 4 and 6);
	--Coastal 7-9
	cur2 CURSOR FOR SELECT policy_id FROM hlpm2007com_updated_1_expanded WHERE zipcode IN (select zipcode from coastal_2008)
		AND (num_stories between 7 and 9);
	--Coastal >9
	cur3 CURSOR FOR SELECT policy_id FROM hlpm2007com_updated_1_expanded WHERE zipcode IN (select zipcode from coastal_2008)
		AND num_stories>9;
	--Inland 4-6
	cur4 CURSOR FOR SELECT policy_id FROM hlpm2007com_updated_1_expanded WHERE zipcode NOT IN (select zipcode from coastal_2008)
		AND (num_stories between 4 and 6);
	--Inland 7-9
	cur5 CURSOR FOR SELECT policy_id FROM hlpm2007com_updated_1_expanded WHERE zipcode NOT IN (select zipcode from coastal_2008)
		AND (num_stories between 7 and 9);
	--Inland >9
	cur6 CURSOR FOR SELECT policy_id FROM hlpm2007com_updated_1_expanded WHERE zipcode NOT IN (select zipcode from coastal_2008)
		AND num_stories>9;
	
	record_policies bigint[];
	rec_count bigint;
	
	tmp bigint;
	randnum integer;
	num_to_get bigint;
	temp_max bigint;
	prev_temp_max bigint;
	polid bigint;
	layout_values character varying(30)[];
	probs_coastal_4_6 numeric(5,4)[2];
	probs_coastal_7_9 numeric(5,4)[2];
	probs_coastal_greater9 numeric(5,4)[2];
	probs_inland_4_6 numeric(5,4)[2];
	probs_inland_7_9 numeric(5,4)[2];
	probs_inland_greater9 numeric(5,4)[2];

BEGIN
	PERFORM setseed(0.5);

	layout_values[1] := 'CLOSED';
	layout_values[2] := 'OPEN';

	RAISE NOTICE 'layout_values = % ', layout_values;

	probs_coastal_4_6[1] := .43;
	probs_coastal_4_6[2] := .57;

	probs_coastal_7_9[1] := .54;
	probs_coastal_7_9[2] := .46;

	probs_coastal_greater9[1] := .84;
	probs_coastal_greater9[2] := .16;

	probs_inland_4_6[1] := .87;
	probs_inland_4_6[2] := .13;

	probs_inland_7_9[1] := .65;
	probs_inland_7_9[2] := .35;

	probs_inland_greater9[1] := .96;
	probs_inland_greater9[2] := .04;

	--**Coastal 4-6**
	rec_count := 0;
	FOR recvar IN cur1 LOOP
		rec_count := rec_count + 1;
		record_policies[rec_count] := recvar.policy_id;
	END LOOP;

	temp_max := rec_count;
	prev_temp_max := rec_count;
	num_to_get := round(rec_count * probs_coastal_4_6[1]);
	tmp := 1;
	WHILE tmp <= num_to_get LOOP
		randnum := get_random(temp_max);
		polid := record_policies[randnum];
		record_policies[randnum] := record_policies[temp_max];
		record_policies[temp_max] := polid;
		
		temp_max := temp_max - 1;
		tmp := tmp + 1;
	END LOOP;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[1] WHERE policy_id IN
		(SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1)
		AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
		
	prev_temp_max := temp_max;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[2] WHERE
		policy_id IN (SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1) AS s)
		AS foo WHERE s <= temp_max);
	--**Coastal 4-6**

	RAISE NOTICE 'Finished Coastal 4-6';

	--**Coastal 7-9**
	rec_count := 0;
	FOR recvar IN cur2 LOOP
		rec_count := rec_count + 1;
		record_policies[rec_count] := recvar.policy_id;
	END LOOP;

	temp_max := rec_count;
	prev_temp_max := rec_count;
	num_to_get := round(rec_count * probs_coastal_7_9[1]);
	tmp := 1;
	WHILE tmp <= num_to_get LOOP
		randnum := get_random(temp_max);
		polid := record_policies[randnum];
		record_policies[randnum] := record_policies[temp_max];
		record_policies[temp_max] := polid;
		
		temp_max := temp_max - 1;
		tmp := tmp + 1;
	END LOOP;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[1] WHERE policy_id IN
		(SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1)
		AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
		
	prev_temp_max := temp_max;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[2] WHERE
		policy_id IN (SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1) AS s)
		AS foo WHERE s <= temp_max);
	--**Coastal 7-9**

	RAISE NOTICE 'Finished Coastal 7-9';

	--**Coastal >9**
	rec_count := 0;
	FOR recvar IN cur3 LOOP
		rec_count := rec_count + 1;
		record_policies[rec_count] := recvar.policy_id;
	END LOOP;

	temp_max := rec_count;
	prev_temp_max := rec_count;
	num_to_get := round(rec_count * probs_coastal_greater9[1]);
	tmp := 1;
	WHILE tmp <= num_to_get LOOP
		randnum := get_random(temp_max);
		polid := record_policies[randnum];
		record_policies[randnum] := record_policies[temp_max];
		record_policies[temp_max] := polid;
		
		temp_max := temp_max - 1;
		tmp := tmp + 1;
	END LOOP;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[1] WHERE policy_id IN
		(SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1)
		AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
		
	prev_temp_max := temp_max;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[2] WHERE
		policy_id IN (SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1) AS s)
		AS foo WHERE s <= temp_max);
	--**Coastal >9**

	RAISE NOTICE 'Finished Coastal >9';

	--**Inland 4-6**
	rec_count := 0;
	FOR recvar IN cur4 LOOP
		rec_count := rec_count + 1;
		record_policies[rec_count] := recvar.policy_id;
	END LOOP;

	temp_max := rec_count;
	prev_temp_max := rec_count;
	num_to_get := round(rec_count * probs_inland_4_6[1]);
	tmp := 1;
	WHILE tmp <= num_to_get LOOP
		randnum := get_random(temp_max);
		polid := record_policies[randnum];
		record_policies[randnum] := record_policies[temp_max];
		record_policies[temp_max] := polid;
		
		temp_max := temp_max - 1;
		tmp := tmp + 1;
	END LOOP;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[1] WHERE policy_id IN
		(SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1)
		AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
		
	prev_temp_max := temp_max;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[2] WHERE
		policy_id IN (SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1) AS s)
		AS foo WHERE s <= temp_max);
	--**Inland 4-6**

	RAISE NOTICE 'Finished Inland 4-6';

	--**Inland 7-9**
	rec_count := 0;
	FOR recvar IN cur5 LOOP
		rec_count := rec_count + 1;
		record_policies[rec_count] := recvar.policy_id;
	END LOOP;

	temp_max := rec_count;
	prev_temp_max := rec_count;
	num_to_get := round(rec_count * probs_inland_7_9[1]);
	tmp := 1;
	WHILE tmp <= num_to_get LOOP
		randnum := get_random(temp_max);
		polid := record_policies[randnum];
		record_policies[randnum] := record_policies[temp_max];
		record_policies[temp_max] := polid;
		
		temp_max := temp_max - 1;
		tmp := tmp + 1;
	END LOOP;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[1] WHERE policy_id IN
		(SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1)
		AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
		
	prev_temp_max := temp_max;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[2] WHERE
		policy_id IN (SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1) AS s)
		AS foo WHERE s <= temp_max);
	--**Inland 7-9**

	RAISE NOTICE 'Finished Inland 7-9';

	--**Inland >9**
	rec_count := 0;
	FOR recvar IN cur6 LOOP
		rec_count := rec_count + 1;
		record_policies[rec_count] := recvar.policy_id;
	END LOOP;

	temp_max := rec_count;
	prev_temp_max := rec_count;
	num_to_get := round(rec_count * probs_inland_greater9[1]);
	tmp := 1;
	WHILE tmp <= num_to_get LOOP
		randnum := get_random(temp_max);
		polid := record_policies[randnum];
		record_policies[randnum] := record_policies[temp_max];
		record_policies[temp_max] := polid;
		
		temp_max := temp_max - 1;
		tmp := tmp + 1;
	END LOOP;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[1] WHERE policy_id IN
		(SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1)
		AS s) AS foo WHERE s > temp_max AND s <= prev_temp_max) ;
		
	prev_temp_max := temp_max;

	UPDATE hlpm2007com_updated_1_expanded SET layout = layout_values[2] WHERE
		policy_id IN (SELECT record_policies[s] FROM
		(SELECT generate_subscripts(record_policies, 1) AS s)
		AS foo WHERE s <= temp_max);
	--**Inland >9**

	RAISE NOTICE 'Finished Inland >9';
	
END;

1. Aggregate records by ZIP code, year built, construction type, county, region, number of stories, roof shape, roof cover, and opening protection for low rise records:

DROP SEQUENCE hlpm2007com_aggregated_lr_seq;
CREATE SEQUENCE hlpm2007com_aggregated_lr_seq
	INCREMENT 10
	MINVALUE 1
	START 1;
ALTER TABLE hlpm2007com_aggregated_lr_seq OWNER TO fdoi;

SELECT zipcode, year_built, const_type, sum(lms) as prop_value, sum(lms) as lms, sum(lmapp) as lmapp,
sum(lmc) as lmc, 0.00 as deduc, 0.00 as hurr_deduc, county, region, 1.00 as num_units, num_stories,
roof_shape, roof_cover, opening_protection, sum(num_units) as num_units_orig
INTO hlpm2007com_aggregated_0deduc_lr_tmp
FROM hlpm2007com_updated_1_expanded
WHERE num_stories<4
GROUP BY zipcode, year_built, const_type, county, region, num_stories, roof_shape, roof_cover, opening_protection;

ALTER TABLE hlpm2007com_aggregated_0deduc_lr_tmp ADD COLUMN policy_id bigint NOT NULL DEFAULT nextval('hlpm2007com_aggregated_lr_seq'::regclass);

SELECT policy_id, zipcode, year_built, const_type, prop_value, lms, lmapp, lmc, deduc, hurr_deduc,
county, region, num_units, num_stories, roof_shape, roof_cover, opening_protection, num_units_orig INTO hlpm2007com_aggregated_0deduc_lr
FROM hlpm2007com_aggregated_0deduc_lr_tmp;

ALTER TABLE hlpm2007com_aggregated_0deduc_lr OWNER TO fdoi;
ALTER TABLE hlpm2007com_aggregated_0deduc_lr ADD CONSTRAINT pk_hlpm2007com_aggregated_0deduc_lr PRIMARY KEY (policy_id);

DROP TABLE hlpm2007com_aggregated_0deduc_lr_tmp;

1. Create table hlpm2007com_aggregated_0deduc_lr_geo with latitude and longitude coordinates needed for WSC:

DROP SEQUENCE hlpm2007com_aggregated_lr_seq;
CREATE SEQUENCE hlpm2007com_aggregated_lr_seq
	INCREMENT 1
	MINVALUE 1
	START 1;
ALTER TABLE hlpm2007com_aggregated_lr_seq OWNER TO fdoi;

SELECT a.zipcode, a.year_built, a.const_type, a.prop_value, a.lms, a.lmapp, a.lmc, a.deduc, a.hurr_deduc,
a.county, a.region, a.num_units, a.num_stories, a.roof_shape, a.roof_cover, a.opening_protection, a.num_units_orig, b.lat, b.lon
INTO hlpm2007com_aggregated_0deduc_lr_geo_tmp
FROM hlpm2007com_aggregated_0deduc_lr as a, flzip2008 as b
WHERE a.zipcode=b.zip;

ALTER TABLE hlpm2007com_aggregated_0deduc_lr_geo_tmp ADD COLUMN policy_id bigint NOT NULL DEFAULT nextval('hlpm2007com_aggregated_lr_seq'::regclass);

SELECT policy_id, zipcode, year_built, const_type, prop_value, lms, lmapp, lmc, deduc, hurr_deduc,
county, region, num_units, num_stories, roof_shape, roof_cover, opening_protection, num_units_orig, lat, lon
INTO hlpm2007com_aggregated_0deduc_lr_geo
FROM hlpm2007com_aggregated_0deduc_lr_geo_tmp;

ALTER TABLE hlpm2007com_aggregated_0deduc_lr_geo OWNER TO fdoi;
ALTER TABLE hlpm2007com_aggregated_0deduc_lr_geo ADD CONSTRAINT pk_hlpm2007com_aggregated_0deduc_lr_geo PRIMARY KEY (policy_id);

DROP TABLE hlpm2007com_aggregated_0deduc_lr_geo_tmp;

1. Export the table hlpm2007com_aggregated_0deduc_lr_geo:

COPY hlpm2007com_aggregated_0deduc_lr_geo TO '/home/phrlm-storage-17/PostgresCatFund/queries/hlpm2007com_aggregated_0deduc_lr_geo.txt' WITH CSV;

1. Aggregate records by ZIP code, year built, county, region, number of stories, opening protection, and layout for mid-high rise records:

DROP SEQUENCE hlpm2007com_aggregated_mhr_seq;
CREATE SEQUENCE hlpm2007com_aggregated_mhr_seq
	INCREMENT 1
	MINVALUE 1
	START 1;
ALTER TABLE hlpm2007com_aggregated_mhr_seq OWNER TO fdoi;

SELECT 1 as loc, zipcode, year_built, sum(lms) as prop_value, sum(lms) as lms, sum(lmapp) as lmapp,
sum(lmc) as lmc, 0.00 as deduc, 0.00 as hurr_deduc, county, region, 0 as num_units, num_stories,
opening_protection, opening_protection as irw, 'C' as type_of_risk, layout, sum(num_units) as num_units_orig
INTO hlpm2007com_aggregated_0deduc_mhr_tmp
FROM hlpm2007com_updated_1_expanded
WHERE num_stories>=4
GROUP BY zipcode, year_built, county, region, num_stories, opening_protection, layout;

ALTER TABLE hlpm2007com_aggregated_0deduc_mhr_tmp ADD COLUMN policy_id bigint NOT NULL DEFAULT nextval('hlpm2007com_aggregated_mhr_seq'::regclass);

SELECT policy_id, loc, zipcode, year_built, prop_value, lms, lmapp, lmc, deduc, hurr_deduc,
county, region, num_units, num_stories, opening_protection, irw, type_of_risk, layout, num_units_orig INTO hlpm2007com_aggregated_0deduc_mhr
FROM hlpm2007com_aggregated_0deduc_mhr_tmp;

ALTER TABLE hlpm2007com_aggregated_0deduc_mhr OWNER TO fdoi;
ALTER TABLE hlpm2007com_aggregated_0deduc_mhr ADD CONSTRAINT pk_hlpm2007com_aggregated_0deduc_mhr PRIMARY KEY (policy_id);
ALTER TABLE hlpm2007com_aggregated_0deduc_mhr ALTER COLUMN type_of_risk TYPE varchar(30);

DROP TABLE hlpm2007com_aggregated_0deduc_mhr_tmp;

1. Assign number of units based on number of stories for mid-high rise records:

UPDATE hlpm2007com_aggregated_0deduc_mhr AS a SET num_units = (select b.value from num_units_conversion_com_mhr AS b
where a.num_stories=b.num_stories);

1. Create table hlpm2007com_aggregated_0deduc_mhr_geo with latitude and longitude coordinates needed for WSC:

DROP SEQUENCE hlpm2007com_aggregated_mhr_seq;
CREATE SEQUENCE hlpm2007com_aggregated_mhr_seq
	INCREMENT 1
	MINVALUE 1
	START 1;
ALTER TABLE hlpm2007com_aggregated_mhr_seq OWNER TO fdoi;

SELECT a.loc, a.zipcode, a.year_built, a.prop_value, a.lms, a.lmapp, a.lmc, a.deduc, a.hurr_deduc,
a.county, a.region, a.num_units, a.num_stories, a.opening_protection, a.irw, a.type_of_risk, a.layout, a.num_units_orig, b.lat, b.lon
INTO hlpm2007com_aggregated_0deduc_mhr_geo_tmp
FROM hlpm2007com_aggregated_0deduc_mhr as a, flzip2008 as b
WHERE a.zipcode=b.zip;

ALTER TABLE hlpm2007com_aggregated_0deduc_mhr_geo_tmp ADD COLUMN policy_id bigint NOT NULL DEFAULT nextval('hlpm2007com_aggregated_mhr_seq'::regclass);

SELECT policy_id, loc, zipcode, year_built, prop_value, lms, lmapp, lmc, deduc, hurr_deduc,
county, region, num_units, num_stories, opening_protection, irw, type_of_risk, layout, num_units_orig, lat, lon
INTO hlpm2007com_aggregated_0deduc_mhr_geo
FROM hlpm2007com_aggregated_0deduc_mhr_geo_tmp;

ALTER TABLE hlpm2007com_aggregated_0deduc_mhr_geo OWNER TO fdoi;
ALTER TABLE hlpm2007com_aggregated_0deduc_mhr_geo ADD CONSTRAINT pk_hlpm2007com_aggregated_0deduc_mhr_geo PRIMARY KEY (policy_id);

DROP TABLE hlpm2007com_aggregated_0deduc_mhr_geo_tmp;

1. Export the table hlpm2007com_aggregated_0deduc_mhr_geo:

COPY hlpm2007com_aggregated_0deduc_mhr_geo TO '/home/phrlm-storage-17/PostgresCatFund/queries/hlpm2007com_aggregated_0deduc_mhr_geo.txt' WITH CSV;

A sample set of the final low rise Commercial Cat Fund input data is the following:
1,32003.00,2002,Frame,3160000.0000,3160000.0000,0.0000,0.0000,0.00,0.00,Clay,North,1.00,3,UNKNOWN,UNKNOWN,UNKNOWN,30.102156,-81.718285
2,32003.00,2002,Frame,17380000.0000,17380000.0000,0.0000,0.0000,0.00,0.00,Clay,North,1.00,2,UNKNOWN,UNKNOWN,UNKNOWN,30.102156,-81.718285
3,32003.00,2002,Frame,8690000.0000,8690000.0000,0.0000,0.0000,0.00,0.00,Clay,North,1.00,1,UNKNOWN,UNKNOWN,UNKNOWN,30.102156,-81.718285
4,32003.00,1975,Frame,5400000.0000,5400000.0000,0.0000,0.0000,0.00,0.00,Clay,North,1.00,1,UNKNOWN,UNKNOWN,UNKNOWN,30.102156,-81.718285
5,32034.00,2002,Other,0.0000,0.0000,3600.0000,0.0000,0.00,0.00,Nassau,North,1.00,3,UNKNOWN,UNKNOWN,UNKNOWN,30.626529,-81.465155
6,32034.00,2002,Masonry,7327150.0000,7327150.0000,25500.0000,1500.0000,0.00,0.00,Nassau,North,1.00,3,UNKNOWN,UNKNOWN,UNKNOWN,30.626529,-81.465155
7,32034.00,2002,Masonry,48839450.0000,48839450.0000,517500.0000,13500.0000,0.00,0.00,Nassau,North,1.00,2,UNKNOWN,UNKNOWN,UNKNOWN,30.626529,-81.465155
8,32034.00,2002,Masonry,7476300.0000,7476300.0000,133600.0000,3000.0000,0.00,0.00,Nassau,North,1.00,1,UNKNOWN,UNKNOWN,UNKNOWN,30.626529,-81.465155
9,32034.00,2002,Frame,1318815.3846,1318815.3846,0.0000,0.0000,0.00,0.00,Nassau,North,1.00,3,HIP,UNKNOWN,PLYWOOD,30.626529,-81.465155
10,32034.00,2002,Frame,3826560.0000,3826560.0000,150000.0000,202800.0000,0.00,0.00,Nassau,North,1.00,2,UNKNOWN,UNKNOWN,UNKNOWN,30.626529,-81.465155
11,32034.00,2002,Frame,1863600.0000,1863600.0000,91800.0000,72000.0000,0.00,0.00,Nassau,North,1.00,2,UNKNOWN,UNKNOWN,PLYWOOD,30.626529,-81.465155
12,32034.00,2002,Frame,10527007.6922,10527007.6922,0.0000,0.0000,0.00,0.00,Nassau,North,1.00,2,HIP,UNKNOWN,PLYWOOD,30.626529,-81.465155
13,32034.00,2002,Frame,1275520.0000,1275520.0000,50000.0000,67600.0000,0.00,0.00,Nassau,North,1.00,1,UNKNOWN,UNKNOWN,UNKNOWN,30.626529,-81.465155

· A sample set of the final mid-high rise Commercial Cat Fund input data is the following:
1,1,32003.00,2002,790000.0000,790000.0000,0.0000,0.0000,0.00,0.00,Clay,North,48,8,UNKNOWN,UNKNOWN,C,CLOSED,30.102156,-81.718285
2,1,32003.00,2002,790000.0000,790000.0000,0.0000,0.0000,0.00,0.00,Clay,North,54,6,UNKNOWN,UNKNOWN,C,CLOSED,30.102156,-81.718285
3,1,32003.00,2002,790000.0000,790000.0000,0.0000,0.0000,0.00,0.00,Clay,North,32,4,UNKNOWN,UNKNOWN,C,CLOSED,30.102156,-81.718285
4,1,32025.00,1965,502500.0000,502500.0000,0.0000,0.0000,0.00,0.00,Columbia,North,119,17,UNKNOWN,UNKNOWN,C,CLOSED,30.177938,-82.633755
5,1,32025.00,1975,262621.4286,262621.4286,0.0000,0.0000,0.00,0.00,Columbia,North,50,5,UNKNOWN,UNKNOWN,C,CLOSED,30.177938,-82.633755
6,1,32034.00,1985,1346301.1351,1346301.1351,27914.8649,1750.0000,0.00,0.00,Nassau,North,50,5,UNKNOWN,UNKNOWN,C,CLOSED,30.626529,-81.465155
7,1,32034.00,1995,340406.2500,340406.2500,0.0000,0.0000,0.00,0.00,Nassau,North,50,5,UNKNOWN,UNKNOWN,C,CLOSED,30.626529,-81.465155
8,1,32034.00,2002,621200.0000,621200.0000,30600.0000,24000.0000,0.00,0.00,Nassau,North,81,9,PLYWOOD,PLYWOOD,C,CLOSED,30.626529,-81.465155
9,1,32034.00,1955,2033722.5769,2033722.5769,25620.5769,1275.0000,0.00,0.00,Nassau,North,32,4,UNKNOWN,UNKNOWN,C,CLOSED,30.626529,-81.465155
10,1,32034.00,1955,1346301.1351,1346301.1351,27914.8649,1750.0000,0.00,0.00,Nassau,North,50,5,UNKNOWN,UNKNOWN,C,OPEN,30.626529,-81.465155
11,1,32034.00,2002,0.0000,0.0000,57600.0000,0.0000,0.00,0.00,Nassau,North,48,8,UNKNOWN,UNKNOWN,C,CLOSED,30.626529,-81.465155
12,1,32034.00,1955,694997.5000,694997.5000,2557.5000,1275.0000,0.00,0.00,Nassau,North,48,8,UNKNOWN,UNKNOWN,C,OPEN,30.626529,-81.465155
13,1,32034.00,1985,1338725.0769,1338725.0769,23063.0769,0.0000,0.00,0.00,Nassau,North,49,7,UNKNOWN,UNKNOWN,C,CLOSED,30.626529,-81.465155

6. [bookmark: _Toc346555873]Database for Wind Speed Correction Use Case

3. [bookmark: _Toc346555874]General Description

The WSC database is part of the storage layer for the Wind Speed Correction use case of version 5.0 which follows a three-tier architecture. The purpose of the database is to store the information necessary for the WSC interface layer. This information consists of the available roughness sets, IDL runs, policy data files, interpolation runs, and WSC runs in the system.

3. [bookmark: _Toc346555875]Database Schema

The following is the database schema diagram:
[image:]

The following is a description of the tables used in the database:

Table 1: interp_runs

This table stores the data for the existing interpolation runs in the system.

	id NUMBER(3) NOT NULL,
	name VARCHAR2(100) NOT NULL,
	idl_id NUMBER(3) NOT NULL,
	filelist VARCHAR2(500),
	path VARCHAR2(500),
	swath_path VARCHAR2(500),
	sim_years NUMBER(6),
	notes VARCHAR2(500),
	flag NUMBER(1) NOT NULL

Table 2: idl_runs

This table stores the information of the existing IDL runs in the system.

	id NUMBER(3) NOT NULL,
	name VARCHAR2(100) NOT NULL,
	output_path varchar2(500) NOT NULL,
	snapshot_path varchar2(500) NOT NULL,
	trackfile varchar2(500) NOT NULL,
	num_years number(6) NOT NULL,
	max_file NUMBER(7) NOT NULL,
	notes varchar2(500),
	flag NUMBER(1) NOT NULL

Table 3: wsc_runs

This table stores the information for the existing WSC runs in the system.

	id NUMBER(3) NOT NULL,
	id_interp NUMBER(3) NOT NULL,
	id_pol_wsc NUMBER(4) NOT NULL,
	id_rough NUMBER(3) NOT NULL,
	name VARCHAR2(100) NOT NULL,
	output_path VARCHAR2(500) NOT NULL,
	notes VARCHAR2(500) NOT NULL,
	flag NUMBER(1) NOT NULL

Table 4: servers

This table stores the list of servers that can be used to run the interpolation and wsc codes.

	id NUMBER(3) NOT NULL,
	name VARCHAR2(100) NOT NULL,
	notes VARCHAR2(500) NOT NULL

Table 5: roughness_sets

This table stores the information for the available roughness sets in the system.

	id number(3) not null,
	name VARCHAR2(100) NOT NULL,
	path varchar2(100) not null,
	notes varchar(200),
	flag NUMBER(1) NOT NULL,
	distance_path VARCHAR2(500) NOT NULL

Table 6: policy_data

This table stores the policy data files available in the system.

	id NUMBER(4) NOT NULL,
	name VARCHAR2(50) NOT NULL,
	num_records NUMBER(7) NOT NULL,
	path VARCHAR2(500) NOT NULL,
	notes VARCHAR2(500),
	flag NUMBER(1) NOT NULL

Table 7: policy_data_wsc

This table stores the information of the wsc-processed policy files in the system.

	id NUMBER(4),
	wsc_file VARCHAR2(500) NOT NULL,
	geo_vintage VARCHAR2(100) NOT NULL,
	geo_file VARCHAR2(500),
	flag NUMBER(1) NOT NULL,
	notes VARCHAR2(500)

Table 8: curr_proc

This table serves to log which task is running in the system and which servers the task is currently using.

	name VARCHAR2(500) NOT NULL,
	id_server NUMBER(3) NOT NULL,
	notes VARCHAR2(500)

3. [bookmark: _Toc346555876]Data Loading

The information is loaded through the web application except for some data loaded by the database administrator. Required so that the web interface provided the proper functionality from the beginning, the data loaded by the administrator are for the tables:

SERVERS
ROUGHNESS_SETS
IDL_RUNS
POLICY_DATA
POLICY_DATA_WSC

The information for the other tables is only added/removed via the programs of the Wind Speed Correction use case.

3. [bookmark: _Toc346555877]Data Description

Since most tables store paths to files/folders stored in the file system, a description of these files/folders is required.

ROUGHNESS_SETS
1. path: full path to the roughness tiles
This folder must contain the following roughness files:
effr.001007.ctl
effr.001007.dat
effr.002007.ctl
effr.002007.dat
effr.003006.ctl
effr.003006.dat
effr.003007.ctl
effr.003007.dat
effr.004006.ctl
effr.004006.dat
effr.004007.ctl
effr.004007.dat
effr.005006.ctl
effr.005006.dat
effr.005007.ctl
effr.005007.dat
effr.006001.ctl
effr.006001.dat
effr.006003.ctl
effr.006003.dat
effr.006004.ctl
effr.006004.dat
effr.006005.ctl
effr.006005.dat
effr.006006.ctl
effr.006006.dat
effr.006007.ctl
effr.006007.dat
effr.007001.ctl
effr.007001.dat
effr.007002.ctl
effr.007002.dat
effr.007003.ctl
effr.007003.dat
effr.007004.ctl
effr.007004.dat
effr.007005.ctl
effr.007005.dat
effr.007006.ctl
effr.007006.dat
effr.007007.ctl
effr.007007.dat
effr.008001.ctl
effr.008001.dat
effr.008002.ctl
effr.008002.dat
effr.008003.ctl
effr.008003.dat
effr.008004.ctl
effr.008004.dat
effr.008005.ctl
effr.008005.dat
effr.008006.ctl
effr.008006.dat

1. distance_path: full path to the distance tiles
This folder must contain the following distance files:
effr.001007.ctl
effr.001007.dat
effr.002007.ctl
effr.002007.dat
effr.003006.ctl
effr.003006.dat
effr.003007.ctl
effr.003007.dat
effr.004006.ctl
effr.004006.dat
effr.004007.ctl
effr.004007.dat
effr.005006.ctl
effr.005006.dat
effr.005007.ctl
effr.005007.dat
effr.006001.ctl
effr.006001.dat
effr.006003.ctl
effr.006003.dat
effr.006004.ctl
effr.006004.dat
effr.006005.ctl
effr.006005.dat
effr.006006.ctl
effr.006006.dat
effr.006007.ctl
effr.006007.dat
effr.007001.ctl
effr.007001.dat
effr.007002.ctl
effr.007002.dat
effr.007003.ctl
effr.007003.dat
effr.007004.ctl
effr.007004.dat
effr.007005.ctl
effr.007005.dat
effr.007006.ctl
effr.007006.dat
effr.007007.ctl
effr.007007.dat
effr.008001.ctl
effr.008001.dat
effr.008002.ctl
effr.008002.dat
effr.008003.ctl
effr.008003.dat
effr.008004.ctl
effr.008004.dat
effr.008005.ctl
effr.008005.dat
effr.008006.ctl
effr.008006.dat

POLICY_DATA
1. path: full path to policy data file formatted for ILM
A sample of a file is as follows:
17
Id,Zipcode,YearBuilt,ConstType,Vi,LMs,LMapp,LMc,LMale,Deduc,HD,NatCov,County,Region,Units
802,32054.00,2002,Other,0.0000000000,0.0000000000,0.0000000000,62333.0714285716,0.0000000000,0.00,0.00,R,Union,North,1.00,30.019164,-82.340516
The first line of the file must be the number of attributes in the file and the second line the names of those attributes in the order they appear in the file.

POLICY_DATA_WSC
1. wsc_file: full path to the wsc-process file corresponding to a record in the table POLICY_DATA.
A sample of a file is as follows:
1,-82.340516,30.019164
2,-82.340516,30.019164
3,-82.340516,30.019164
4,-82.340516,30.019164
5,-82.340516,30.019164
6,-82.340516,30.019164
7,-82.340516,30.019164
8,-82.340516,30.019164
9,-82.340516,30.019164
10,-82.340516,30.019164
11,-82.340516,30.019164
12,-82.340516,30.019164
13,-82.340516,30.019164
14,-82.340516,30.019164
15,-82.340516,30.019164
16,-82.340516,30.019164
17,-82.340516,30.019164
18,-82.340516,30.019164
19,-82.340516,30.019164
20,-82.340516,30.019164

The format of file must be: <line number>,<longitude>,<latitude>

INTERP_RUNS
1. filelist: list of the snapshot files:
A sample of the file list is as follows:
../IDL_run/IDL_result/snapshots1.dat
../IDL_run/IDL_result/snapshots2.dat
../IDL_run/IDL_result/snapshots3.dat
../IDL_run/IDL_result/snapshots4.dat
../IDL_run/IDL_result/snapshots5.dat
../IDL_run/IDL_result/snapshots6.dat
../IDL_run/IDL_result/snapshots7.dat
../IDL_run/IDL_result/snapshots8.dat
../IDL_run/IDL_result/snapshots9.dat
../IDL_run/IDL_result/snapshots10.dat
../IDL_run/IDL_result/snapshots11.dat
../IDL_run/IDL_result/snapshots12.dat
../IDL_run/IDL_result/snapshots13.dat
../IDL_run/IDL_result/snapshots14.dat
../IDL_run/IDL_result/snapshots15.dat
../IDL_run/IDL_result/snapshots16.dat
../IDL_run/IDL_result/snapshots17.dat
../IDL_run/IDL_result/snapshots18.dat
../IDL_run/IDL_result/snapshots19.dat
../IDL_run/IDL_result/snapshots20.dat

1. swash_path: full path to the swash files
This folder must contain the following swash files:
swath.001007.ctl
swath.001007.dat
swath.001007.info
swath.002007.ctl
swath.002007.dat
swath.002007.info
swath.003006.ctl
swath.003006.dat
swath.003006.info
swath.003007.ctl
swath.003007.dat
swath.003007.info
swath.004006.ctl
swath.004006.dat
swath.004006.info
swath.004007.ctl
swath.004007.dat
swath.004007.info
swath.005006.ctl
swath.005006.dat
swath.005006.info
swath.005007.ctl
swath.005007.dat
swath.005007.info
swath.006001.ctl
swath.006001.dat
swath.006001.info
swath.006003.ctl
swath.006003.dat
swath.006003.info
swath.006004.ctl
swath.006004.dat
swath.006004.info
swath.006005.ctl
swath.006005.dat
swath.006005.info
swath.006006.ctl
swath.006006.dat
swath.006006.info
swath.006007.ctl
swath.006007.dat
swath.006007.info
swath.007001.ctl
swath.007001.dat
swath.007001.info
swath.007002.ctl
swath.007002.dat
swath.007002.info
swath.007003.ctl
swath.007003.dat
swath.007003.info
swath.007004.ctl
swath.007004.dat
swath.007004.info
swath.007005.ctl
swath.007005.dat
swath.007005.info
swath.007006.ctl
swath.007006.dat
swath.007006.info
swath.007007.ctl
swath.007007.dat
swath.007007.info
swath.008001.ctl
swath.008001.dat
swath.008001.info
swath.008002.ctl
swath.008002.dat
swath.008002.info
swath.008003.ctl
swath.008003.dat
swath.008003.info
swath.008004.ctl
swath.008004.dat
swath.008004.info
swath.008005.ctl
swath.008005.dat
swath.008005.info
swath.008006.ctl
swath.008006.dat
swath.008006.info

IDL_RUNS
1. output_path: output path to the IDL runs
A sample of the output files are as follows:

output1.dat
output2.dat
output3.dat
output4.dat
output5.dat
output6.dat
output7.dat
output8.dat
output9.dat

1. snapshot_path: full path to the snapshot
A sample of the snapshot files are as follows:

snapshots1.dat
snapshots2.dat
snapshots3.dat
snapshots4.dat
snapshots5.dat
snapshots6.dat
snapshots7.dat
snapshots8.dat
snapshots9.dat

1. trackfile: full path to the track file
A sample of a track file is as follows:

storm0000009 10/07/ 2 20:00
 1 2 1007 20 0 28.41 88.08 989.94 30.25 1.42 0
 0 2 1007 21 0 28.67 87.94 990.58 30.25 1.42 0
 0 2 1007 22 0 28.93 87.80 991.22 30.25 1.41 0
 0 2 1007 23 0 29.20 87.66 991.86 30.25 1.41 0
 0 2 1008 0 0 29.47 87.50 992.03 30.25 1.41 0
 0 2 1008 1 0 29.74 87.32 992.20 30.25 1.41 0
 0 2 1008 2 0 30.00 87.13 992.38 30.25 1.41 0
 0 2 1008 3 0 30.27 86.92 992.55 30.25 1.40 0
 0 2 1008 4 0 30.53 86.70 992.90 30.25 1.40 1
 0 2 1008 5 0 30.79 86.47 993.58 30.25 1.40 3
 0 2 1008 6 0 31.05 86.22 994.23 30.25 1.40 3
 0 2 1008 7 0 31.30 85.96 994.87 30.25 1.39 3
 0 2 1008 8 0 31.55 85.68 995.48 30.25 1.39 3
 0 2 1008 9 0 31.80 85.39 996.07 30.25 1.39 3
 0 2 1008 10 0 32.05 85.08 996.64 30.25 1.39 3
 0 2 1008 11 0 32.29 84.76 997.19 30.25 1.39 3
 0 2 1008 12 0 32.54 84.43 997.72 30.25 1.38 3
 0 2 1008 13 0 32.78 84.08 998.24 30.25 1.38 3

WSC_RUNS
1. output_path: output path to the WSC runs
A sample of the output files are as follows:

wsc.10001.dat
wsc.10003.dat
wsc.10005.dat
wsc.10006.dat
wsc.10007.dat
wsc.10009.dat
wsc.1000.dat
wsc.10010.dat
wsc.10011.dat
wsc.10012.dat
wsc.10013.dat
wsc.10015.dat
wsc.10016.dat
wsc.10017.dat
wsc.10018.dat
wsc.10019.dat
wsc.1001.dat
wsc.10020.dat
wsc.10021.dat
wsc.10022.dat
wsc.10025.dat
wsc.10028.dat
wsc.10029.dat
wsc.10032.dat
wsc.10033.dat
wsc.10034.dat
wsc.10035.dat
wsc.10036.dat
wsc.10037.dat

Vol.VI-124
[bookmark: _Toc346555878]Volume VII. FPHLM Quality Assurance

Revision History
	Date
	Person
	Summary

	02/01/2007
	Min Chen
	Created the document

	06/01/2007
	Shermann Chans
	- Added section describing internal model names to the naming convections
- Updated Code Count tables

	02/22/2008
	Fausto Fleites
	- Included in the model revision and maintenance section the rules underlying the model and code revision numbering systems
- Updated Code Count tables

	05/18/2008
	Fausto Fleites
	- Updated section of internal model names due to the new model version number
- Updated section of model revision and maintenance to include the changes in version 3.0

	02/20/2009
	Fausto Fleites
	- Added revision history
- Updated section of internal model names due to the new model version number
- Updated section of model revision and maintenance to include the changes in version 3.1
- Added list of model revisions since the initial submission of 2008 as well as the changes in version 3.1 from last year’s submission –version 3.0

	05/15/2009
	Ronald Ocampo
	- Updated Code Count tables

	05/15/2009
	Fausto Fleites
	- Added the table of changes in the model since this year’s initial submission

	10/27/2010
	Fausto Fleites
	- Updated sections 7.3.1, 7.3.2, and 7.5 due to new model version 4.0

	04/19/2011
	Fausto Fleites
	- Updated sections 7.3.1, 7.3.2, and 7.5 due to changes in version 4.1

	06/06/2011
	Ronald Ocampo
	- Updated section 7.5 due to changes in engineering flowchart in ILM-MHB

	01/18/2013
	Dianting Liu
	- Updated sections 7.5 due to changes in version 5.0

	01/18/2013
	Diana Machado
	- Updated sections 7.3 and 7.5 due to changes in version 5.0

	01/18/2013
	Raul Garcia
	- Updated section 7.3 due to changes in v5.0

[bookmark: _Toc346383731][bookmark: _Toc346384080][bookmark: _Toc346384366][bookmark: _Toc346384654][bookmark: _Toc346384941][bookmark: _Toc346385228][bookmark: _Toc346385514][bookmark: _Toc346385801]

CHAPTER 7. [bookmark: _Toc346400122][bookmark: _Toc346408580][bookmark: _Toc346555879]
[bookmark: _Toc346555880]Coding Guide Lines

[bookmark: _Toc346555881]About the Coding Guidelines

This document is prepared as a part of the FPHLM project. All the developers involved in the system development are requested to read and follow the instructions given here. In general, this document may be read as a guide to writing robust and readable codes. Examples given herein are mainly focused on programs written in C language, but the content is applicable for programs written in any other programming language.

[bookmark: _Toc346555882]File Organization

[bookmark: _Toc346555883]Source files

Keep your classes/files short, don't exceed 2000 lines of code
Divide your code up, make structures clearer
Put every class in a separate file and name the file like the class name. This convention makes things much easier.

[bookmark: _Toc346555884]Directory Layout

Developer’s own structure

Create a directory for every use case and keep all the related codes in that.
For each major revision create a subfolder with the revision number.
Do the CVS before any change and keep your own backup always.

System Directory Structure

All the codes C and JAVA codes: Create a subdirectory under the use case name inside /home/irene1b/oracle/j2ee/home/default-web-app/WEB-INF/classes/FDOIclasses/
Save the latest copy of the codes there
All the JSP files has to be saved in
/home/irene1b/oracle/j2ee/home/default-web-app/FDOI/useCaseName
Do CVS

Example:
[image: directoryStruct]

[bookmark: _Toc346555885]Code Indentation

[bookmark: _Toc346555886]Wrapping Lines

When an expression does not fit on a single line, break it up according to these general principles:

Break after a comma
Break after an operator
Prefer higher-level breaks to lower-level breaks
Align the new line with the beginning of the expression at the same level on the previous line

Example: Breaking up method calls:

longMethodCall(expr1, expr2,
 expr3, expr4, expr5);

Example: Breaking an arithmetic expression:

PREFER:
var = a * b / (c - g + f) +
 4 * z;

BAD STYLE – AVOID:
var = a * b / (c - g +
 f) + 4 * z;

The first one is preferred since the break occurs outside the parenthesized expression (higher level rule). Note that you indent with tabs to the indentation level and then with spaces to the breaking position in our example this would be:
> var = a * b / (c - g + f) +
>….4 * z;

Where '>' are tab chars and '.' are spaces.

[bookmark: _Toc346555887]White Spaces: Don't use spaces for indentation - use tabs!

An indentation standard using spaces never was achieved. Always use tabs. Tab characters have some advantages:

Everyone can set his or her own preferred indentation level
It is only 1 character and not 2, 4, 8 … therefore it will reduce typing (even with smart indenting you have to set the indentation manually sometimes, or take it back or whatever)
If you want to increase the indentation (or decrease), mark one block and increase the indent level with Tab with Shift-Tab you decrease the indentation. This is true for almost any text editor.
Here, we define the Tab as the standard indentation character.

[bookmark: _Toc346555888]Comments

[bookmark: _Toc346555889]Block Comments

· When you wish to use block comments you should use the following style:
/* Line 1
* Line 2
* Line 3
*/
This will set off the block visually from code for the (human) reader.

· Alternatively you might use this old fashioned C style for single line comments, even though it is not recommended. In case you use this style, a line break should follow the comment, as it is hard to see code preceded by comments in the same line:
/* blah blah blah */

· In case this kind of block comment is not applicable, it is recommended to follow a similar standard.

[bookmark: _Toc346555890]Single Line Comments

· You should use the comment style of “//” to "comment out" some code. It may be used for commenting sections of code too.
· Single line comments must be indented to the indent level when they are used for code documentation.
· A rule of thumb says that generally the length of a comment should not exceed the length of the code explained, as this is an indication of too complicated, potentially buggy code.

[bookmark: _Toc346555891]In line File Documentation

· At the beginning of the each file the purpose of the file should be documented using the following template.
· For each code revision, <Revision History> has to be updated

//===
// <Filename> <Creation Date>
// WProbability.cc					 05/13/2004

// <description>
// Calculates wind speed probabilities.
// Input : Surface corrected wind speeds (3S gust) from the WSC module
// Output: Probabilities of wind speeds from 20-300mph, interval is 4 // mph

// <Revision History>
// <date>		<developer>	 <Description>
// 05/19/2004 kwick001 initial code
//===

[bookmark: _Toc346555892]In line Function Documentation

· At the beginning of the each file the purpose of the file should be documented using the following template.
· For each revision <Revision History> has to be updated
//===
// <Function>						<Creation Date>
// count_zip 02/04/2005
//
// <Parameters>
// none
//
// <Return>
// Number of lines in the "zipcodes.txt" file
//
// <Description>
// read the zipcodes.txt file count the number of lines in the file
//
// <Revision History>
// 02/04/2005	kwick001	generate initial code
//===

[bookmark: _Toc346555893]Variable Declarations

[bookmark: _Toc346555894]Number of Declarations per Line

· One declaration per line is recommended since it encourages commenting. In other words,
	int level; // indentation level
	int size; // size of table

· Do not put more than one variable or variables of different types on the same line when declaring them.

Example:
	int a, b; //What is 'a'? What does 'b' stand for?

· The above example also demonstrates the drawbacks of non-obvious variable names. Be clear when naming variables.

[bookmark: _Toc346555895]Initialization

· Try to initialize local variables as soon as they are declared. For example:

	int val = 10;

[bookmark: _Toc346555896]Statements

[bookmark: _Toc346555897]Simple Statements

Each line should contain only one statement.

[bookmark: _Toc346555898]Return Statements

A return statement should not use outer most parentheses.

Don't use:
	return (n * (n + 1) / 2);
Use:
	return n * (n + 1) / 2;

[bookmark: _Toc346555899]If, if-else, if else-if else Statements

if and if-else statements should look like this:

if (condition)
{
	DoSomething();
	...
}
if (condition)
{
	DoSomething();
	...
}
else
{
	DoSomethingOther();
	...
}

[bookmark: _Toc346555900]For Statements

A “for” statement should have the following form :

for (int i = 0; i < 5; ++i)
 {
	DoSomething();
	...
}

Note: Generally use brackets even if there is only one statement in the loop.

[bookmark: _Toc346555901]While Statements

A while statement should be written as follows:

while (condition)
{
	DoSomething();
	...
}

[bookmark: _Toc346555902]Try-catch Statements

A try-catch statement should follow this form:

try {
...
} catch (Exception e) {
...
}
-OR -
try {
...
} catch (Exception e) {
...
} finally {
...
}

[bookmark: _Toc346555903]White Space

[bookmark: _Toc346555904]Blank Lines

Blank lines improve readability. They set off blocks of code which are in themselves logically related. Two blank lines should always be used between:

Logical sections of a source file
Class and interface definitions (try one class/interface per file to prevent this case) One blank line should always be used between:
Functions/ methods
Logical sections inside a method to improve readability. Note that blank lines must be indented, as they would contain a statement. This makes insertion in these lines much easier.

[bookmark: _Toc346555905]Inter-term spacing

· There should be a single space after a comma or a semicolon.
Example:
Use:	TestMethod(a, b, c); or TestMethod(a, b, c);
 Don't use: TestMethod(a,b,c)

· Single spaces surround operators (except unary operators like increment or logical not)
 Example:
	Use:	 a = b;
	Don't use:	 a=b;
	Use: 	 for (int i = 0; i < 10; ++i)
	Don't use: for (int i=0; i<10; ++i) //or for(int i=0;i<10;++i)

[bookmark: _Toc346555906]Naming Conventions

[bookmark: _Toc346555907]Naming Guidelines

Use Camel Casing: This convention capitalizes the first character of each word except the first one.
E.g. testCounter.
Use descriptive names, which should be enough to determine the variable meaning and its type, but preferably, a name that is based on the meaning of the parameter.
Remember: a good variable name describes the semantic not the type.
An exception to this rule is GUI code. All fields and variable names that contain GUI elements like buttons should be post-fixed with their names of type without abbreviations.

Example:
System.Windows.Forms.Button cancelButton;
System.Windows.Forms.TextBox nameTextBox;

[bookmark: _Toc346555908]Variable Names

· Counting variables are preferably called i, j, k, l, m, n when used in 'trivial' counting loops.

Note: Indexer variables generally should be called i, j, k etc. But in some cases, it may make sense to reconsider this rule. In general, when the same counters or indexers are reused, give them meaningful names.

[bookmark: _Toc346555909]Method Names

Name methods with verbs or verb phrases.

[bookmark: _Toc346555910]Model Names

 [Model_Version].[Wind_Field].[Zip_Year].[LandUse/LandCover_Year].[Upstream_Fetch]
 [Model_Version]: e.g. V15, V20, V25, V26, V27, V30
 [Wind_Field]: e.g. 10 (i.e. May 2005), 20 (i.e. March 2006), 25 (i.e. Feb 16, 2007)
 [Zip_Year]: e.g. 2004, 2006
 [LandUse/LandCover_Year]: e.g. 95, 01 (i.e. roughness)
 [Upstream_Fetch]: e.g. 0, 1
Currently, our model is V30.25.2006.01.min.0.
 “min” is residential minimum roughness within 500m, using short fetch
[bookmark: _Toc346555911]Reference

The “C# Coding Style Guide” by: Salman Ahmed is used as a template for this guideline development.

[bookmark: _Toc346555912]Data Validation and Verification

About the Document

This document is prepared as a part of the FPHLM project. The primary audience for this guidance is practitioners directly involved in implementing or managing data verification or data validation efforts. This guidance should provide this audience with a conceptual overview on “how-to” verify and validate the data. All the persons involved in implementing or managing the data are asked to read and follow the instructions given here.

[bookmark: _Toc346555913]Introduction

If the information being used is not credible, there is no need to use it. Decisions based on inaccurate or unreliable data can adversely affect the decision making process. Data verification and validation is used to evaluate whether data has been generated according to the specifications, satisfy acceptance criteria, and are appropriate and consistent with their intended use.

[bookmark: _Toc346555914]Data Verification

Data verification is a systematic process of evaluating performance and compliance of a set of data when compared to a set of standards to ascertain its completeness, correctness, and consistency using the methods and criteria defined in the project documentation [1].

[bookmark: _Toc346555915]Data Validation

Data validation follows the data verification process and uses information from the project documentation to ascertain the usability of the data in light of its measurement quality objectives and to ensure that results obtained are scientifically defensible [1].

[bookmark: _Toc346555916]Procedures

In the context of FPHLM project, data validation and verification is mostly a one-time process. Under mentioned procedures may not be applicable on all instances. But in general most of these procedures are applicable and should be followed by the developers. In case all these procedures are not applicable, it is advised to develop your own methods and properly document the procedure followed.

Format check
Check if the data is in the right format. This can be done manually or using any commercially available data manipulating tools such as Excel or Access. Mainly data is received in text file format. If the input data set is too large, do the format test on randomly selected files.

Length check
Check if the data is too short or too long. For this check the whole file and then check the expected length of each field. This is applicable to text fields only.

Range check
It checks that a number is not too big or too small. For an example, a zip code has to be greater than 0 and less than 40000.

Presence check
It checks that a field has been entered.

Once the above checks are completed and successful it is ready to be imported to the system. It is recommended to use data manipulating software or a simple program written by the developer for the data importing process rather than manual entry. If it is unavoidable you may use manual entry. In either case, it is recommended to double check the imported data. The above mentioned steps can be repeated, and in addition, the following tests are recommended.

Double entry
Type the data in twice and compare the two copies. This can take much time and means higher costs.

Proofreading data
This method involves somebody checking if the content in the system is the same as the original input. Always make sure to make a copy of the data after importing them to the system and give this copy and the original copy of the data to a person who is not involved in the data manipulating process to compare and certify the correctness.

[bookmark: _Toc346555917]Data Security and Integrity

This section describes precautionary measures that must be taken in the event that computer malfunctions, natural disasters, human error or actions occur that could affect collected data.

Duplicate copies or back-up system for data
Florida International University, School of Computer Science takes regular backups generally every Friday. All the databases and data files are included in the backup. Developer must make sure that they store all the data in those places that are backed up.

Data security protocols are in place and effective
Firewalls/password protection, access levels, etc. are established.

Accountability for data integrity clearly rests with the person entering the data, and the responsible program specialist and manager. Only those who are skilled and trained in proper data handling procedures are allowed with direct access to the database.

[bookmark: _Toc346555918]References

[1] EPA Quality System, Quality Management Tools - Data Verification and Validation (http://www.epa.gov/quality/vandv.html)

[bookmark: _Ref294697064][bookmark: _Toc346555919]Model Maintenance and Revision

[bookmark: _Ref294697046][bookmark: _Toc346555920]Model Revision and Maintenance

FPHLM has developed a clearly documented policy for model revision with respect to methodology and data. The model numbering system consists of the scheme: “V[major].[minor]”. The terms “[major]” and “[minor]” are positive numeric numbers that correspond to major and minor changes in the model respectively; a minor change causes the minor number to be incremented by one, and similarly a major change causes the major number to be incremented by one with the minor number reset to zero. The rules that prompt major or minor changes in the model are the following:

Rules that trigger a change in the major number:

Updates in any of the main modules of FPHLM: any change resulting in the partial or total modification of the algorithm/model of the Storm Forecast, Wind Field, Damage Estimation, and/or Insurance Loss models.

Rules that trigger a change in the minor number:

Slight changes to the Storm Forecast, Wind Field, Damage Estimation, and/or Insurance Loss modules: small updates such as a change in the Holland B parameter or any change to correct deficiencies that do not result in a new algorithm for the component.
Updates to correct errors in the computer code: modifications in the code to correct deficiencies or errors such as a code bug in the computer program.
Changes in the probability distribution functions using updated or corrected historical data, such as the updates of the HURDAT database: each year the model updates its HURDAT database with the latest HURDAT data released by the National Hurricane Center, which is used as input in the Storm Forecast Model.
Updates of the ZIP Code list: every two years the ZIP Codes used in the model must be updated according to information originating from the United States Postal Service.
Updates in the validation of the vulnerability matrices: the incorporation of new data, such as updated winds and insurance data may trigger a tune up of the vulnerability matrices used in the Insurance Loss Model.

If any change results in a change in loss costs estimates, there will be at least a change in the minor revision number.

Consequently, for the submission of November 1, 2012, the Florida Public Hurricane Loss Model changed its version number from 4.1 to 5.0 because of the incorporation of the most recent HURDAT database, the updated ZIP Code list, and the changes in the meteorological and vulnerability models. For a detailed description of the aforementioned changes, please refer to Standard G-1, Disclosure 5 of the submission document.

FPHLM uses version control and tracking software to identify all errors, as well as modifications to code, data, and documentation.

1. FPHLM employs consistent methods for data and documentation control for all software development, including both server and client programs (written in C++ and Java). The installation date, program specification, personnel involved, current version number and date of most recent changes are documented for the individual components in the system.

2. The data and model is maintained and updated each year. Every two years, the ZIP Code information is updated to reflect the most recent changes. In particular, the ZIP Code boundaries and the centroids are updated, and using this updated information, the ZIP Code related features are updated, including distance from the coastline, population centroid, elevation, and surface roughness, etc. The historical hurricane data (for Atlantic Basin) is yearly updated to take into account new hurricane events.

3. The FPHLM project development team will maintain, archive, and document the features of each model version.

4. When a new model version is released, a release document, with detailed documentation for users, and the programs and data that are used in this release will be packaged and tested by crosschecking. Standard test cases are also packaged with the release, to allow later verification. This assures the correctness and consistency of each release.

5. FPHLM’s software development team employs source revision and control software for all software development. In particular, FPHLM employs Subversion (SVN), an accepted and effective system for managing simultaneous development of files. Recently, it has been used in large programming projects both in the open-source community and in the corporate world to track modifications to source code and documentation files. Subversion maintains a record of the changes to each file and allows the user to revert to a previous version, merge versions, and track changes. This software is able to record the information for each file, the date of each change, the author of each change, the file version, and the comparison of the file before and after the changes.

6. The software development process is carefully monitored by the designated personnel using SVN tracking tools and procedures. For example, ‘svn info’ provides a quick way of finding who made what changes and when by displaying the last change information for each line of a file in the repository. Such information includes the revision number for the last change of each line, the user, the date, and the contents of the line. The SVN history file records commits, merges, conflicts, tagging, updates (to the working directory), additions, deletions, and modifications of files in the repository..

7. FPHLM employs an access control mechanism that allows only authorized user accounts to modify parts of the hierarchy in the repository. Authorization control is for commits only; everyone can check for any part of the repository. That is to say, for user accounts other than the designated ones, they do not have write access to the restricted area. An access list is maintained to record all the access rights and responsibilities of each SVN user. Therefore, in FPHLM, general users can submit patches to a/the maintainer (authorized user), and the maintainer will commit changes directly to the repository. In the future, we plan to implement an easy-to-use SVN commit log search interface for scanning SVN commit logs from any part of the repository over any time period, for all users or for a particular user.

It is required that all SVN users need to use the secure shell “ssh” to access a repository on a remote machine. This is set in the configuration file of SVN. In addition, the development team members are required to add meaningful change-notes for the appropriate files. By doing that, it is much easier to locate the correct version in roll back operations when needed.

[bookmark: _Ref294697141][bookmark: _Toc346555921]Model Revisions

In compliance with the Computer Standards of the 2011 Report of Activities, a list of all model versions since version 5.0 the initial submission for 2011 ROA- is provided in Table 7.3.1 (C6.D), a table of all changes in the model from the prior’s year submission –version 4.0 - to the initial submission of this year is given in Table 7.3.2 (C1.C). Table 7.3.1 lists the changes in the model that identify version 5.0.

Table 7.3.1 first contains the initial submission corresponding to the 2011 ROA with its unique version identification and a numbered list of additions, deletions, and changes that define that version. This list is grouped by the types of changes that occurred in the model. Changes in model components are grouped and labeled as minor and major changes according to the policy of model revision described in Section 7.3.1; other changes are grouped by type of change and labeled appropriately. Subsequent model versions of the initial version follow the aforementioned format.

Table 7.3.2 shows how the Computer Standards of the Report of Activities were triggered due to the changes in the model from the prior year’s submission to the initial submission of this year. The first column of Table 7.3.2 contains a number that references a change in the model in this year’s initial submission of model as specified in Table 7.3.1, and the remaining five columns correspond to the Computer Standards: C-2, C-3, C-4, C-5, and C-6.
[bookmark: _Ref294696281]Table 7.3.1: Model versions since the initial submission of 2011.
	Version
	Changes

	5.0 (Initial)
	Major Changes:
1. Changes in the Personal Residential engineering component:
1.1. Addition of metal roof for all strength models.
1.2. Addition of metal shutters for all strength models.
1.3. Implementation of gradation of strong models.
2. Changes in the Low Rise Commercial Residential engineering component:
2.1. Addition of soffit.
2.2. Addition of metal shutters.
2.3. Addition of metal roof.
2.4. The following items were modified:
2.4.1. Debris impact model.
2.4.2. Roof to wall failure connection algorithm.
3. Changes in the Mid/High Rise Commercial Residential engineering component:
3.1. Addition of debris impact zones.
3.2. Addition of the option with no sliders.
3.3. The following item was modified:
3.3.1. External damage costing scheme.

Minor Changes:
4. Update of HURDAT.
5. New 2011 ZIP Codes.
6. Updated ZIP Code centroids.
7. Modified hurricane marine PBL height in terrain conversion model.
8. Updated Probability Distribution Function in the Storm Track Generator.
9. Updated Wind-Borne Debris region boundaries.
10. Changes in the Personal Residential engineering component:
10.1. Increased window capacities for strong models.
10.2. New nomenclature for vulnerability matrices.
10.3. Change of life cycle duration for roof replacement from 20 to 30 years.
10.4. Consolidation of the footprint options for the physical damage model into a single timber frame and single masonry footprint.
11. Changes in the Low Rise Commercial Residential engineering component:
11.1. The following items were modified:
11.1.1. Window protection in the presence of metal shutters.
11.1.2. Rain adjustment factors.
11.1.3. Wind speed variation with height in rain model.
11.1.4. Costing scheme.
11.1.5. Wall sheathing capacities.
11.1.6. Window capacities for strong models.
11.1.7. Pressure coefficients cp for hip roof models.
11.1.8. Relationship between ASCE vs. modeled pressure coefficients cp.
11.1.9. Roof to wall connection capacities.
11.1.10. Masonry wall capacity.
12. Changes in the Mid/High Rise Commercial Residential engineering component:
12.1. Addition of the differentiation between damaged and breached openings.
12.2. The following items were modified:
12.2.1. Opening pressure capacities.
12.2.2. Interior damage cost coefficient.
12.2.3. Number of windows in open layout.
12.3. New nomenclature for vulnerability matrices.

[bookmark: _Ref294696295]

Table 7.3.2: Changes in the model from the prior year’s submission to the initial submission of this year
	Item
	C-2
	C-3
	C-4
	C-5
	C-6

	1
	Updated section 4.3.3 of the Primary Document Binder.
	Updated sections 4.3.4 and 5.1.3.2 of the Primary Document Binder.
	Updated sections 7.6 and 4.3.4.6 of the Primary Document Binder.
	Updated chapter 5 of the Test Report.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	2
	Updated section 4.4.3 of the Primary Document Binder.
	Updated section 4.4.4 of the Primary Document Binder.
	Updated section 4.4.4.6 of the Primary Document Binder.
	
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	3
	Updated section 4.4.3 of the Primary Document Binder.
	Updated section 4.4.4 of the Primary Document Binder.
	Updated sections 7.6 and 4.4.4.6 of the Primary Document Binder.
	Updated chapter 5 of the Test Report.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	4
	Updated section 6.1 of the Primary Document Binder to reflect the years covered by the new HURDAT.
	
	
	Expert carried out inspections, verifications of data values, and comparisons of statistics.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	5
	
	
	
	Expert carried out visual inspection and statistical analyses.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	6
	
	
	
	Expert inspected numerous centroid locations using GIS software and compared with other data to ensure the results were correct.
Expert performed calculations with hypothetical data in order to compare the results with calculations done by independent entities.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	7
	Updated sections 3.3.2.1 and 3.3.2.3 of the Primary Document Binder.
	
	Updated section 7.6 and 3.3.4.7 of the Primary Document Binder.
	Updated chapter 3 of the Test Report.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	8
	Updated section 3.1.2 of the Primary Document Binder.
	
	
	Expert ran the code with full compiler debug options turned, such as array bounds checking, checking for NaNs and setting all memory to NaN initially to ensure all variables are properly initialized. The output was statistically analyzed and evaluated.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	9
	
	
	Updated section 7.6 of the Primary Document Binder.
	Expert carried out visual inspection.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	10
	Updated section 4.3.3 of the Primary Document Binder.
	Updated sections 4.3.4 and 5.1.3.2 of the Primary Document Binder.
	Updated section 7.6 of the Primary Document Binder.
	Updated chapter 5 of the Test Report.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	11
	Updated section 4.4.3 of the Primary Document Binder.
	
	Updated section 7.6 of the Primary Document Binder.
	
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

	12
	Updated section 4.4.3 of the Primary Document Binder.
	Updated section 5.2.3 of the Primary Document Binder.
	Updated sections 7.6, 5.2.3.5 and 5.2.3 of the Primary Document Binder.
	Updated chapter 5 of the Test Report.
	Changed the model’s version number, updated SVN, and updated Section 7.3 of the primary document binder.

[bookmark: _Toc346555922]Procedure to Ensure Correspondance between Data and Implementation to Documentation

The FPHLM group members follow the process specified in the flowchart of Figure 1 in order to assure continual agreement and correct correspondence of databases, data files, and computer source code to slides, technical papers, and FPHLM documents.

[image:]

[bookmark: _Ref341092087][bookmark: _Toc340831332][bookmark: _Toc341100643]Figure 1. Process to assure continual agreement and correct correspondence of databases, data files, and computer source code to slides, technical papers, and FPHLM documents.
[bookmark: _Toc346555923]FPHLM Testing Procedures

[bookmark: _Toc346555924]Software Testing Procedures

FPHLM software testing and verification have been done in three stages.

(i) Code inspection and the verification by the code developers using pair programming

Following the pair programming practice, always two developers conjunctively design and implement software units. The developers should carry out sufficient testing on the code and should not deliver the code until and unless they are convinced of the proper functionality and robustness of the code.

In this level of testing at code-level debugging, the developers walk through the code to ensure proper flow, inspect the internal variables through intermediate output printing and error logging, use exception handling mechanisms and calculate cross checks and verification of the output against sample calculations provided by the system modeler. It is the developer’s responsibility to collect at least one sample calculation from the system modeler and to compare the results against the results generated through the code.

(ii) Verification of results by the person who developed the system model.

Once the first level of testing is done the developer should send the sample inputs and the generated results back to the modeler. Then the system modeler should double-check the results against his/her model. Code is not put in to the production environment without the ‘OK’ from the modeler.

(iii) Review and extensive testing of the code by external group of software engineers.

System is rigorously checked for correctness, precision of the output and robustness & stability of the whole system. Calculations are performed outside the system and compared against the system generated results to ensure the system correctness. Extreme and unexpected inputs are given to the system to check the robustness. Wide series of test cases are developed to check the stability and the consistency of system.

Unit testing, Regression testing, and Aggregation testing (both white-box and black-box) should be performed and documented.

Any flaw in the code is reported to the developer and the corrected code is again sent to the tester. The tester should perform unit testing again on the modified units and also Regression testing should be carried to check if the modification affects any other part of the code.

The verification procedure is reflected in the state diagram depicted below:

[bookmark: _Ref294696418]Table 7.4.1: Testing software and techniques
	Num
	Module Name
	Testing Software/Technique

	
	Online Programs
	

	1
	Storm Track Genesis (STG)
	Fortran

	2
	Wind Field Model (WFM)
	IDL

	3
	Wind Speed Correction
	GFortran, Java, Bash

	4
	Validation (Online Program)
	IBM Rational Robot

	5
	Validation Program
	IBM Rational TestFactory, C++

	
	Engineering Codes
	

	6
	Monte Carlo Simulation
	Matlab

	7
	Engineering Module
	Matlab

	
	Insurance Loss Model
	

	8
	ILM-PR
	C++

	9
	ILM-LB
	C++

	10
	ILM-MHB
	C++

	11
	OIR Data Processing - Analysis
	C++

	
	Forms
	

	12
	M1 (part 1, part 2)
	C++

	13
	M2 (M2a, M2b)
	C++

	14
	A1
	C++

	15
	A2
	C++

	16
	A3
	C++

	17
	A4
	C++

	18
	A5
	C++

	19
	A6
	C++

	20
	S2
	C++

	21
	S4
	C++

	
	Others
	

	22
	Database Testing
	Oracle 9i Queries, PL/SQL

As shown in Table 7.4.1, we used a set of testing software and techniques in the testing process. For example, IBM Rational® Robot can be used to test applications based upon a variety of user interface technologies. Therefore, in this project, Rational Robot is utilized to automate the regression, functional and configuration testing for client/server web-based application, including use cases for AHO, SGT, WSP and online validation program. Rational TestFactory is utilized to ensure that the components can perform their required functions under stated conditions. Along the way, it will traverse Microsoft C++ applications to discover all windows and controls. Accordingly, we utilized Rational TestFactory to perform functional, performance, and reliability testing on several components. We also wrote testing scripts by using C++, Matlab, IDL or Fortran languages to test the corresponding modules. In addition, Oracle 9i queries and PL/SQL are used in database testing.

Note: Please refer to the testing document for more details.

[bookmark: _Ref294697094][bookmark: _Toc346555925]Code Count Tables

	Use Case III - Storm Track Module

	/home/mitch-a/dmis-projects/fphlm/versions/v4.1/Code_Count/ 1_STG/

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	stormgen.f
	919
	948
	381
	254
	2502

	genpdf.f
	1010
	629
	232
	243
	2114

	genpdf.h
	13
	40
	5
	4
	62

	Wind Field Model

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/idl

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	check.m
	15
	7
	0
	0
	22

	gemf.m
	5
	2
	0
	0
	7

	genstrex.m
	11
	35
	0
	3
	49

	obc.m
	7
	23
	0
	0
	30

	onefix.m
	27
	35
	0
	7
	69

	selset.m
	3
	3
	0
	0
	6

	shift.m
	6
	22
	0
	0
	28

	tek.m
	7
	2
	0
	0
	9

	usadv.m
	7
	5
	0
	4
	16

	usnoadv.m
	6
	6
	0
	4
	16

	zmar2zot.pro
	12
	31
	1
	5
	49

	dus.pro
	12
	23
	1
	3
	39

	fixshots15.pro
	27
	35
	1
	9
	72

	gemf.pro
	10
	26
	1
	5
	42

	gemfplex.pro
	17
	25
	1
	4
	47

	lcmP.pro
	4
	0
	1
	0
	5

	lltoxy.pro
	14
	29
	1
	1
	45

	mnrdsg.pro
	6
	21
	1
	3
	31

	mnrdu.pro
	6
	22
	1
	2
	31

	pkwinds.pro
	40
	38
	0
	8
	86

	reach.pro
	7
	18
	1
	0
	26

	rsdsg.pro
	22
	23
	1
	6
	52

	rsdu.pro
	21
	22
	1
	6
	50

	sgdvs.pro
	14
	25
	1
	6
	46

	suv.pro
	42
	43
	1
	9
	95

	thinner.pro
	51
	32
	1
	12
	96

	track.pro
	71
	61
	1
	17
	150

	udvs.pro
	14
	25
	1
	6
	46

	usg.pro
	28
	38
	2
	8
	76

	vghgen.pro
	19
	32
	1
	5
	57

	Interpolation

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/interpolation

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	wind_interp.f
	324
	56
	55
	111
	546

	rough_domain.h
	7
	1
	0
	0
	8

	jsp_interface

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/jsp_interface

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	WSCReqOpt.java
	115
	0
	4
	23
	142

	OracleDBWSCProxy.java
	140
	2
	0
	24
	166

	WSCProcManager.java
	81
	8
	0
	16
	105

	wsc_process.jsp
	37
	5
	0
	5
	47

	multi-server_system

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/ interpolation_wsc_codes/

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	DBProxy.java
	480
	259
	17
	56
	812

	setupInterpAndWSC.sh
	157
	61
	0
	20
	238

	RunInterpAndWSC.sh
	87
	52
	0
	12
	151

	wind_interp_multiserver.sh
	107
	53
	2
	13
	175

	create_filelist.sh
	41
	16
	1
	8
	66

	setUpAndRunInterp.sh
	56
	25
	0
	15
	96

	add_date.sh
	36
	13
	0
	7
	56

	add_num_lines.sh
	4
	12
	0
	2
	18

	merge_multiserver.sh
	80
	31
	1
	12
	124

	setUpAndRunWSC.sh
	129
	70
	0
	24
	223

	wsc_multiserver.sh
	64
	27
	2
	6
	99

	dbProxy.csh
	15
	16
	1
	5
	37

	wind_interp.csh
	20
	23
	1
	11
	55

	wsc_run.csh
	22
	19
	1
	11
	53

	merge.csh
	13
	26
	0
	16
	55

	
WSC

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/wsc

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	wsc.f
	367
	40
	94
	144
	645

	rough_domain.h
	7
	1
	0
	0
	8

	Monte Carlo PR

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/docs/code/MonteCarlo/MCS-PR

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	capacity_manuf_house.m
	54
	42
	7
	21
	124

	capacity_opening.m
	108
	24
	6
	20
	158

	capacity_r2w.m
	61
	29
	6
	9
	105

	capacity_roofcover.m
	17
	17
	2
	9
	45

	capacity_sheathing.m
	17
	20
	2
	12
	51

	capacity_wall.m
	118
	32
	8
	24
	182

	capacity_wall_sheathing.m
	15
	17
	3
	4
	39

	debris_model_input.m
	29
	98
	2
	7
	136

	missile_impact.m
	40
	27
	1
	9
	77

	new_door_check.m
	28
	16
	0
	9
	53

	pressures.m
	9
	18
	0
	10
	37

	r2w_conn_uplift.m
	76
	14
	5
	7
	102

	r2w_conn_uplift_hip.m
	120
	26
	2
	25
	173

	r2w_conn_uplift_hip5638.m
	127
	26
	2
	24
	179

	r2w_conn_uplift_hip5644.m
	127
	28
	2
	22
	179

	r2w_conn_uplift_hip6038.m
	125
	26
	2
	26
	179

	r2w_conn_uplift_hip6044.m
	129
	31
	2
	25
	187

	redist_gable.m
	12
	13
	0
	7
	32

	redist_uplift.m
	106
	33
	9
	4
	152

	roofCps6044.m
	102
	39
	2
	26
	169

	rooflayout5638.m
	102
	38
	9
	28
	177

	rooflayout5644.m
	108
	43
	9
	28
	188

	rooflayout6038.m
	101
	37
	9
	23
	170

	rooflayout6044.m
	106
	52
	13
	30
	201

	wall_loading.m
	103
	72
	13
	21
	209

	window_pressure_check.m
	174
	33
	101
	12
	320

	compile.m
	3
	1
	0
	0
	4

	main_driver.m
	58
	16
	9
	8
	91

	damage_model_C_CB_G.m
	267
	232
	91
	92
	682

	capacity_opening.m
	115
	10
	6
	16
	147

	capacity_r2w.m
	61
	13
	10
	7
	91

	capacity_roofcover.m
	17
	4
	5
	7
	33

	capacity_sheathing.m
	17
	4
	2
	7
	30

	capacity_wall.m
	131
	7
	21
	8
	167

	capacity_wall_sheathing.m
	15
	6
	3
	6
	30

	damage_model_N_W_G.m
	373
	80
	155
	14
	622

	damage_model_N_W_H.m
	365
	74
	145
	15
	599

	damage_model_S_CB_G.m
	331
	85
	150
	18
	584

	damage_model_S_CB_H.m
	315
	85
	135
	17
	552

	debris_model_input.m
	29
	91
	2
	5
	127

	main_driver_input.m
	138
	21
	31
	15
	205

	main_driver.m
	59
	10
	11
	6
	86

	missile_impact.m
	41
	21
	1
	7
	70

	pressures.m
	9
	4
	0
	8
	21

	r2w_conn_uplift_hip6038.m
	125
	15
	2
	23
	165

	r2w_conn_uplift_hip6044.m
	129
	18
	2
	20
	169

	r2w_conn_uplift.m
	76
	4
	4
	5
	89

	redist_gable.m
	13
	2
	0
	3
	18

	redist_uplift.m
	106
	4
	26
	3
	139

	rooflayout6038.m
	118
	0
	31
	4
	153

	rooflayout6044.m
	131
	0
	50
	3
	184

	wall_loading.m
	111
	22
	43
	9
	185

	window_pressure_check.m
	182
	9
	111
	2
	304

	Monte Carlo LB

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/docs/code/MonteCarlo/MCS-LB

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	adimcalculator.m
	9
	41
	0
	14
	64

	BUILDINGDIMREASSIGNER.m
	7
	55
	4
	13
	79

	CONSTRUCTIONQLTYTOBLDGSTRENGTH.m
	50
	74
	40
	8
	172

	CVARIABLE.m
	1
	67
	12
	7
	87

	DAMAGECOUNTERIMPACTWINDOWS.m
	1
	139
	48
	11
	199

	DAMAGECOUNTERWALLCOVER.m
	6
	135
	76
	14
	231

	DAMAGECOUNTERWALLSHEETS.m
	6
	195
	116
	18
	335

	DAMAGECOUNTERWINDOWS.m
	1
	136
	48
	9
	194

	ENCLOSURECONDITIONUPDATER_GABLE.m
	52
	137
	101
	36
	326

	ENCLOSURECONDITIONUPDATER_HIP.m
	103
	143
	132
	29
	407

	EXTONLYWALLSHEETPRESSURECOEFFICIENTSRANDOMIZED.m
	24
	69
	63
	11
	167

	MissilePhysParam.m
	60
	71
	22
	12
	165

	Model_Control.m
	91
	28
	9
	18
	146

	Numberofavailablemissileobjects.m
	15
	51
	13
	8
	87

	OPENINGCORRECTIONFACTOR.m
	19
	46
	4
	16
	85

	r2w_Capacity_Gable.m
	14
	31
	4
	16
	65

	r2w_Capacity_Hip.m
	24
	39
	3
	19
	85

	r2w_Loading_Failure_Gable_New_Approach.m
	68
	38
	1
	21
	128

	r2w_Loading_Failure_Hip_New_Approach.m
	141
	45
	1
	60
	247

	redist_uplift.m
	106
	33
	9
	5
	153

	Roof_Cover_Loss_Gable_Truncation_Fix_8_20.m
	84
	51
	4
	49
	188

	Roof_Cover_Loss_Hip_Truncation_Fix_8_20.m
	141
	63
	4
	63
	271

	Sheathing_Capacity_Gable_Truncation_Fix_8_20.m
	31
	30
	2
	19
	82

	Sheathing_Capacity_Hip_Truncation_Fix_8_20.m
	37
	47
	2
	20
	106

	Sheathing_Layout_Gable_Nov_2009.m
	1486
	172
	11
	163
	1832

	Sheathing_Layout_Hip.m
	1470
	151
	25
	186
	1832

	Sheathing_Loading_Failure_Gable_New_Approach.m
	132
	92
	0
	59
	283

	Sheathing_Loading_Failure_Hip_New_Approach.m
	232
	111
	1
	80
	424

	Sheathing_R2W_Interface.m
	68
	64
	0
	24
	156

	Truss_Layout_Gable_Reduced_Aug_20_2009.m
	29
	257
	1
	16
	303

	Truss_Layout_Hip_Reduced_Aug_20_2009.m
	61
	824
	3
	22
	910

	Variables_A_B_D_Bakers.m
	57
	110
	58
	18
	243

	WALL_GCpe_MINUS_GCpi.m
	9
	68
	61
	8
	146

	WALLCOVERLOADER.m
	14
	99
	20
	11
	144

	WALLLOADER.m
	14
	99
	20
	11
	144

	WALLPRESSURECOEFFASCE.m
	14
	33
	3
	4
	54

	WALLSHEETAREAMAP.m
	56
	154
	62
	15
	287

	WALLSHEETCAPACITIESUPDATER.m
	29
	135
	1
	15
	180

	WALLSHEETPRESSURECOEFFICIENTSRANDOMIZED.m
	26
	61
	2
	6
	95

	WALLSHEETRANDOMCAPACITIESMAPPED.m
	204
	201
	28
	24
	457

	WALLSSHEETHEIGHTMAP.m
	15
	59
	6
	11
	91

	WALLSWINDSPEEDRANDOMIZED.m
	44
	65
	6
	25
	140

	WEIGHTEDEXTERNALWALLPRESSURECOEFFICIENTS.m
	129
	95
	10
	8
	242

	WINDEFFECTIVEAREAFINDER.m
	14
	27
	8
	5
	54

	WINDOWCAPACITIESUPDATER.m
	13
	82
	0
	11
	106

	WINDOWIMPACTCAPACITIESUPDATER.m
	13
	83
	0
	12
	108

	WINDOWLOADER.m
	15
	82
	0
	5
	102

	WINDOWSAREAANDHEIGHTMAP.m
	52
	96
	24
	15
	187

	WINDOWSIMPACTRANDOMCAPACITIESMAPPED.m
	27
	94
	16
	12
	149

	WINDOWSPROBABILITYOFIMPACTFAILURE.m
	13
	103
	12
	11
	139

	WINDOWSRANDOMCAPACITIESMAPPED.m
	115
	86
	12
	17
	230

	WINDSPEEDat10mtoSPEEDateverystorywalls.m
	18
	74
	9
	12
	113

	Z_Pressure_First_MAIN_DRIVER.m
	386
	524
	136
	131
	1177

	Monte Carlo MHB

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/docs/code/MonteCarlo/MCS-MHB

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	OPENINGCORRECTIONFACTOR.m
	18
	48
	0
	14
	80

	adimcalculator.m
	9
	37
	0
	13
	59

	Mid_High_Opening_Analysis_Driver_February_1_2009.m
	429
	267
	138
	90
	924

	Model_Control_for_Mid_High_Model_February_1_2009.m
	97
	109
	8
	37
	251

	VM_PR

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/docs/code/Engineering/VM_PR

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	Age_Weigt_calc_PSB052312.m
	967
	67
	52
	21
	1107

	Run_Vulnerability_52012.m
	14
	27
	14
	4
	59

	Vulnerability_GUI.m
	392
	48
	30
	35
	505

	Vulnerability_Other_PBS053112.m
	895
	4
	90
	2
	991

	Vulnerability_Prog_52012.m
	2167
	208
	517
	124
	3016

	Weight_calc_PSB053112.m
	2042
	89
	199
	26
	2356

	Weighted_GUI.m
	357
	73
	39
	36
	505

	weighted_modified_models.m
	1572
	89
	219
	31
	1911

	Weighted_Other_PBS053112.m
	518
	7
	47
	23
	595

	VM_CLR

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/docs/code/Engineering/VM_LR

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	Weight_run_CL080112.m
	74
	28
	95
	4
	201

	IntExt_plotter_SeprtPlots_CL111110.m
	22
	40
	5
	8
	75

	Vulns_calc_CL080112.m
	201
	171
	100
	80
	552

	Vulns_run_CL080112.m
	36
	53
	10
	118
	217

	Weight_calc_080112.m
	98
	68
	54
	30
	250

	Weight_CondProbs_CL080112.m
	118
	89
	5
	37
	249

	IntExt_calc_CL080112.m
	484
	164
	231
	63
	942

	IntExt_plotter_CalcMatrcs_CL011811.m
	22
	48
	24
	17
	111

	IntExt_plotter_CL011811.m
	214
	107
	13
	54
	388

	Vulns_plotter_CL030911.m
	57
	72
	19
	26
	174

	VM_MHR

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/docs/code/Engineering/VM_MHR

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	MHR_Vuln_Breach_GUI.m
	369
	37
	9
	79
	494

	Vulns_calc_CM070612.m
	243
	69
	51
	98
	461

	ILM-PR

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/ilmpr_v5.0

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	Inputs.cpp
	1200
	780
	12
	335
	2327

	Forms.cpp
	2271
	1550
	129
	595
	4545

	Main.cpp
	357
	330
	54
	76
	817

	ILM.cpp
	1854
	633
	143
	314
	2944

	Inputs.h
	2247
	1894
	165
	621
	4927

	extended_string.h
	38
	12
	0
	14
	64

	Forms.h
	633
	1289
	54
	243
	2219

	ILM.h
	170
	230
	31
	91
	522

	ILM-LB

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/ilmlr_v5.0

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	Forms.cpp
	658
	490
	13
	182
	1343

	Main.cpp
	208
	177
	36
	51
	472

	ILM.cpp
	1245
	368
	28
	248
	1889

	Inputs.cpp
	1120
	734
	12
	319
	2185

	ILM.h
	133
	136
	29
	76
	374

	extended_string.h
	38
	12
	0
	14
	64

	Forms.h
	317
	641
	14
	98
	1070

	Inputs.h
	2409
	1856
	178
	620
	5063

	ILM-MHB

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/ilmhr_v5.0

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	ZipcodeChecker.h
	12
	21
	1
	7
	41

	ZipcodeChecker.cpp
	22
	32
	0
	6
	60

	WindSpeedFile.h
	24
	33
	3
	19
	79

	WindSpeedFile.cpp
	149
	116
	10
	43
	318

	VulnerabilityCurveSet.h
	27
	41
	2
	23
	93

	VulnerabilityCurveSet.cpp
	191
	153
	2
	57
	403

	StormDFactors.h
	230
	134
	35
	66
	465

	StormDFactors.cpp
	2
	9
	0
	3
	14

	RiskHigh.h
	140
	46
	9
	35
	230

	RiskHigh.cpp
	342
	169
	1
	110
	622

	Risk.h
	108
	67
	18
	61
	254

	Risk.cpp
	205
	403
	0
	60
	668

	Region.h
	45
	56
	0
	13
	114

	PreProcessChecker.h
	22
	22
	7
	12
	63

	PreProcessChecker.cpp
	440
	113
	17
	73
	643

	PolicyHigh.h
	21
	21
	0
	10
	52

	PolicyHigh.cpp
	17
	30
	0
	6
	53

	Policy.h
	65
	28
	6
	22
	121

	Policy.cpp
	29
	19
	0
	3
	51

	ParaInfoHigh.h
	18
	24
	2
	10
	54

	ParaInfoHigh.cpp
	60
	41
	0
	13
	114

	ParaInfo.h
	40
	32
	9
	24
	105

	ParaInfo.cpp
	107
	176
	0
	33
	316

	Option.h
	20
	42
	2
	9
	73

	Matrix.h
	31
	40
	3
	21
	95

	Matrix.cpp
	178
	202
	0
	45
	425

	MappingFactory.h
	30
	37
	0
	14
	81

	MappingFactory.cpp
	29
	137
	1
	26
	193

	Main.cpp
	120
	105
	3
	30
	258

	extended_string.h
	38
	12
	0
	12
	62

	Date.h
	61
	82
	0
	22
	165

	DamageRatio.h
	12
	25
	0
	7
	44

	DamageRatio.cpp
	20
	24
	1
	4
	49

	CRILMManager.h
	26
	26
	3
	13
	68

	CRILMManager.cpp
	359
	125
	10
	88
	582

	CRILMHigh.h
	56
	54
	6
	34
	150

	CRILMHigh.cpp
	748
	448
	31
	216
	1443

	CRILMCodes.h
	41
	32
	1
	19
	93

	CRILMCodes.cpp
	61
	64
	2
	12
	139

	CRILM.h
	97
	41
	0
	28
	166

	CRILM.cpp
	110
	161
	2
	22
	295

	CountySurgeVector.h
	56
	54
	2
	21
	133

	CountySurge.h
	32
	52
	5
	13
	102

	County.h
	40
	32
	3
	12
	87

	CompanyHigh.h
	21
	24
	0
	11
	56

	CompanyHigh.cpp
	217
	59
	3
	30
	309

	Company.h
	16
	24
	0
	12
	52

	Company.cpp
	21
	49
	0
	5
	75

	A3_CRILMManager.h
	13
	21
	0
	6
	40

	A3_CRILMManager.cpp
	13
	29
	0
	3
	45

	ZipcodeChecker.h
	12
	21
	1
	7
	41

	EXPOSURE SETS

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/exposure_sets

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	ExposureSetGenerator.java
	84
	67
	84
	31
	266

	County.java
	38
	0
	0
	8
	46

	NumberOfStories.java
	35
	0
	0
	7
	42

	Policy.java
	635
	31
	1
	129
	796

	RoofGeometry.java
	53
	0
	0
	12
	65

	Coordinates.java
	26
	0
	0
	7
	33

	RoofCovering.java
	53
	0
	0
	12
	65

	XLSUtil.java
	17
	0
	0
	5
	22

	OpeningProtection.java
	59
	0
	0
	13
	72

	RoofWallAnchorage.java
	55
	0
	0
	12
	67

	City.java
	18
	0
	0
	5
	23

	StoryNumber.java
	37
	0
	0
	9
	46

	RoofDeckAttachment.java
	55
	0
	0
	12
	67

	PolicyType.java
	70
	0
	0
	14
	84

	Amount.java
	59
	18
	0
	13
	90

	ConstructionType.java
	75
	0
	0
	10
	85

	YearBuilt.java
	34
	0
	0
	7
	41

	SlidingDoor.java
	58
	0
	0
	16
	74

	Location.java
	219
	9
	0
	39
	267

	FORMS A4-A7 EXCEL LOADER

	/home/mitch-a/dmis-projects/fphlm/versions/v5.0/code/formsA4_A7_excel_loader/

	Filename:
	Source:
	Comment:
	Both:
	Blank:
	Total:

	Service.java
	4
	0
	0
	3
	7

	ExampleService.java
	8
	6
	0
	5
	19

	FormA42011ExcelLoaderAllOptions.java
	111
	210
	7
	22
	350

	LocationsReaderA4TextFile.java
	58
	85
	3
	8
	154

	FormA42011ExcelLoaderSpecificDeduc.java
	15
	55
	0
	5
	75

	AALFileRecordReaderOIRCombinedA4.java
	40
	48
	0
	8
	96

	FormA42011ExcelLoader.java
	208
	357
	11
	46
	622

	FormA42011ExcelProcessorI.java
	7
	56
	0
	2
	65

	LocationManagerA4.java
	80
	90
	0
	11
	181

	CountyA4.java
	28
	132
	4
	12
	176

	FormA42011ExcelLoaderException.java
	8
	40
	0
	4
	52

	FormA42011ExcelLoaderZeroDeduc.java
	15
	56
	0
	5
	76

	LocationA4.java
	141
	267
	4
	29
	441

	MainA4.java
	98
	59
	0
	20
	177

	FormA72011ExcelLoaderPctChangeAllSensitivityTests.java
	126
	167
	4
	19
	316

	MainA7.java
	138
	54
	0
	20
	212

	FormA72011ExcelLoaderPctChange.java
	150
	192
	6
	30
	378

	FormA72011ExcelLoaderBuildingStrengthSensitivity.java
	65
	80
	0
	11
	156

	LocationsReaderTextFileA7.java
	105
	156
	4
	13
	278

	LocationManagerA7.java
	36
	72
	1
	8
	117

	FormA72011ExcelLoaderCondoUnitFloorSensitivity.java
	41
	80
	0
	11
	132

	FormA72011ExcelLoaderBuildingCodeSensitivity.java
	65
	80
	0
	12
	157

	FormA72011ExcelLoaderException.java
	8
	43
	0
	1
	52

	LocationA7.java
	59
	140
	2
	15
	216

	FormA72011ExcelLoaderDeductibleSensitivity.java
	66
	80
	0
	11
	157

	FormA72011ExcelLoaderNumberOfStoriesSensitivity.java
	54
	80
	0
	11
	145

	FormA72011ExcelLoaderPolicyFormSensitivity.java
	36
	80
	0
	11
	127

	FormA72011ExcelLoaderCoverageSensitivity.java
	68
	80
	0
	11
	159

	FormA72011ExcelLoaderConstructionSensitivity.java
	50
	80
	0
	12
	142

	Main.java
	23
	0
	0
	1
	24

	AALFileRecordReader.java
	5
	28
	0
	2
	35

	ExcelSheetFillerImplColumnWise.java
	53
	40
	0
	9
	102

	ZipcodeLossCost.java
	59
	197
	5
	15
	276

	LocationManager.java
	94
	269
	7
	28
	398

	ZipcodeLossCostManager.java
	132
	228
	2
	29
	391

	ZipcodeDataManager.java
	23
	55
	0
	7
	85

	ZipcodeCoverageManager.java
	61
	81
	2
	12
	156

	ZipcodeCoverage.java
	46
	184
	5
	14
	249

	ExcelSheetFiller.java
	8
	29
	0
	3
	40

	LocationsReader.java
	6
	41
	0
	2
	49

	Location.java
	35
	173
	1
	14
	223

	RegionMapping.java
	79
	192
	4
	18
	293

	FormA52011ExcelLoaderPctChange.java
	177
	251
	9
	32
	469

	MainA5.java
	115
	62
	0
	20
	197

	LocationsReaderTextFileA5.java
	105
	157
	4
	13
	279

	FormA52011ExcelLoaderSpecificDeduc.java
	66
	68
	0
	18
	152

	LocationManagerA5.java
	69
	90
	1
	11
	171

	FormA52011ExcelLoaderPctChangeAllOptions.java
	127
	212
	6
	23
	368

	LocationA5.java
	71
	170
	3
	18
	262

	FormA52011ExcelLoaderZeroDeduc.java
	66
	70
	0
	18
	154

	AALRecord.java
	172
	701
	8
	54
	935

	ExcelSheetFillerImplRowWise.java
	49
	42
	0
	6
	97

	LocationsReader.java
	6
	41
	0
	2
	49

	LocationManager.java
	168
	331
	5
	30
	534

	ExcelSheetFiller.java
	8
	29
	0
	2
	39

	Location.java
	91
	301
	1
	25
	418

	FormA62011ExcelLoaderNumberOfStoriesSensitivity.java
	74
	108
	0
	15
	197

	MainA6.java
	117
	53
	0
	19
	189

	FormA62011ExcelLoaderConstructionSensitivity.java
	64
	108
	0
	15
	187

	AALFileRecordReaderOIRCombined.java
	49
	50
	0
	8
	107

	FormA62011ExcelLoaderBuildingCodeSensitivity.java
	99
	108
	0
	15
	222

	FormA62011ExcelLoader.java
	132
	309
	7
	25
	473

	LocationManagerA6.java
	32
	61
	0
	6
	99

	FormA62011ExcelLoaderCondoUnitFloorSensitivity.java
	55
	108
	0
	15
	178

	FormA62011ExcelProcessorI.java
	7
	54
	0
	4
	65

	FormA62011ExcelLoaderBuildingStrengthSensitivity.java
	80
	108
	0
	15
	203

	LocationsReaderTextFile.java
	50
	81
	2
	8
	141

	LocationA6.java
	95
	216
	3
	21
	335

	FormA62011ExcelLoaderAllSensitivityTests.java
	100
	164
	5
	20
	289

	FormA62011ExcelLoaderPolicyFormSensitivity.java
	53
	108
	0
	16
	177

	FormA62011ExcelLoaderException.java
	8
	40
	0
	1
	49

	FormA62011ExcelLoaderDeductibleSensitivity.java
	106
	110
	0
	14
	230

	FormA62011ExcelLoaderCoverageSensitivity.java
	83
	122
	0
	15
	220

	ExampleConfigurationTests.java
	18
	0
	0
	7
	25

	ExampleServiceTests.java
	9
	0
	0
	5
	14

	Service.java
	4
	0
	0
	3
	7

Vol.VII-35

[bookmark: _Toc295824723][bookmark: _Toc346555926]Volume VIII. Security

Revision History
	Date
	Person
	Summary

	06/05/2007
	Fausto Fleites
	Created the document

	
	
	

[bookmark: _Toc295741399][bookmark: _Toc295824468][bookmark: _Toc295824724][bookmark: _Toc295824983][bookmark: _Toc295825233][bookmark: _Toc295825642][bookmark: _Toc295825891][bookmark: _Toc295827574][bookmark: _Toc346382023][bookmark: _Toc346382275][bookmark: _Toc346382530][bookmark: _Toc346382787][bookmark: _Toc346383049][bookmark: _Toc346383784][bookmark: _Toc346384133][bookmark: _Toc346384419][bookmark: _Toc346384707][bookmark: _Toc346384994][bookmark: _Toc346385281][bookmark: _Toc346385567][bookmark: _Toc346385854][bookmark: _Toc346400169][bookmark: _Toc346408627][bookmark: _Toc346555927]
[bookmark: _Toc295824725][bookmark: _Toc346555928]Security Procedures

FPHLM has implemented security procedures for access to code, data, and documentation that are in accordance with standard industry practices. FPHLM employs a number of physical and electronic security measures to protect all code, data and documentation against both internal and external potential sources of damage.

Summary:
1. The application server (IRENE) and the database server (ANDREW), as shown in Table 8.1: FPHLM servers, are considered “mission critical servers” (see the definition in the Security Procedures Manual, Section II) and are kept and maintained in a secure server room which limits non-authorized access. Access to the server room is granted by electronic key card and is limited to essential personnel only. All servers and desktops are protected by Norton Antivirus software.

[bookmark: _Ref294697277]Table 8.1: FPHLM servers
	HOSTNAME
	Operating System
	Purpose

	andrew.cs.fiu.edu
	Solaris 8
	DB Server and File Storage

	irene.cs.fiu.edu
	CentOS 4
	Application Server and File Storage

2. As outlined in the “Security Procedures Manual”, section IV part 6, backups are performed on a daily basis and are kept for six weeks. Nightly backups of all UNIX data disks and selected Windows data disks (at user request) are performed over the network onto Exabyte Mammoth M2 tapes. Full dumps are taken periodically (it works out to every 2-3 weeks) and incremental copies are taken daily between them. Off-site backups are performed at the end of every semester and stored off-site in the PC building at the University Park Campus, which is the Monroe County hurricane shelter and has emergency power and climate control.

3. The tape drives have built in diagnostics and verification to ensure that the data is written correctly to the tape. This ensures that if the tape is written successfully, it will be readable, provided no physical damage occurs to the tape. The off-site backup procedure performs a level 0 (full) dump of every disk in the department. This means that each disk in the department will be backed up to tape in its entirety. The dumps can be restored from tape, preserving the original file structure and all permissions. All read errors during the backup process are reported, so if a file system fails to dump correctly, the dump can be re-done. In the past, we have successfully restored data from both our offsite and daily backups for many times, and no problems have been occurred.
4. In case of disasters, we have implemented a set of preparation procedures and recovery plans as outlined in “FIU SCS Hurricane Preparation Procedures”. The computing equipment associated with FPHLM will be secured and safeguarded by designated personnel such as the Lab Manager when the hurricane warning is issued. When hurricane warning is lifted, the lab manager will return to FIU and take in charge of system recovery.

5. Security policies are documented and all FPHLM personnel are trained in security requirements and procedures. When the personnel (Graduate Research Assistants supported by FPHLM, Professional Programmers, etc.) leave the FPHLM project, they are required to sign non-disclosure agreements to not keep or disclose any confidential information/documents at the proprietary level and above. For details, please read the attached documents.

6. Any sensitive or confidential data (insurance data, for example) are kept on a local, unshared disk on a system which has user access control and requires a login. Screen locks are used whenever the machine is not attended. Backups are done for that disk at daily basis. In addition, sensitive data is never sent via unencrypted email.

7. Access to all FPHLM computers/workstations is controlled by passwords. A screen/keyboard lock or login screen should be active on all machines when they are not in use. A designated project manager is responsible for providing initial approval for a FPHLM computer account and for notifying the computing center of a change in status of users.

8. In addition, for system security and reliability purpose, we also deploy a development environment besides the production environment. Modifications to the code and data are done in the development environment and tested by the in-house developers. The final production code and data can only be checked into the production environment by authorized personnel. Baseline tests are always run to ensure the model is functioning properly and reproducing known results.

9. The models resulted from FPHLM project can only be used by authorized users. Authorized user accounts are created by the project manager. The models are accessible to authorized users via web applications using JSP. The source code is stored in server side and cannot be tampered with by unauthorized users. The output of the models is always coupled with the analysis parameters and other information needed to be reproduced the analysis results, which are documented in each technical report to maintain the information integrity.

10. Passwords will be kept private in a not shared disk. Passwords will consist of a minimum of 6 alphanumeric characters (no common names or phrases). Passwords will be changed every 120 days; this will be enforced by an automatic expiration procedure to prevent repeated or reused passwords. User accounts will be frozen after 3 failed logon attempts. All erroneous password entries will be recorded in an audit log for later inspection and action, as necessary. Sessions will be suspended after 30 minutes (or other specified period) of inactivity and require the password to be reentered. Successful logons should display the date and time of the last logon and logoff. All user logons will be recorded for future audit.

For detailed information please check the following documents:

[bookmark: _Toc295824726][bookmark: _Toc346555929]FIU SCS Computer and Networking Security Procedures Manual

Draft Revised: 08/23/2002

I. Responsibilities and Scope of Work

The role of our system administrators is to provide technical support for our diverse network and computing systems, technical consulting services for faculty and researchers, and education for users on the use of our systems. System administrators are responsible for the day-to-day operation and maintenance of our systems and networking environment which include, but not limited to: Operating system installation, configuration, updates, security, monitoring and automation of services. The systems administers goal is to provide a reliable, state-of-the-art computing environment for instructional and research use. The following positions are assigned the computer and networking security responsibilities for the School of Computer Sciences computer and networking facilities.

1. Associate Director for Computing:

Responsible for the policy and procedures established by the School of Computer Science to assure the security of employee and student information and intellectual property, to minimize loss of staff and student productivity due to computer and networking security violations and educate staff and students on “best practices” to secure their critical data. Consults with the School Director and SCS faculty on computer and networking security requirements and directs the development of the policy and procedure needs with the Systems and Networking Group Manager. Reports to the SCS director and other University Management security violations and liaisons with law enforcement should the violation require such interaction.

2. Systems and Networking Group Manager:

Responsible for the engineering of computer and networking security services for the School of Computer Science. The Group Manager establishes day-to-day procedures necessary to maintain computer and networking security for the School. Makes recommendations to the Assoc. Director on policy and procedures and deploys commercial, open-source or in-house developed technology to implement computer and networking security policies. The Group Manager will liaison with other technology groups on campus to coordinate security efforts.

3. Systems/Networking Administrator:

Responsible for day-to-day monitoring of security reports and logs and responds to security alerts as indicated in the SCS Computer and Networking Security Procedures Manual. The administrator reports security anomalies to Group Manager and conducts security investigation, collecting additional log information, correlating security data, and providing recommendations as directed by Group Manager.

II. Definitions:

“Computer Account”: A username and password credential used to identify an authorized user of FIU/SCS computer and networking resources.

“Unauthorized Use”: term used to describe when an unauthorized person utilizes computer and/or networking resources restricted by FIU/SCS.

“Authentication”: The process of providing correct computer account credentials to obtain access to FIU/SCS computer or networking resources.

“Security incident”: Any unauthorized utilization of FIU/SCS computer and networking resources.

“Mission Critical Server”: Any computer server which provides the majority of SCS users computer services which if down would result in 8 hours of lost user productivity.

III. Policies:

1. All computer and networking resource usage on the FIU/SCS network must be authenticated.

2. Each computer user must be assigned one unique computer account. Exceptions may be made in order to manage software/hardware services but account ownership is documented.

3. Critical computer systems and networking devices are to be monitored regularly to insure security is maintained.

4. Root access to the primary trusted system “goedel.cs.fiu.edu” is by permission of the Assoc. Director for Computing only. All work on the primary trusted system must be conducted via the “sudo” utility. No root console logins on goedel are authorized except for scheduled installations and emergency work (which is disclosed to the A.D).

5. All security incidents will be log in the FIU SCS Computer and Security Activities Log. Depending on severity security incidents will be reported to the SCS Director and/or other FIU management.

6. Computer or networking devices whose security has been compromised may be disconnected from the FIU SCS network until the system security is restored.

7. Computer accounts whose security has been compromised may be disabled until the appropriate credentials are properly reassigned.

8. All computer system operating systems will be maintained with critical security patches as indicated by OS provider and/or security community.

9. Mission critical servers will be maintained in a physical location, which limits non-authorized access. Access to the server room is granted by electronic key card and is limited to essential personnel only.

10. If a mission critical server goes down the server room security system will immediately page the system administrators to report the incident.

11. The School maintains anti-virus software on all networked computers and regularly updates the anti-virus software.

12. The School’s security policies shall be consistent with those security policies which govern the State of Florida and Florida International University Academic Affairs.

13. Student must adhere to the FIU Code of Computing Practice, a policy produced by University Technology Services.

14. If a computer security violation is suspected, the Systems and Networking Group Manager and/or the Associate Director for Computing have the authority to investigate the suspected violation by reviewing and modifying system and user files in an effort to ascertain the extent of the violation and restore system security.

If a violation of the computer security policy has occurred, the Assoc. Dir. for Computing notifies the SCS Director, Assoc. Director(s), and UTS Security Officer of the security violation. Once the appropriate steps are taken to restore security, the SCS Director is notified and a public statement is made to the SCS user community of the incident as deemed appropriate by the SCS Director.

15. SCS systems which require presentation of credentials should use the appropriate encrypted channels (SSL, SSH, etc). SCS will be discontinuing application/service support of unencrypted logins as we are able to migrate legacy applications/services.

[bookmark: _Toc295824727][bookmark: _Toc346555930]FIU SCS Hurricane Preparation Procedures:

During Hurricane season (June-November) the Director (Associate Director or designee) may issue an alert to the staff to prepare for an impending storm. The Lab Manager may use his master key (or one will be made available to him/her) to enter Faculty offices to begin preparations to safeguard computing equipment. The Director/designee will contact the Lab Manager with final instructions to begin securing the School’s equipment.
In the case where the Director/designee is unable to contact the Lab Manager, the Lab Manager shall report to campus when the National Weather Service issues a Hurricane Watch (<36 hours before land-fall). If necessary, the Lab Manager will call in additional personnel to assist securing equipment. (If the Lab Manager is out-of-town, an alternate staff member will be designated to respond.)
If the hurricane passes without major incident to our area and the hurricane warning is lifted the lab manager will return to FIU. Additional personnel may be requested to assist in restarting systems. Damage assessment will occur during this period.
If, however, the area suffers severe damage the ability of lab personnel to return to FIU may be hampered, communication with the above mentioned will be attempted. If that fails an attempt to reach the campus within 72 hours after the lifting of the Hurricane Warning will be made. If it is safe to enter the building damage assessment will occur and the systems will be restarted.

[bookmark: _Toc295824728][bookmark: _Toc346555931]Non-Disclosure Agreement
NON-DISCLOSURE AGREEMENT
The undersigned hereby agrees and acknowledges:
1. That all works for this project, including computer code, are considered work for hire and the university will retain all copyrights of such works.
2. That during the course of my employment at Florida Public Hurricane Loss Model (FPHLM) there may be disclosed to me certain confidential information consisting but not necessarily limited to:
(a) Technical information: Methods, processes, formulae, compositions, systems, techniques, inventions, machines, computer programs and research projects.
(b) Business information: Insurance data, customer lists, pricing data, and financial data.
3. I agree that I shall not during, or at any time after the termination of my employment with the FPHLM, use for myself or others, or disclose or divulge to others including future employees, any confidential information, or any other proprietary data of FPHLM in violation of this agreement.

4. That upon the termination of my employment from FPHLM:
(a) I shall return to the project manager all confidential documents and property of FPHLM, including but not necessarily limited to: drawings, blueprints, reports, manuals, correspondence, computer programs, business data, and all other materials and all copies thereof relating in any way to FPHLM, or in any way obtained by me during the course of employment. I further agree that I shall not retain copies, notes or abstracts of the foregoing.

(b) This agreement shall be binding upon me and my personal representatives and successors in interest, and shall inure to the benefit of FPHLM, its successors and assigns.
Signed this on ________/ 20____(MM/DD/YYYY)

______________________________ _______________________________
Project Manager or Professor Employee Name (Print) / Signature

Vol.VIII-7

[bookmark: _Toc346555932][bookmark: _Toc295824735]Volume IX. System Hardware and Software Configurations

Revision History
	Date
	Person
	Summary

	02/01/2007
	Min Chen
	Created the document

	02/20/2009
	Fausto Fleites
	Updated hardware and software lists

	07/23/2010
	Fausto Fleites
	Updated hardware and software lists

	01/15/2013
	Diana Machado
	Updated hardware and software lists

[bookmark: _Toc346383790][bookmark: _Toc346384139][bookmark: _Toc346384425][bookmark: _Toc346384713][bookmark: _Toc346385000][bookmark: _Toc346385287][bookmark: _Toc346385573][bookmark: _Toc346385860]

CHAPTER 8. [bookmark: _Toc346400175][bookmark: _Toc346408633][bookmark: _Toc346555933]
[bookmark: _Toc346555934]System Architecture

The system is implemented in three-tier architecture. The following diagram gives an overall picture of the system software arrangement.
[image:]
Figure 1: System Architecture
[bookmark: _Toc346555935]Software List

Java 1.6
JDK 1.3.1
IMSL library CNL 5.0
OC4J 9.0.2.0.0
Oracle 9i AS 9.0.2.0.0
JNI 1.3.1
IDL Version 6.2
ArcGIS – ArcInfo Platform 10
ArcGIS Server 10.0
Geronesoft’s Code Counter Pro Software 1.32
MATLAB R2008a

[bookmark: _Toc346555936]Hardware Configuration

FPHLM is a large-scale system, which is supposed to store, retrieve, and process huge amount of hurricane historical data and the simulated data. Also intensive computations are required for hurricane analysis and projection. Correspondingly, high-speed CPU and large RAM are necessary.

The hurricane data may be regularly updated and the related mathematical models for the hurricane data model and the projection results are also potentially changeable.

The system aims to support both professional and general users in a very convenient way. Therefore, a distributed environment and high bandwidth network are needed to handle the simultaneous requests.

Considering all these facts following hardware configurations are employed in the system.

Oracle application server runs on a Linux Server:
IRENE:
Dual CPU P4-xeon 3.8GHz
8GB RAM
250GB * 6 SCSI Disks
1Gbps connection to network
Running Linux CentOS 4

Oracle database runs on a Sun Workstation
ANDREW:
SunFire V250
Dual CPU UltraSparc III Processors
73GB * 2 SCSI disks
1Gbps connection to network
2GB RAM

Detailed information about the disk partition for the database server is shown in Table 9.1.

Table 9.1: Detailed disk partition for the Oracle database server
	DISK
	SIZE
	CONTROLLER
	MOUNTED ON
	TABLE SPACE

	c0t4d0s6
	36GB
	controller 0
	/home/andrew1
	ORACLE01 04G

	
	
	
	
	ORACLE03 16G

	
	
	
	
	ORACLE05 16G

	c0t5d0s6
	36GB
	controller 0
	/home/andrew2
	ORACLE02 2G

	
	
	
	
	ORACLE04 12G

	
	
	
	
	ORACLE06 12G

	
	
	
	
	ORACLE07 10G

	c1t1d0s7
	36GB
	controller 1
	/home/andrew
	

· Other servers (As shown in Table 9.2):

KING
Dual Intel Xeon 7500 Quad 8-Core 24MB Cache CPU
64GB RAM
650GB * 2 SCSI Disks
10Gbps connection to network
Runs Linux CentOS 4

HUGO
PowerEdge 2950 III
2xQuad Core Intel Xeon X5460, 2x6MB Cache, 3.16GHz, 1333MHz FSB
32GB RAM
2x450GB 15K RPM SCSI 3Gbps 3.5-in HotPlug Hard Drive SAS
1Gbps connection to network
Runs Linux CentOS 4

DENNIS
Dual Intel Xeon 3.16GHz Quad Core 2x6MB Cache CPU
32GB RAM
450GB * 2 SCSI Disks
10Gbps connection to network
Runs Linux CentOS 4

JEANNE
PowerEdge 2950 III
2xQuad Core Intel Xeon X5460, 2x6MB Cache, 3.16GHz, 1333MHz FSB
32GB RAM
2x450GB 15K RPM SCSI 3Gbps 3.5-in HotPlug Hard Drive SAS
10Gbps connection to network
Runs Linux CentOS 4

FAY
PowerEdge 2950 III
2xQuad Core Intel Xeon X5460, 2x6MB Cache, 3.16GHz, 1333MHz FSB
32GB RAM
2x450GB 15K RPM SCSI 3Gbps 3.5-in HotPlug Hard Drive SAS
10Gbps connection to network
Runs Linux CentOS 4

EARL
PowerEdge 2950 III
2xQuad Core Intel Xeon X5460, 2x6MB Cache, 3.16GHz, 1333MHz FSB
32GB RAM
2x450GB 15K RPM SCSI 3Gbps 3.5-in HotPlug Hard Drive SAS
10Gbps connection to network
Runs Linux CentOS 4

CLEO
PowerEdge 2950 III
2xQuad Core Intel Xeon X5460, 2x6MB Cache, 3.16GHz, 1333MHz FSB
32GB RAM
2x450GB 15K RPM SCSI 3Gbps 3.5-in HotPlug Hard Drive SAS
100 Mbps connection to network
Runs Linux CentOS 4

AGNES
PowerEdge 2950 III
2xQuad Core Intel Xeon X5460, 2x6MB Cache, 3.16GHz, 1333MHz FSB
32GB RAM
2x450GB 15K RPM SCSI 3Gbps 3.5-in HotPlug Hard Drive SAS
100 Mbps connection to network
Runs Linux CentOS 4

KATRINA: (Alias: fdoi-srv-01)
Dual CPU P4-xeon 3.8GHz
8GB RAM
250GB * 6 SCSI Disks
100Mbps connection to network
Runs Linux CentOS 4

CHARLEY: (Backup Sun Server)
Sun UltraSparc Blade 1000
Dual CPU UltraSPARC III @ 750MHz
1GB RAM
35GB * 2 7200RPM Ultra160 SCSI disks
35GB * 1 7200RPM FC-AL internal disk
100Mbps connection to network
Runs Sun Solaris 2.8 Generic_108528-29

OPAL
Intel ® Xeon ® x5650 @ 2.66GHz x24 (6x4) (12MB cache)
96 GB RAM (12 x 8GB)
1TB * 6 SATA HDD
10Gbps connection to network
Runs Linux CentOS 5
FLOYD
Intel ® Xeon ® x5650 @ 2.66GHz x24 (6x4) (12MB cache)
96 GB RAM (12 x 8GB)
1TB * 6 SATA HDD
10Gbps connection to network
Runs Linux CentOS 5

IKE
Intel ® Xeon ® x5650 @ 2.66GHz x24 (6x4) (12MB cache)
96 GB RAM (12 x 8GB)
1TB * 6 SATA HDD
10Gbps connection to network
Runs Linux CentOS 5

STAN
Intel ® Xeon ® x5650 @ 2.66GHz x24 (6x4) (12MB cache)
96 GB RAM (12 x 8GB)
1TB * 6 SATA HDD
10Gbps connection to network
Runs Linux CentOS 5

MITCH
2 x Opteron 6212 @ 2.6GHz, 8-Core (16MB L3 Cache)
128 GB RAM (16 x 8GB)
3TB * 12 SATA HDD
10Gbps connection to network
Runs Solaris 10 ZFS

MITCH-BACKUP
2 x Opteron 6212 @ 2.6GHz, 8-Core (16MB L3 Cache)
128 GB RAM (16 x 8GB)
3TB * 12 SATA HDD
1Gbps connection to network
Runs Solaris 10 ZFS

IBM Cluster: (Property of School of Computer Science)
IBM RS/6000SP running AIX 5.1/PSSP 3.5 with 35 nodes.
8 wide nodes with dual 375MHz Power3-II Winterhawk-II processors
27 thin nodes with single 375MHz Power3-II Winterhawk-II processors

· Personal Computers (23 machines)

2 Machines with following configuration
Dell Dimension 4550 / 21 inches Monitor
Windows XP operating System
Pentium 4, 3.06GHz Processor, 1GB RAM
230GB Disk Space
16X DVD-ROM, 3.5”, 1.44 MB floppy drive

3 Machines with following configuration
Dell 1400 GX 400/Minitower/21 inches Monitor
Windows 2000 Operating System
Pentium 4, 1.4 GHz Processor, 1 GB RAM, 256K Cache
Two 40 GB EIDE 7200 rpm ATA/100 Hard Drive
16X DVD-ROM
Harman-Kardon 19.5 Speakers

10 Machines with following configuration (As shown in Table 9.3)
Dimension Optiplex GX620 Series/ 19-inch LCD Monitor
Windows XP Operating System
Dual Pentium IV 3.8GHz Processor
3.5GB SDRAM
250GB * 2 Ultra ATA 7200 rpm hard drive
DVD-RW, 3.5” floppy drive

2 Machines with following configuration
Dell Optiplex 755 (64 bit) / two 19-inch LCD monitors
Windows XP 64-bit operating system
Intel Core 2 Quad Processor Q9550, 8GB RAM
230GB Disk Space
DVD-RW

3 Machines with following configuration
 	Dell Optiplex 990 / two 22-inch LCD monitors
 	Windows® 7 Enterprise 64-bit OS
 	Intel® Core™ i7 2600 Processor @ 3.4GHz
 	8GB RAM
 	500 GB SATA HDD
 	16x DVD-RW

 1 Machine with following configuration
 	Dell Optiplex 990 / two 22-inch LCD monitors
 	Ubuntu 12.04 LTS 64-bit OS
 	Intel® Core™ i7 2600 Processor @ 3.4GHz
 	8GB RAM
 	500 GB SATA HDD
 	16x DVD-RW

2 Machines with following configuration
 	Dell OptiPlex 990 / two 21.5-inch LCD monitors
 	Windows® 7 Professional 64 bit OS
 	Intel® Core™ i7 2600 Processor @ 3.4GHz
 	8GB RAM (2 x 4GB)
 	500 GB SATA HDD
 	16x DVD-RW

Table 9.2: Detailed information for the servers and new workstations in FIU
	Type
	Name
	FIU Tag Number
	Serial Number
	Room
	CPU
	RAM
	Hard Disks

	Workstation
	BATTLECAT
	4980-00116283
	JJ84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	ORKO
	4980-00116284
	HJ84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	CRINGER
	4980-00116285
	8K84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	TUNDRA
	4980-00116287
	5K84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	TRAPJAW
	4980-00116288
	FJ84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	KODIAK
	4980-00116289
	3K84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	SKELETOR
	4980-00116290
	1K84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	GAUSS
	4980-00116291
	6K84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	KRAKEN
	4980-00116286
	4K84J91
	ECS 257
	Dual P4 3.80GHz
	3.5G
	2 x 250G

	Workstation
	MILO
	4980-US003064
	85TH1J1
	ECS 257
	Core 2 Quad Core Q9550
	8G
	230G

	Workstation
	OTIS
	4980-US003063
	75TH1J1
	ECS 257
	Core 2 Quad Core Q9550
	8G
	230G

	Workstation
	LIGHTNING
	4980-00132324
	580NMN1
	ECS 257
	Core i7 860 2.8GHz
	8G
	300G

	Workstation
	VANILLE
	4980-00132323
	580PMN1
	ECS 257
	Core i7 860 2.8GHz
	8G
	300G

	Sun Workstation
(Solaris Server)
	ANDREW
	AA01248
	FQ43050038
	ECS 204
	Dual SparcV9 1280MHz
	2G
	80G

	Sun Workstation
(Solaris Server)
	CHARLEY
	4980-US000854
	122CQ344
	ECS 204
	Dual SparcV9 750MHz
	1G
	70G

	Linux Server
	KATRINA
	4980-00116278
	JTPVH91
	ECS 204
	Dual P4-xeon 3.8GHz
	8G
	6 x 250G

	Workstation
	Venus
	N/A
	C7FJLS1
	ECS 257
	Intel® Core™ i7 2600 Processor 3.4GHz
	8 G
	500 GB

	Workstation
	Jupiter
	N/A
	C7FDLS1
	ECS 257
	Intel® Core™ i7 2600 Processor 3.4GHz
	8 G
	500 GB

	Workstation
	Mars
	N/A
	C7GDLS1
	ECS 257
	Intel® Core™ i7 2600 Processor 3.4GHz
	8 G
	500 GB

	Workstation
	Mercury
	N/A
	C7DJLS1
	ECS 257
	Intel® Core™ i7 2600 Processor 3.4GHz
	8 G
	500 GB

	Linux Server
	IRENE
	4980-00116279
	HTPVH91
	ECS 204
	Dual P4-xeon 3.8GHz
	8G
	6 x 250G

	Linux Server
	FAY
	4980-US002969
	CGHQ4H1
	ECS 204
	Dual Quad Core Xeon 2x6MB Cache 3.16GHz
	32G
	2x450G

	Linux Server
	JEANNE
	4980-US002968
	DGHQ4H1
	ECS 204
	Dual Quad Core Xeon 2x6MB Cache 3.16GHz
	32G
	2x450G

	Linux Server
	DENNIS
	4980-US003043
	JF1CYH1
	ECS 204
	Dual Quad Core Xeon 2x6MB Cache 3.16GHz
	32G
	2x450G

	Linux Server
	EARL
	4980-US003042
	HF1CYH1
	ECS 204
	Dual Quad Core Xeon 2x6MB Cache 3.16GHz
	32G
	2x450G

	Linux Server
	HUGO
	4980-US002159
	DZNTG51
	ECS 204
	Dual Quad Core Xeon 8MB Cache 2.96GHz
	32G
	2x450

	Linux Server
	CLEO
	4980-00129210
	C3SUNL1
	ECS 204
	Dual Quad Core Xeon 2x6MB Cache 3.16GHz
	32G
	2x450GB

	Linux Server
	AGNES
	4980-00129209
	C3SSNL1
	ECS 204
	Dual Quad Core Xeon 2x6MB Cache 3.16GHz
	32G
	2x450GB

	
	
	
	
	
	
	
	

	Linux Server
	KING
	4980-00132322
	DNCX4P1
	ECS 204
	Dual Quad Core Xeon 2x6MB Cache 3.16GHz
	64G
	2x650GB

	Linux Server
	FLOYD
	4980-00135473
	2BTTMS1
	ECS 204
	Intel ® Xeon ® x5650 2.66GHz x24 (6x4) (12MB cache)
	96G
	6x1TB

	Linux Server
	IKE
	4980-00135472
	2BSYMS1
	ECS 204
	Intel ® Xeon ® x5650 2.66GHz x24 (6x4) (12MB cache)

	96G
	6x1TB

	Linux Server
	STAN
	4980-00135471
	2BSWMS1
	ECS 204
	Intel ® Xeon ® x5650 2.66GHz x24 (6x4) (12MB cache)

	96G
	6x1TB

	Linux Server
	OPAL
	-
	2BRTMS1
	ECS 204
	Intel ® Xeon ® x5650 2.66GHz x24 (6x4) (12MB cache)

	96G
	6x1TB

	Solaris Server
	MITCH
	4980-00135525
	SM66759
	ECS 204
	2 x Opteron 6212 @ 2.6GHz, 8-Core (16MB L3 Cache)

	128G
	12x3TB

	Solaris Server
	MITCH-BACKUP
	-
	-
	ECS 204
	2 x Opteron 6212 @ 2.6GHz, 8-Core (16MB L3 Cache)

	128G
	12x3TB

Table 9.3: Detailed information for the new workstation in UM
	Type
	Name
	UM Tag Number
	Serial Number
	Room
	CPU
	RAM
	Hard Disks

	Workstation
	-
	00276173
	60FQZ91
	McArthur EB 406
	Dual P4 3.80GHz
	3.5G
	2 x 250G

· 1 Laptop with the following configuration
MacBook Pro
Mac OS X 10.6.8
Intel Core i7 4 Cores @ 2 GHz
4 GB RAM
500 GB SATA HDD

· Printers

One Printer
HP LaserJet P2055dn

	One Color Printer (NP-257-Color)
HP Color LaserJet 3550
	

· All-in-One Machine

One All-in-One Machine (NP-257-Multi)
HP LaserJet 3030
(Scanner, Fax machine, Printer)
	
· Scanner

One Color Scanner
Cannon CanoScan 8400F

[bookmark: _Toc346555937]Safety and Backups

Nightly backups of all UNIX data disks and selected Windows data disks (at user request) are performed over the network onto LTO2 and LTO3 tapes. Full dumps are taken periodically (every 2-3 weeks) and incremental are taken daily between them.

A separate full dump of all department UNIX data disks and selected Windows data disks (at user request) is taken once per semester, including IRENE and ANDREW, and kept at an off-site location in the PC building at the University Park Campus, which is the Monroe County hurricane shelter and has emergency power and climate control.

Vol.IX-11

[bookmark: _Toc346555938]Volume X. Training Plan

	Date
	Person
	Summary

	02/15/2007
	Min Chen
	Created the document

	
	
	

[bookmark: _Toc295741411][bookmark: _Toc295824480][bookmark: _Toc295824736][bookmark: _Toc295824995][bookmark: _Toc295825245][bookmark: _Toc295825654][bookmark: _Toc295825903][bookmark: _Toc295827586][bookmark: _Toc346382035][bookmark: _Toc346382287][bookmark: _Toc346382542][bookmark: _Toc346382799][bookmark: _Toc346383061][bookmark: _Toc346383804][bookmark: _Toc346384153][bookmark: _Toc346384439][bookmark: _Toc346384727][bookmark: _Toc346385014][bookmark: _Toc346385301][bookmark: _Toc346385587][bookmark: _Toc346385874][bookmark: _Toc346400181][bookmark: _Toc346408639][bookmark: _Toc346555939]
[bookmark: _Toc295824737][bookmark: _Toc346555940]Introduction

Training of FPHLM is made available to both the development and testing team members (computer group) who will implement and test the system and to those who will use it to successfully complete their tasks. This document describes the plan that will be used to train the technical staff on FPHLM system. It also describes the plan being used to train the other professional group members (engineering group, meteorology group, statistics group, and finance group).

[bookmark: _Toc295824738][bookmark: _Toc346555941]Technical Training Plan

The Technical training plan is intended for the development and testing team members who will assist with the system development, test, installation, configuration, and maintenance of FPHLM. These staffs will include the personnel assigned to tasks such as loss model implementation, client-side user interface implementation, web design, model testing, report development and maintenance, database development and maintenance, and mainframe system integration. They may also include the personnel with duties related to the administration and maintenance for FPHLM and its components. The objective of the training is for the student to gain enough knowledge and hands-on experience to get started on his/her tasks relating to system development.

The training will include several seminars and demos. A lecture will be presented in each seminar. Following the lecture, each student will have an overall idea about the system structure and its individual components. Then one-to-one computer based instruction will be entailed to reveal the appropriate technical details that the student needs to know. The following is an overview of the topics that will be presented in each of the training seminars.

Introduction to FPHLM: system architecture, system configuration, software components, web application interface, etc.
Database Component: HURDAT data, engineering data, wind-field data, and insurance data, Oracle 9i basics, Oracle DBA basics (for DBA only).
AHO (Annual Hurricane Occurrence) Module: Statistical models, model implementation, IMSL C++ library, JNI, web interface design using JSP.
SGT (Storm Genesis Time) Module: Statistical models, model implementation, query design, query optimization, web user interface design, web graphical demo applet design.
Engineering Module, Wind-field Module, and Insurance Module: model implementation, performance optimization, data characteristics, system integration.
The policies for using CVS and documenting program/data files.
The security policies.

[bookmark: _Toc295824739][bookmark: _Toc346555942]End User Training Plan

The end user training plan is intended for FPHLM end users and managers. The intended audience will consist of the professional group members (engineering group, meteorology group, statistics group, and finance group). They may also expand to State customers as needed. The objective of this training plan is to familiarize the end user with FPHLM so that they can use it for their tasks immediately.

The training will entail one-to-one instruction between attendees and technical instructors using computer based training. Before the actual training session, a computer usage survey, which is under development, will be passed to each attendee to collect the information such as their computer skills. This is very useful for the instructor to assess the student’s needs and to better meet his/her training expectations.

A user’s manual is under development and will be used in the training. The following topics will be covered in detail:

Logging into the system
Performing simulation and specifying the model parameters
Displaying the simulation results through web interface
Viewing the documentations and FPHLM related publications
Using the on-line “Question and Answer” facility to submit questions/answers and browse other people’s questions/answers
The security policies

Each student will receive a user’s manual at the training session. The materials used in technical training program will be tailored and used as the auxiliary guide in the end user training sessions. All the training materials will be accessible via FPHLM’s web documentation system. We also implemented an on-line Q&A facility for end users to submit their questions and get answers by using the same interface.

Testing Team Training Plan

A training plan is devised for the testing team to educate them on the use of various testing software in the form of training sessions and test documents. In addition, a new comer in the testing group is provided with the basic idea of different test methods and how to design test scripts for unit, aggregate and regression testing. Documenting the test cases and maintaining them for each new version of application codes also needs a standard training to avoid confusion and misunderstanding.

Vol.X-3

[bookmark: _Toc346555943]Volume XI. Human Resources

Revision History
	Last Updated
	Person
	Summary

	02/01/2007
	Min Chen
	Created the document

	04/20/2007
	Min Chen
	Included Sherman Chan

	06/01/2007
	Sherman Chan
	Reorganized personnel

	02/22/2008
	Fausto Fleites
	Removed Shermann Chan, added Hardik Dave, and reorganized personnel

	05/15/2008
	Fausto Fleites
	Removed Hardik Dave, added Ronald Ocampo, and reorganized personnel

	02/20/2009
	Fausto Fleites
	Added Juan Duarte, Joseph Rivera, and Enzo Alvarez; and reorganized personnel

	11/03/2010
	Fausto Fleites
	- Removed Kasturi Chatterjee, Juan Duarte, Joseph Rivera, and Enzo Alvarez
- Added Yimin Yang, HsinYu Ha, and Chao Chen

	01/18/2013
	Raul Garcia
	- Removed Chao Chen and Fausto Fleites
- Added Diana Machado, Dianting Liu, Roberto Aleman, Anthony Gonzalez, Alex Sarracino, and Raul Garcia.

[bookmark: _Toc346383809][bookmark: _Toc346384158][bookmark: _Toc346384444][bookmark: _Toc346384732][bookmark: _Toc346385019][bookmark: _Toc346385306][bookmark: _Toc346385592][bookmark: _Toc346385879]

CHAPTER 9. [bookmark: _Toc346400186][bookmark: _Toc346408644][bookmark: _Toc346555944]
[bookmark: _Toc346555945]Task Assignment and Backup Personnel

In order to provide a well defined task distribution and stability to the entire system, a well documented task assignment and backup personnel is maintained. There is a primary person responsible for each component with one or more backup persons. The complete Task Assignment List along with the back up personnel for each component is provided below.

Table 11.1: Task Assignment and Backups
	Component Name
	Primary Person
	Backup Persons

	Storm Track Module
	Diana Machado
	Hsin-Yu Ha

	Wind Field Module
	Diana Machado
	HsinYu Ha

	Wind Speed Correction Module
	Diana Machado
	Raul Garcia

	Engineering Validation
	Hsin-Yu Ha
	Roberto Aleman,
Yimin Yang,
Alex Sarracino

	Insurance Module
	Raul Garcia
	Diana Machado

	Database
	Raul Garcia
	Diana Machado

	Model Verification and Validation
	Yimin Yang
	HsinYu Ha,
Dianting Liu,
Alex Sarracino, Anthony Gonzalez

	OIR Data Processing
	Raul Garcia
	Diana Machado,
HsinYu Ha,
Yimin Yang,
Dianting Liu,
Alex Sarracino

Vol.XI-2

[bookmark: _Toc295824743][bookmark: _Toc346555946]Volume XII. FPHLM Related Publications

Revision history
	Last Updated
	Person
	Summary

	02/01/2007
	Min Chen
	Created the document

	02/20/2009
	Fausto Fleites
	Added publications

	11/06/2010
	Fausto Fleites
	Updated publications

Chen, S.-C., Min Chen, Na Zhao, Shahid Hamid, Kasturi Chatterjee, and Michael Armella.(2009). "Florida Public Hurricane Loss Model: Research in Multi-Disciplinary System Integration Assisting Government Policy Making," Special Issue on Building the Next Generation Infrastructure for Digital Government, Government Information Quarterly, April 2009, Vol. 26, No.2, pp. 285-294.

Chen, S.-C., S. Gulati, S. Hamid, X. Huang, L. Luo, N. Morisseau-Leroy, M. D. Powell, C. Zhan, and C. Zhang. (2004). “A Web-based Distributed System for Hurricane Occurrence Projection,” Software: Practice and Experience, 34(6), pp. 549-571.

Chen, S.-C., M. Chen, N. Zhao, S. Hamid, K. Saleem, and K. Chatterjee. (2008). “Florida Public Hurricane Loss Model (FPHLM): Research Experience in System Integration,” Proceedings of the 9th Annual International Conference on Digital Government Research, pp. 99-106, May 18-21, 2008, Montreal, Canada.

Chatterjee, K., K. Saleem, N. Zhao, M. Chen, S.-C. Chen, and S. Hamid,(2006). “Modeling Methodology for Component Reuse and System Integration for Hurricane Loss Projection Application,” in Proceedings of the 2006 IEEE International Conference on Information Reuse and Integration (IEEE IRI-2006), September 16-18, Hawaii, USA, pp. 57-62.

Chen, S.-C., S. Gulati, S. Hamid, X. Huang, L. Luo, N. Morisseau-Leroy, M. Powell, C. Zhan, and C. Zhang.(2003). “A Three-Tier System Architecture Design and Development for Hurricane Occurrence Simulation,” in Proceedings of the IEEE International Conference on Information Technology: Research and Education (ITRE 2003), August 10-13, 2003, Newark, New Jersey, USA, pp. 113-117.

Chen, S.-C., S. Hamid, S. Gulati, N. Zhao, M. Chen, C. Zhang, and P. Gupta,(2004). “A Reliable Web-based System for Hurricane Analysis and Simulation,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 2004, October 10-13, The Hague, The Netherlands, pp. 5215-5220.

Chen, S.-C., S. Hamid, S. Gulati, G. Chen, X. Huang, L. Luo, C. Zhan, and C. Zhang. (2003). “Information Reuse and System Integration in the Development of a Hurricane Simulation System,” in Proceedings of the 2003 IEEE International Conference on Information Reuse and Integration (IRI'2003), October 27-29, Las Vegas, Nevada, USA, pp. 535-542.

Chen, S.-C., M. Chen, N. Zhao, S. Hamid, K. Saleem, and K. Chatterjee, “Florida Public Hurricane Loss Model (FPHLM). (2008). Research Experience in System Integration,” accepted for publication, The 9th Annual International Conference on Digital Government Research, May 18-21,Montreal, Canada.

Vol.XII-2

[bookmark: _Toc295824744][bookmark: _Toc346555947]Volume XIII. User Manual

Vol.XIII-1

[bookmark: _Toc295824745][bookmark: _Toc346555948]Volume XIV. Test Report

IR1
IR1	
2.2368999999999977	4.4738000000000024	6.7106999999999992	8.9476000000000013	11.1845	13.4214	15.658300000000001	17.895199999999981	20.132099999999987	22.369	24.605899999999988	26.842799999999972	29.079699999999978	31.316599999999987	33.5535	35.790400000000012	38.027300000000011	40.26420000000001	42.501100000000001	44.738000000000035	46.974899999999998	49.211800000000004	51.448700000000002	53.685600000000008	55.922500000000035	58.159400000000005	60.396300000000011	62.633200000000009	64.870099999999979	67.106999999999999	69.343899999999991	71.580799999999982	73.817700000000002	76.054599999999994	78.29150000000007	80.528399999999948	82.765299999999996	85.002200000000002	87.239099999999993	89.475999999999999	91.712899999999991	93.949799999999996	96.186699999999988	98.423599999999993	100.6605	102.89739999999999	105.1343	107.37119999999999	109.60809999999998	111.845	114.08189999999999	116.3188	118.55569999999999	120.79259999999999	123.0295	125.26639999999999	127.5033	129.74019999999999	131.97710000000001	134.21399999999986	136.45090000000013	138.68780000000001	140.9247	143.16159999999999	145.39850000000004	147.6354	149.87230000000014	152.10919999999999	1.0000000000000005E-2	4.0000000000000022E-2	6.0000000000000032E-2	9.0000000000000024E-2	0.13	0.18000000000000013	0.23	0.29000000000000026	0.36000000000000026	0.45	0.54	0.6500000000000008	0.78	0.92	1.0900000000000001	1.27	1.48	1.71	1.9700000000000011	2.25	2.54	2.86	3.19	3.54	3.9099999999999997	4.26	4.6599999999999975	5.05	5.45	5.84	6.26	6.64	7.03	7.42	7.8199999999999985	8.2000000000000011	8.5300000000000011	8.91	9.25	9.59	9.94	10.27	10.59	10.92	11.18	11.5	11.75	12.04	12.28	12.55	12.850000000000009	13.06	13.3	13.49	13.75	13.850000000000009	14.07	14.26	14.38	14.48	14.53	14.65	14.75	14.9	15.05	15.26	15.219999999999999	15.59	Actual terrain 3 sec gust (10m)

Rain fall (inch)

IR2
IR2	
2.2368999999999977	4.4738000000000024	6.7106999999999992	8.9476000000000013	11.1845	13.4214	15.658300000000001	17.895199999999981	20.132099999999987	22.369	24.605899999999988	26.842799999999972	29.079699999999978	31.316599999999987	33.5535	35.790400000000012	38.027300000000011	40.26420000000001	42.501100000000001	44.738000000000035	46.974899999999998	49.211800000000004	51.448700000000002	53.685600000000008	55.922500000000035	58.159400000000005	60.396300000000011	62.633200000000009	64.870099999999979	67.106999999999999	69.343899999999991	71.580799999999982	73.817700000000002	76.054599999999994	78.29150000000007	80.528399999999948	82.765299999999996	85.002200000000002	87.239099999999993	89.475999999999999	91.712899999999991	93.949799999999996	96.186699999999988	98.423599999999993	100.6605	102.89739999999999	105.1343	107.37119999999999	109.60809999999998	111.845	114.08189999999999	116.3188	118.55569999999999	120.79259999999999	123.0295	125.26639999999999	127.5033	129.74019999999999	131.97710000000001	134.21399999999986	136.45090000000013	138.68780000000001	140.9247	143.16159999999999	145.39850000000004	147.6354	149.87230000000014	152.10919999999999	2.0000000000000011E-2	4.0000000000000022E-2	7.0000000000000021E-2	0.11	0.15000000000000013	0.21000000000000013	0.27	0.34	0.41000000000000025	0.51	0.61000000000000054	0.73000000000000054	0.86000000000000054	1.01	1.180000000000001	1.37	1.57	1.8	2.0499999999999998	2.3199999999999976	2.59	2.8899999999999997	3.19	3.4899999999999998	3.82	4.13	4.45	4.7699999999999996	5.09	5.39	5.71	6	6.31	6.6099999999999985	6.9300000000000024	7.25	7.53	7.87	8.2000000000000011	8.5500000000000007	8.9	9.25	9.6399999999999988	10.02	10.370000000000006	10.78	11.139999999999999	11.55	11.91	12.28	12.79	13.1	13.5	13.719999999999999	14.2	14.38	14.78	14.91	15.229999999999999	15.5	15.62	15.91	16.03	16.39	16.670000000000005	17.09	17.309999999999999	17.66	Actual terrain 3 sec gust (10m)

Rain fall (inch)

Vol.XIV-1

image1.wmf

Storm Properties:

(Central Pressure,

Storm Track, Rmax)

Storm Forecast Module

Determines the storm

properties to be used in

the analysis.

Historical Storm

Database:

HURDAT

Stochastic Storm

Database:

Simulated Storms

User Input:

Wind Field Module

Generates the wind field

based on geo

-

coded

location.

Information obtained

from geo

-

database:

Ground Elevati

on

Exposure Classification

Damage Estimation

Module

Calculates Damage Ratios

.

Vulnerability

Statistics

Wind Speed

Los

s Estimation Module

Calculates financial loss

Portfolio Data

oleObject36.bin

oleObject477.bin
Table

image504.emf
opening_protection_conversion

PK opening_protection_code

value

oleObject478.bin
Table

image505.emf
year_built_probs_com

PK county_code

county

probs

oleObject479.bin
Table

image506.emf
year_built_prior_probs_value

PK id

era

value

oleObject480.bin
Table

image507.emf
num_stories_probs_com

PK county_code

county

probs

oleObject481.bin
Table

image508.emf
num_stories_probs_com_value

PK id

stories

value

image55.wmf
)

(

)

(

)

(

s

s

v

s

v

g

s

+

=

oleObject482.bin
Table

image509.emf
catfund2007com

PK id

type_of_business

line_of_business

construction_type

deductible_group

county_code

zipcode

total_insured_risks

total_insured_risks_building

total_insured_risks_appurtenant

total_insured_risks_contents

total_insured_risks_ale

year_built_code

bceg_code

florida_building_code_indicator

structure_opening_protection

roof_shape

roof_wall_connection

roof_deck_attachment

oleObject483.bin
Table

image510.emf
hlpm2007com_updated_1

PK,FK3 policy_id

zipcode

FK1 year_built_code

year_built

FK4 construction_code

const_type

prop_value

lms

lmapp

lmc

lmale

deductible_group

deduc

hurr_deduc

FK2 county_code

county

region

num_units

type_of_business

roof_wall_connection

roof2wall

num_stories

FK5 roof_shape_code

roof_shape

roof_cover

roof_deck_code

deck_attachment

stud2sill

underlayment

garage

door_protection

FK6 opening_protection_code

opening_protection

building_shape

oleObject484.bin
Table

image511.emf
num_units_conversion_com_mhr

PK num_stories

value

oleObject485.bin
Table

image512.emf
coastal_2008

PK zipcode

oleObject486.bin
Table

image513.emf
hlpm2007com_updated_1_expanded

PK,FK1,FK5 policy_id

zipcode

year_built_code

year_built

construction_code

const_type

prop_value

lms

lmapp

lmc

lmale

deductible_group

deduc

hurr_deduc

FK2,FK3 county_code

county

region

num_units

type_of_business

roof_wall_connection

roof2wall

num_stories

roof_shape_code

roof_shape

roof_cover

roof_deck_code

deck_attachment

stud2sill

underlayment

garage

door_protection

opening_protection_code

opening_protection

building_shape

subregion

era

layout

oleObject37.bin

oleObject487.bin
Table

image514.emf
hlpm2007com_aggregated_0deduc_lr

PK policy_id

zipcode

year_built

const_type

prob_value

lms

lmapp

lmc

deduc

hurr_deduc

county

regioin

num_units

num_stories

roof_shape

roof_cover

opening_protection

num_units_orig

oleObject488.bin
Table

image515.emf
hlpm2007com_aggregated_0deduc_lr_geo

PK,FK1 policy_id

FK2 zipcode

year_built

const_type

prob_value

lms

lmapp

lmc

deduc

hurr_deduc

county

region

num_units

num_stories

roof_shape

roof_cover

opening_protection

num_units_orig

lat

lon

oleObject489.bin
Table

image516.emf
hlpm2007com_aggregated_0deduc_mhr

PK policy_id

loc

zipcode

year_built

prop_value

lms

lmapp

lmc

deduc

hurr_deduc

county

region

num_units

FK1 num_stories

opening_protection

irw

type_of_risk

layout

num_units_orig

oleObject490.bin
Table

image517.emf
hlpm2007com_aggregated_0deduc_mhr_geo

PK,FK1 policy_id

loc

FK2,FK3 zipcode

year_built

prob_value

lms

lmapp

lmc

deduc

hurr_deduc

county

region

num_units

num_stories

opening_protection

irw

type_of_risk

layout

num_units_orig

lat

lon

oleObject491.bin
Table

image518.png
1.

interp_runs idl_runs.
wsc_runs
PK PK [id -
PKFK3 [id servers
name
1% FK1
FK1 output_path
fileist > |snapshot_path FK2 name
path trackfile id_rough hotes.
swath_path num_years name
sim_years max_file output_path
notes notes. notes
flag flag flag
1 1. 10
T policy_data AL curr_proc
PK |id PK [id PKFK1 |id PK |id_server
id e
name < wse_file name
:;t':" num_records geo_vintage notes.
path FK1 | id
notes. geo_file
notes fla
flag flag '9
distance_path notes

image56.wmf
)

(

s

s

image519.emf
interp_runs

PK id

name

FK1 idl_id

filelist

path

swath_path

sim_years

notes

flag

oleObject492.bin
�

Table�

�

image520.emf
idl_runs

PK id

name

output_path

snapshot_path

trackfile

num_years

max_file

notes

flag

oleObject493.bin
�

Table�

�

image521.emf
wsc_runs

PK,FK3 id

FK1 id_interp

FK2 id_pol_wsc

id_rough

name

output_path

notes

flag

oleObject494.bin
�

Table�

�

image522.emf
servers

PK id

name

notes

oleObject495.bin
Table

image523.emf
roughness_sets

PK id

name

path

notes

flag

distance_path

oleObject496.bin
�

Table�

�

oleObject38.bin

image524.emf
policy_data

PK id

name

num_records

path

notes

flag

oleObject497.bin
�

Table�

�

image525.emf
policy_data_wsc

PK,FK1 id

wsc_file

geo_vintage

geo_file

flag

notes

oleObject498.bin
�

Table�

�

image526.emf
curr_proc

PK id_server

name

notes

FK1 id

oleObject499.bin
�

Table�

�

image527.jpeg
B £t Uew Favortes Lok Heb |

eback - o - (31| @search | yroders B[05 05 X o0 | E-

gdress [2home|default-web-applWEB-INFiclasses|FDOIdlasseslusecaseonelCrode =l @
P x| e [Tipe Wodfed
= 1 home 08 Cource 4420051

1 defauit-web-app

=
(2 wes-NF
01 s J

2 FooIdasses
= (21 usecaseone
® 3 Ceode

<)
)

Type: C Source Size: O bytes Obytes Localntranet

image528.emf
Research

Group Creates

Modification

Proposal

Group Presents

Proposal to

FPHLM Team

FPHLM Team

Agrees to the

Modification

Programmers Implement

Modification Based on

Proposal and Requirements

Testers

Perform Testing

Group in Conjunction with

Programmers Perform

Audits for Verification

and Validation of

 Implementation's Results.

Provide test results to concerned groups.

Release

Implementation

is Correct

Verification and

Validation

Successful

No

No

No

Yes

Yes

Each new document

and version is

tagged with a

major and minor

version numbers

Group

verifies that

requirements

documents correctly

correspond to slides,

technical papers, and/or

FPHLM documents

Yes

Group

Provides Requirements

Documentation to

Programmers

Programmers Verify

Requirements with Group

Comments in code

reference specific

document version

number being

implemented.

The purpose of the

verification is to

ensure the

Programmers

fully understand

the requirements

Requirements

Need

Revision

No

Yes

Communication occurs

through emails,

video conferences,

in-person meetings,

and phone calls

Yes

A detailed description

of the FPHLM testing

and verification

procedures is available

in Section 7.4 of the

Primary Document

Binder.

FPHLM Team: All members of the FPHLM

Groups: Meteorology, Engineering, Statistics, Actuarial, and Computer Science

image529.emf
Code development & Verification by Developers

Pair programming tasks:

· Thorough checking by pair

of developers

· Combined work for software

development

· Manually cross-checking of

results

· Implementation of

intermediate output and

error logging

Expert Verification

Expert tasks:

· Manual verification of

sample input and

generated results

· Calculation crosschecks

Testing by External Group of Software Engineers

Software tester tasks:

· Rigorously check for

correctness, robustness,

and stability of the software

system

· Check boundary tests

· Perform through unit,

aggregation, and regression

testing

Beginning of software

development

Interim results

Revisions necessary

Final results done

Notify developers in

case of problems

Testing Finished

image57.wmf

u

(

s

,

f

)

=

ffu

(

f

)

u

(

s

)

oleObject500.bin
Statechart

Code development & Verification by Developers

Pair programming tasks:
Thorough checking by pair of developers
Combined work for software development
Manually cross-checking of results
Implementation of intermediate output and error logging

Expert Verification

Expert tasks:
Manual verification of sample input and generated results
Calculation crosschecks

Testing by External Group of Software Engineers

Software tester tasks:
Rigorously check for correctness, robustness, and stability of the software system
Check boundary tests
Perform through unit, aggregation, and regression testing

Beginning of software development

Interim results

Revisions necessary

Final results done

Notify developers in case of problems

Testing Finished

image530.png
© OO

HTTP Request
Browaer
[e—
i
SSLReques_|
Browaer

SSL Response

Browser

TP Regent |

HTTP Rezpos:

ISP

IMSL Staistica

d Mathematic Library

Oracle9i Database

oleObject39.bin

image58.wmf

s

(

s

,

f

)

=

ff

s

(

f

)

s

(

s

)

oleObject40.bin

image59.wmf

ffu

(

f

)

=

a

0

+

a

1

cos

f

+

a

2

sin

f

oleObject1.bin

Storm Forecast Module

Determines the storm properties to be used in the analysis.

Historical Storm Database: HURDAT

Stochastic Storm Database: Simulated Storms

User Input:

Information obtained from geo-database:

Ground Elevation

Exposure Classification

Storm Properties:

(Central Pressure, Storm Track, Rmax)

Wind Field Module

Generates the wind field based on geo-coded location.

Vulnerability Statistics

Damage Estimation Module

Calculates Damage Ratios .

Wind Speed

Loss Estimation Module

Calculates financial loss

Portfolio Data

oleObject41.bin

image60.wmf

ff

s

(

f

)

=

b

0

+

b

1

cos

f

+

b

2

sin

f

oleObject42.bin

image61.wmf
å

å

-

+

+

+

-

+

+

=

=

-

-

|

)

)(

sin

(

)

(

)

(

|

|

)

3

(

|

|

3

|

1

1

c

w

c

u

s

g

u

v

s

u

u

A

RA

o

s

f

a

s

s

¶

s

¶

f

oleObject43.bin

image62.wmf
å

=

|

)

4

(

|

|

4

|

A

RA

oleObject44.bin

image63.wmf
NGRID

RA

RA

b

a

J

4

3

)

,

(

+

=

å

oleObject45.bin

image64.wmf

c

t

image2.jpeg
/

Scientist \

Damge and Vulnerability
Engineer \
Loss Estimation

oleObject46.bin

image65.emf
Reads g_trackfile and

separates it into individual

track files

Process individual

track

1. Read trackfiles into arrays.

2. Mark the fix of lowest central

pressure.

3. Thin out storm fixes based on the

adjusted fix frequency.

4. Calculate time in minutes for each

fix.

5. Samples data and calculate fbarx.

6. Subsample the smoothed input

data to recover original resolution.

7. Get landfall location and time.

8. Calculate storm translation speed.

9. Smoothen translation speed.

10. Evaluate smoothed translation

speed, track position and save track

related quantities.

1. Calculate radial and

tangential wind profiles for each

storm.

2. Calculate gradient wind

profile for each fix.

3. Collects radial and tangential

profiles.

4. Saves the variables

calculated.

In trackfile, locate fixes

corresponding to landfall and sea fall

and location of min. pressure

Check category

Selects fix interval

depending upon

the category

1. For each retained

fix, construct polar

grid of earth relative

marine surface

winds.

2. Process the matrix

provided by onefix.m.

3. Compute second

order derivatives of

fields for time

interpolation.

1. Calculates the

time series.

2. Determine the

zipcodes affected

by the storm.

Has zipcode

affected by the

storm?

1. Generate relevant portion

of gridded field fo current time.

2. Evaluate marine windfield

components at admissible zip

code centroids.

3. Convert marine windspeed

to Open Terrain windspeeds

4. Obtain marine and OT peak

winds at landfall or lowest

pressure for bypassing

storms.

yes

Track related info

Wind Speed

Damage

Estimation Module

Field

snapshots

If

holland B ==0

N

o

Radial and

Tangential

profile

Calculate it with

formula

B=1.881093-

0.010917Lat-

0.005567 Rmax.

yes

Start

g

_

t

r

a

c

k

f

i

l

e

oleObject47.bin
Reads g_trackfile and separates it into individual track files

Process individual track

1. Read trackfiles into arrays.
2. Mark the fix of lowest central pressure.
3. Thin out storm fixes based on the adjusted fix frequency.
4. Calculate time in minutes for each fix.
5. Samples data and calculate fbarx.
6. Subsample the smoothed input data to recover original resolution.
7. Get landfall location and time.
8. Calculate storm translation speed.
9. Smoothen translation speed.
10. Evaluate smoothed translation speed, track position and save track related quantities.

1. Calculate radial and tangential wind profiles for each storm.
2. Calculate gradient wind profile for each fix.
3. Collects radial and tangential profiles.
4. Saves the variables calculated.

In trackfile, locate fixes corresponding to landfall and sea fall and location of min. pressure

Check category

Selects fix interval depending upon the category

1. For each retained fix, construct polar grid of earth relative marine surface winds.
2. Process the matrix provided by onefix.m.
3. Compute second order derivatives of fields for time interpolation.

Radial and
Tangential
profile

1. Calculates the time series.
2. Determine the zipcodes affected by the storm.

Has zipcode affected by the storm?

1. Generate relevant portion of gridded field fo current time.
2. Evaluate marine windfield components at admissible zip code centroids.
3. Convert marine windspeed to Open Terrain windspeeds
4. Obtain marine and OT peak winds at landfall or lowest pressure for bypassing storms.

yes

Track related info

Wind Speed

Damage Estimation Module

Field snapshots

If
holland B ==0

No

Calculate it with formula B=1.881093-0.010917Lat-0.005567 Rmax.

yes

Start

g_trackfile

image66.emf
+TRACK.PRO()

+THINNER.PRO()

+SUV.PRO()

+VGHGEN.PRO()

+USG.PRO()

+OBC.M()

+DUS.PRO()

+FIXSHOTS15.PRO()

+ONEFIX.M()

+GENSTREX.M()

+SHIFT.M()

+PKWINDS.PRO()

+REACH.PRO()

+LLTOXY.PRO()

+ZMAR2ZOT.PRO()

+GEMF.M()

+UDVS.PRO()

+SGDVS.PRO()

+RSDU.PRO()

+RSDSG.PRO()

+MNRDU.PRO()

+MNRDSG.PRO()

+GEMFPLEX.PRO()

+GEMF.PRO()

+ctg

+zhour

+zmin

+nlat

+elon

+cpr

+rmx

+hdb

+lsflg

Wind Field Model

oleObject48.bin
+TRACK.PRO()
+THINNER.PRO()
+SUV.PRO()
+VGHGEN.PRO()
+USG.PRO()
+OBC.M()
+DUS.PRO()
+FIXSHOTS15.PRO()
+ONEFIX.M()
+GENSTREX.M()
+SHIFT.M()
+PKWINDS.PRO()
+REACH.PRO()
+LLTOXY.PRO()
+ZMAR2ZOT.PRO()
+GEMF.M()
+UDVS.PRO()
+SGDVS.PRO()
+RSDU.PRO()
+RSDSG.PRO()
+MNRDU.PRO()
+MNRDSG.PRO()
+GEMFPLEX.PRO()
+GEMF.PRO()

+ctg
+zhour
+zmin
+nlat
+elon
+cpr
+rmx
+hdb
+lsflg

Wind Field Model

image67.emf
Storm

Forecast

Module

Damage

Estimation

Module

Storm Properties

GEMFPLEX

(entrant

procedure)

Trackfile

Loss

Estimation

Module

Individual track file

GEMF

(process each

track)

Each track info

TRACK SUV FIXSHOTS15

PKWINDS

THINNER

storm track

thinned storm track

bear, day, elonk,

hdb etc.

(other track

related info)

TRACK.IDL

Track related info

VGHGEN

s,delp

 etc.

gradient

 wind profile

USG

s,sg etc

radial,

tangential wind

profile

SUV.IDL

radial, tangential

profiles

ONEFIX.M

NRMRAYSE

10_15.IDL

polar grid

day,elon,elonk

etc.

FIXSHOTS.IDL

ZIPCODES.IDL

LLTOXY

ZMAR2ZOT

REACH.M

glon,glat etc.

xmerc,ymerc

zerzip,zotzip

zuv,zot

rmw

reachx

GENSTREX.M

SHIFT.M

Wind Speed

Wind Speed Probability

oleObject49.bin
Storm Forecast Module

Damage Estimation Module

Storm Properties

GEMFPLEX
(entrant procedure)

Trackfile

Loss Estimation Module

Wind Speed Probability

Individual track file

GEMF
(process each track)

Each track info

TRACK

SUV

THINNER

FIXSHOTS15

PKWINDS

storm track

thinned storm track

bear, day, elonk, hdb etc.
(other track related info)

TRACK.IDL

Track related info

VGHGEN

s,delp
 etc.

gradient
 wind profile

USG

s,sg etc

radial,
tangential wind
profile

SUV.IDL

radial, tangential profiles

ONEFIX.M

NRMRAYSE10_15.IDL

polar grid

day,elon,elonk etc.

ZIPCODES.IDL

FIXSHOTS.IDL

LLTOXY

ZMAR2ZOT

REACH.M

glon,glat etc.

xmerc,ymerc

zerzip,zotzip

zuv,zot

rmw

reachx

GENSTREX.M

SHIFT.M

Wind Speed

image68.jpeg
Wind model code (IDL code) flowchart

¢ Coded by Dr. George A. Soukup |Frozen Model

VGHGEN

rmrayse10_15.idl

trex.
FIXSHOTS15 perr gensirexm

e LLTOXY

PKWINDS
ZUVv2zZOoT

Note

The files names without any

extension in them are idl
procedure files(.pro files)

Output.dat snapshot.dat

image69.wmf
10

1

5

R

M

W

1

0

.

1

R

M

W

1

0

R

M

W

oleObject50.bin
�

�

�

�

�

�

10�

10.1 RMW�

15RMW�

10 RMW�

image3.emf
Damage Estimation Module

Storm Forecast Module / Wind Field Module

Database Server

Firewall

User

User Input

Storm Track

Module

Generate storm

tracks for

simulated storms

Wind Field

Module

Estimates terrain

wind speed with

respect to the

actual terrain

Wind Speed

Correction

Refine OT wind

speed

Wind Speed

Probability

Calculates

probability of 3

sec gust wind

speed

Information from Geo

database: Ground

Elevation & Exposure

Classification

Monte Carlo

Simulation

Engineering

Module

Calculates

Damage Ratios

HURDAT

Simulated

storms

Loss

Estimation

Module

Calculates the

Lost Cost

Portfolio Data

Firewall

Application Server

Application Server

Application Server

image70.wmf
s

oleObject51.bin

image71.wmf
å

å

-

+

+

+

-

+

+

=

=

-

-

|

)

)(

sin

(

)

(

)

(

|

|

)

3

(

|

|

3

|

1

1

c

w

c

u

s

g

u

v

s

u

u

A

RA

o

s

f

a

s

s

¶

s

¶

f

oleObject52.bin

oleObject53.bin

image72.emf
uw

s

g

u

u

a

s

s

+

+

-

-

)

(

1

&

uw s g u u

      

) (

1



image73.emf
w

v

d

s

u

)

(

)

(

0

1

s

a

s

s

+

+

+

+

-

&

w v d s u) () (

0

1

       





oleObject54.bin

oleObject55.bin

oleObject56.bin

oleObject2.bin

oleObject57.bin

oleObject58.bin

oleObject59.bin

oleObject60.bin

image74.emf
)

(

)

(

)

,

(

s

u

ffu

s

u

f

f

=

) () () , (s u ffu s u

  

oleObject61.bin

image75.emf
)

(

)

(

)

,

(

s

ff

s

s

f

s

f

s

=

) () () , (s ff s

     

oleObject62.bin

image76.emf
u

u

s

¶

u u

s



oleObject63.bin

image4.emf

Application Logic Database

User Interface

image77.emf
)

(

1

s

s

-

+

s

g

) (

1   

s g

oleObject64.bin

image78.emf
u

v

s

o

f

¶

s

)

(

1

+

-

u v s

o 

 

) (

1  

oleObject65.bin

image79.emf
)

)(

sin

(

c

w

c

u

-

+

f

a

))(sin (c w c u

   

oleObject66.bin

image80.emf
)

)(

sin

(

)

(

)

(

1

1

c

w

c

u

s

g

u

v

s

u

u

o

s

-

+

+

+

-

+

+

-

-

f

a

s

s

¶

s

¶

f

))(sin () () (

1 1

c w c u s g u v s u u

o s

               



oleObject67.bin

image81.emf
s

¶

s

u

 

s

u

oleObject68.bin

oleObject3.bin

image82.emf
)

(

1

s

-

+

s

d

u

) (

1  

s d u

oleObject69.bin

image83.emf
s

¶

s

f

)

(

1

+

-

o

v

s

  



) (

1  

o

v s

oleObject70.bin

image84.emf
)

)(

cos

(

c

w

c

v

o

-

+

+

f

s

a

))(cos (c w c v

o

     

oleObject71.bin

image85.emf
)

)(

cos

(

)

(

)

(

1

1

c

w

c

v

s

d

u

v

s

u

o

o

s

-

+

+

+

+

+

+

+

-

-

f

s

a

s

s

¶

s

s

¶

f

))(cos () () (

1 1

c w c v s d u v s u

o o s

                  



oleObject72.bin

oleObject73.bin

oleObject74.bin

image5.wmf

Database Server

Client Side

Web

Browser

OC4J

Container

JavaBeans

ORACLE

DB

IMSL

Library

JNI

Interface

Math

Model

in C++

Web

Server

Application Logic

HTTP/SSL

JDBC

Math Model

image86.wmf
v

v

u

u

uvm

×

+

×

=

oleObject75.bin

image87.wmf
)

,

arctan(

u

v

uvd

-

-

=

oleObject76.bin

image88.wmf
)

(

)

(

)

(

1

1

0

0

n

A

wt

n

A

wt

it

A

×

+

×

=

oleObject77.bin

image89.wmf
Nstep

n

it

wt

Nstep

it

n

wt

/

)

(

/

)

(

0

1

1

0

-

=

-

=

oleObject78.bin

image90.wmf
)

4

cos(

00120

.

0

)

2

cos(

56605

.

0

13209

.

111

f

f

×

×

+

×

×

-

=

rky

oleObject79.bin

oleObject4.bin

ORACLE

DB

OC4J Container

Web Browser

Math Model

Database Server

Web Server

Client Side

JNI Interface

JavaBeans

IMSL Library

Math Model in C++

Application Logic

HTTP/SSL

JDBC

image91.wmf
)

5

cos(

00012

.

0

)

3

cos(

09455

.

0

)

cos(

41513

.

111

f

f

f

×

×

+

×

×

-

×

=

rkx

oleObject80.bin

image92.wmf
1

/

)

deg

(

1

/

)

deg

(

1

/

)

deg

(

1

/

)

deg

(

+

D

-

×

-

=

-

D

-

×

-

=

+

D

-

×

+

=

-

D

-

×

-

=

x

wlon

kmx

dis

TClon

nx

x

wlon

kmx

dis

TClon

nx

y

slat

kmy

dis

TClat

ny

y

slat

kmy

dis

TClat

ny

end

start

end

start

oleObject81.bin

image93.wmf
)

,

(

)

,

(

0

0

0

0

~

iang

irad

A

wt

wt

j

i

A

r

a

×

×

=

oleObject82.bin

image94.wmf
)

,

(

)

,

(

)

,

(

1

1

1

1

1

0

1

0

0

1

0

0

iang

irad

A

wt

wt

iang

irad

A

wt

wt

iang

irad

A

wt

wt

a

r

a

r

a

r

×

×

×

×

×

×

oleObject83.bin

image95.wmf
rky

TClat

Rlat

dy

rkx

Rlat

TClon

Rlon

dx

×

-

=

×

×

-

=

)

(

)

cos(

)

(

oleObject84.bin

image96.wmf
)

,

arctan(

dx

dy

dir

dy

dy

dx

dx

dis

=

×

+

×

=

oleObject85.bin

image97.wmf
1

0

0

1

1

0

0

1

1

)

(

1

1

max

1

.

0

a

a

a

r

r

r

wt

wt

iang

dir

wt

wt

wt

irad

R

dis

wt

-

=

D

-

=

-

=

+

-

=

q

q

oleObject86.bin

image98.wmf
WS

Deep

Shallow

CD

×

+

=

000045774

.

0

0005047

.

0

_

_

oleObject87.bin

image99.wmf
WS

Deep

Shallow

CD

×

-

=

00006732

.

0

00477

.

0

_

_

oleObject88.bin

image100.wmf
ú

ú

û

ù

ê

ê

ë

é

ú

ú

û

ù

ê

ê

ë

é

-

×

=

Deep

Shallow

CD

Exp

m

ZoPowell

_

_

4

.

0

10

)

(

oleObject89.bin

image6.png
Model Domain

image101.wmf
ú

û

ù

ê

ë

é

×

=

)

(

4

.

0

_

*

m

ZoPowell

Za

Log

WS

Powell

Marine

U

oleObject90.bin

image102.wmf
ú

ú

û

ù

ê

ê

ë

é

÷

ø

ö

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

=

=

=

n

H

z

a

z

z

k

u

z

U

m

h

marine

Uh

*

0

*

ln

)

(

450

_

_

oleObject91.bin

image103.wmf
÷

÷

ø

ö

ç

ç

è

æ

=

)

(

4

.

0

z

Zoa

z

Ln

Va

u

oleObject92.bin

image104.wmf
÷

ø

ö

ç

è

æ

-

=

u

z

f

6

1

h

oleObject93.bin

image105.wmf
(

)

(

)

Lat

z

f

sin

*

292

.

7

2

5

-

=

oleObject94.bin

image7.wmf
(

)

(

)

(

)

t

w

p

t

c

y

y

t

c

x

D

=

D

D

=

D

D

=

D

q

q

sin

cos

/

cos

image106.wmf
÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

)

(

.

156

.

0

1

538

.

0

)

(

09

.

0

5

.

7

)

(

16

z

Zoa

f

u

Ln

z

Zoa

z

Ln

u

z

u

h

h

s

oleObject95.bin

image107.wmf
)

(

386762

.

0

)

60

,

(

1

.

0

60

193

.

0

1

)

(

)

60

,

(

68

.

0

z

z

I

z

z

u

u

t

u

u

s

s

s

s

=

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

-

=

-

oleObject96.bin

image108.wmf
96

.

4

13

.

3

2

.

0

=

=

t

t

I

Z

I

oleObject97.bin

image109.wmf
)

(

868256421

.

0

)

3

,

(

1

.

0

3

193

.

0

1

)

(

)

3

,

(

68

.

0

z

z

I

z

z

u

u

t

u

u

s

s

s

s

=

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

-

=

-

oleObject98.bin

image110.wmf

C

r

(

60

)

=

0

.

007

+

0

.

213

I

t

60

æ

è

ç

ö

ø

÷

0

.

654

æ

è

ç

ç

ö

ø

÷

÷

I

t

oleObject99.bin

oleObject5.bin

image111.wmf

C

r

(

60

)

=

0

.

00982

oleObject100.bin

image112.wmf

C

r

(

3

)

=

0

.

007

+

0

.

213

I

t

3

æ

è

ç

ö

ø

÷

0

.

654

æ

è

ç

ç

ö

ø

÷

÷

I

t

oleObject101.bin

image113.wmf

C

r

(

3

)

=

0

.

061

oleObject102.bin

image114.wmf
(

)

(

)

(

)

(

)

)

(

)

60

,

(

600

2

557

.

0

600

2

)

60

(

)

(

)

3

,

(

600

2

557

.

0

600

2

)

3

(

z

z

C

Ln

C

Ln

P

z

z

C

Ln

C

Ln

P

u

u

r

r

f

u

u

r

r

f

s

s

s

s

ú

ú

û

ù

ê

ê

ë

é

+

=

ú

ú

û

ù

ê

ê

ë

é

+

=

oleObject103.bin

image115.wmf

T

il

=

s

u

(

z

)

U

h

oleObject104.bin

image8.wmf
(

)

(

)

y

x

a

a

A

a

PDF

,

,

,

d

d

=

image116.wmf
)

3

(

1

)

60

(

1

3

min,

10

60

min,

10

f

il

f

il

P

T

G

P

T

G

+

=

+

=

oleObject105.bin

image117.wmf
8

.

0

)

/

(

38

.

0

oa

oa

i

z

x

z

h

×

×

=

oleObject106.bin

image118.emf
R

hi

=h

i

/h

oleObject107.bin

image119.wmf
)

/

,

max(

max

0

hi

i

pbl

R

h

h

h

=

oleObject108.bin

image120.wmf
)

/

)

,

log(max(

/

)

5

.

0

)

/

(log(

)

/

log(

/

)

/

)

,

log(max(

oo

i

oo

pbl

i

oa

oa

e

e

z

zs

h

z

h

CF

z

zs

z

zs

h

CF

-

=

=

oleObject109.bin

oleObject6.bin

image121.wmf
Õ

+

=

M

n

n

n

n

i

z

h

z

h

CF

1

1

)

/

log(

/

)

/

log(

oleObject110.bin

image122.wmf
2

/

)

/(

)

(

)

(

dh

d

z

z

h

h

z

z

dz

h

h

dh

z

e

n

e

i

e

i

e

i

×

+

=

-

-

=

-

=

oleObject111.bin

image123.wmf
m

t

i

e

tot

CF

CF

CF

CF

C

×

×

×

=

oleObject112.bin

image124.wmf
)

5

.

0

)

/

log(

/

)

/

log(

-

=

oo

o

oo

m

m

z

h

z

zs

CF

oleObject113.bin

image125.wmf

UserID:

 FDOIUSER

PassWD:

LOGIN

oleObject114.bin

UserID: FDOIUSER

PassWD: ********

LOGIN

image9.wmf
44035

.

5

ˆ

=

k

image126.wmf

image127.wmf
 Go

image128.jpeg
Interpolation
Run interpolation code? M

Interpolation runs at server.

image129.jpeg
Interpolation

Run interpolation code?

IDL s at server
Name for interpolation run: —
Norber of yers | T

image130.jpeg
Roughness

Open terain (z0=0.03) .
Residential roughness (z0=0.35) ®
Read in roughness o

Rouighness sets at server

image131.jpeg
Policy data

Policy sets at server

image132.jpeg
Other Options

Number of height levels: | R
Gust ETT—

Name for the WSC run: |

image133.emf
Start

System displays

WSC selection

interface

Run

interpolation

System reads interpolation information:

-name for interpolation

-IDL run

-# years

The name must be unique (i.e., must not have been

used before), the IDL run is selected from the available

sets in the system, and #years must be greater than 0

Select existing

interpolation run in

the system

Select roughness information, i.e., select

an existing roughness in the system and

notify system to use open terrain

roughness or residential roughness

Select policy data set

information, i.e., select a

set from those available in

the system

Select remaining information, i.e.,

select height level, gust, and name

for WSC run.

The name must be unique, i.e., must

not have been used befor3e

Yes

No

Submit WSC

request

System checks that:

1. There are enough available servers

2. Provided names do not already exist

in the database

3. Other information is correct

Was there an

error

Notify user or error

Notify user that

WSC run was

started

Yes No

End with error

Read WSC

information

Check information,

i.e., check paths

and connection to

the database

Run

interpolation

Run interpolation

using multiple

servers

Update database

Run WSC using

multiple servers

Update database

Yes

No

Record server

usage in database

If there was an error, delete

necessary information from

database and notify user

A

B

A

B

Read snapshot data from

WM, Rmax, Ctlat, TCLon,

and (u,v) components

Perform linear

interpolation

(linear method)

Perform spatial

interpolation

Compute swath

Output swath files, i.e.,

swath.xxxyyy.dat and

swath.xxxyyy.info

Interpolate winds from

the wind interpolation

using a nearest neighbor

method to a fine

resolution (approx. 90m)

Perform conversion of wind

from marine exposure to

target exposure (usually

actual or open terrain)

Calculate gust

factor for 1 min or

3 sec

Incorporate the

effect of sea-land

transition in

coastal regions

Output WSC files, i.e., files

that contain policy id and

wind speed for at least the

10 m height level and up to

15 levels in 10m increments

Web Interface

WSC Multi-Server System

Wind Speed Correction

Module

Wind Interpolation

Module

oleObject7.bin

oleObject115.bin

Start

System displays WSC selection interface

Run interpolation

System reads interpolation information:
- name for interpolation
- IDL run
- # years
The name must be unique (i.e., must not have been used before), the IDL run is selected from the available sets in the system, and #years must be greater than 0

Select existing interpolation run in the system

Select roughness information, i.e., select an existing roughness in the system and notify system to use open terrain roughness or residential roughness

Select policy data set information, i.e., select a set from those available in the system

Select remaining information, i.e., select height level, gust, and name for WSC run.
The name must be unique, i.e., must not have been used befor3e

Yes

No

Submit WSC request

System checks that:
1. There are enough available servers
2. Provided names do not already exist in the database
3. Other information is correct

Was there an error

Notify user or error

Notify user that WSC run was started

Yes

No

End with error

Read WSC information

Check information, i.e., check paths and connection to the database

Run interpolation

Run interpolation using multiple servers

Update database

Run WSC using multiple servers

Update database

Record server usage in database

Yes

No

If there was an error, delete necessary information from database and notify user

A

B

A

B

Read snapshot data from WM, Rmax, Ctlat, TCLon, and (u,v) components

Perform linear interpolation (linear method)

Perform spatial interpolation

Compute swath

Output swath files, i.e., swath.xxxyyy.dat and swath.xxxyyy.info

Interpolate winds from the wind interpolation using a nearest neighbor method to a fine resolution (approx. 90m)

Perform conversion of wind from marine exposure to target exposure (usually actual or open terrain)

Calculate gust factor for 1 min or 3 sec

Incorporate the effect of sea-land transition in coastal regions

Output WSC files, i.e., files that contain policy id and wind speed for at least the 10 m height level and up to 15 levels in 10m increments

Web Interface

WSC Multi-Server System

Wind Speed Correction Module

Wind Interpolation
Module

image134.emf
+run()

-nrad

-nang

-ntmax

-fname

-header

-u

-v

-uvm

-uvd

-tclats

-tclons

-rmaxs

-tsizex

-tsizey

-slat_tile

-wlon_tile

-deltax

-deltay

-nstep

Interpolation

+run()

-tsizex

-tisizey

-nz

-nu

-nh

-maxd

-gfac

-gfac2

-zmar

-rlat

-rlon

-rlat_s

-rlat_n

-rlon_e

-rlon_w

-rlat_sx

-rlat_nx

-rlon_ex

-rlon_wx

-effr

-wind

-zsm

-zoo

WSC

+setUpAndRunInterp()

+exit()

+cleanCurrProcInDB()

+setUpAndRunWSC()

-UpdateDatabase

-RunBoth

-EmailToNotify

-TaskName

-InterpRoot

-InterpName

-WSCRoot

-WSCName

WSCMultiServer

+updateWSC()

+updateInterp()

+updateCurrProc()

+deleteFromCurrProc()

+connect()

+checkConnection()

-conn

DBProxy

oleObject116.bin
+run()

-nrad
-nang
-ntmax
-fname
-header
-u
-v
-uvm
-uvd
-tclats
-tclons
-rmaxs
-tsizex
-tsizey
-slat_tile
-wlon_tile
-deltax
-deltay
-nstep

Interpolation

+run()

-tsizex
-tisizey
-nz
-nu
-nh
-maxd
-gfac
-gfac2
-zmar
-rlat
-rlon
-rlat_s
-rlat_n
-rlon_e
-rlon_w
-rlat_sx
-rlat_nx
-rlon_ex
-rlon_wx
-effr
-wind
-zsm
-zoo

WSC

+setUpAndRunInterp()
+exit()
+cleanCurrProcInDB()
+setUpAndRunWSC()

-UpdateDatabase
-RunBoth
-EmailToNotify
-TaskName
-InterpRoot
-InterpName
-WSCRoot
-WSCName

WSCMultiServer

+updateWSC()
+updateInterp()
+updateCurrProc()
+deleteFromCurrProc()
+connect()
+checkConnection()

-conn

DBProxy

image135.emf
Snapshot

data from

Wind Field

Model

Gust factor

calculation

swath.xxxyyy.dat files

Read WFM

data

Time

Interpolation

Rmax,center location,

u,v components

Spatial

Interpolation

Interpolated Rmaxs,

Tclons, Tclats,uvm,uvd

swath.xxxyyy.info files

Interpolated wind swath (spdmax,dirmax)

metadata

Policy Data

Set

Marine drag

coefficient

and terrain

conversion

Coastal

transition

Lookup tables for terrain

conversion and gust

factors (1 for non coastal

and 2 for with coastal

transition effect)

Roughness

data

Process storm

swaths and

policy data

Friction

factors

Wsc.xxxyyy.nn

nnnn.dat files

Interpolation

policy,swath info

Compute final

winds

Nearest neighbor wind

and roughness

Initial Processing

Wind Speed Correction

Module

Wind Interpolation

Module

oleObject117.bin
Snapshot data from Wind Field Model

Gust factor calculation

swath.xxxyyy.dat files

Read WFM data

Time Interpolation

Rmax,center location,
u,v components

Spatial Interpolation

Interpolated Rmaxs,
Tclons, Tclats,uvm,uvd

swath.xxxyyy.info files

Interpolated wind swath (spdmax,dirmax)

metadata

Policy Data Set

Process storm swaths and policy data

Marine drag coefficient and terrain conversion

Lookup tables for terrain conversion and gust factors (1 for non coastal and 2 for with coastal transition effect)

Coastal transition

Wsc.xxxyyy.nnnnnn.dat files

Roughness data

Friction
factors

policy,swath info

Interpolation

Compute final winds

Nearest neighbor wind
and roughness

Initial Processing

Wind Speed Correction Module

Wind Interpolation
Module

image136.emf
Interface Loading

Database Preliminary Checking

Interface Error

Interface Loaded

WSC Run Scheduled

WSC Mult-Server Running

Server Error

Database Updated

oleObject118.bin
Interface Loading

Database Preliminary Checking

Interface Error

Interface Loaded

WSC Run Scheduled

WSC Mult-Server Running

Server Error

Database Updated

oleObject119.bin

oleObject120.bin

oleObject121.bin

image10.wmf
71464

.

4

ˆ

=

q

oleObject122.bin

oleObject123.bin

oleObject124.bin

oleObject125.bin

oleObject126.bin

oleObject127.bin

oleObject128.bin

oleObject129.bin

oleObject130.bin

image137.wmf
)

(

/

)

3

,

(

z

z

s

s

oleObject8.bin

oleObject131.bin

image138.wmf
)

(

/

)

60

,

(

z

z

s

s

oleObject132.bin

image139.wmf
f

oleObject133.bin

image140.wmf
h

oleObject134.bin

image141.wmf
u

s

oleObject135.bin

oleObject136.bin

image11.png
Occurrences

Modeled vs Observed Rmax
Model based on Gamma Distribution

5 10 15 20 25 30 35 40 45 50 60
Rmax (sm)

oleObject137.bin

oleObject138.bin

oleObject139.bin

image142.wmf
ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

=

=

=

n

H

z

a

z

z

k

u

z

U

m

h

marine

Uh

*

0

*

ln

)

(

500

_

_

oleObject140.bin

oleObject141.bin

oleObject142.bin

image143.wmf

f

=

2

7

.

292

*

10

-

5

sin

Lat

(

)

(

)

oleObject143.bin

oleObject144.bin

image12.emf

1 3 5 7 9 1

1

1

3

1

5

1

7

1

9

2

1

2

3

2

5

2

7

2

9

3

1

3

3

3

5

3

7

3

9

4

1

4

3

4

5

4

7

4

9

5

1

5

3

5

5

5

7

5

9

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

Simulated vs Theoretical Dist. of Rmax

Gamma PDF

Model

Rmax (sm)

Frequency

oleObject145.bin

image144.wmf
)

(

868256421

.

0

)

3

,

(

1

.

0

3

193

.

0

1

)

(

)

3

,

(

68

.

0

z

z

I

z

z

u

u

t

u

u

s

s

s

s

=

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

-

=

-

oleObject146.bin

image145.wmf

C

r

(

60

)

=

0

.

007

+

0

.

213

I

t

60

æ

è

ç

ö

ø

÷

0

.

654

æ

è

ç

ç

ö

ø

÷

÷

I

t

oleObject147.bin

image146.wmf
t

t

r

I

I

C

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

=

654

.

0

3

213

.

0

007

.

0

)

3

(

oleObject148.bin

image147.wmf
(

)

(

)

(

)

(

)

)

(

)

60

,

(

600

2

557

.

0

600

2

)

60

(

)

(

)

3

,

(

600

2

557

.

0

600

2

)

3

(

z

z

C

Ln

C

Ln

P

z

z

C

Ln

C

Ln

P

u

u

r

r

f

u

u

r

r

f

s

s

s

s

ú

ú

û

ù

ê

ê

ë

é

+

=

ú

ú

û

ù

ê

ê

ë

é

+

=

oleObject149.bin

image148.wmf

T

il

=

s

u

(

z

)

U

h

oleObject9.bin

[image: image2.emf]135791

1

1

3

1

5

1

7

1

9

2

1

2

3

2

5

2

7

2

9

3

1

3

3

3

5

3

7

3

9

4

1

4

3

4

5

4

7

4

9

5

1

5

3

5

5

5

7

5

9

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

Simulated vs Theoretical Dist. of Rmax

Gamma PDF

Model

Rmax (sm)

Frequency

� EMBED opendocument.ChartDocument.1 ���

[image: image1]_60642424.unknown

oleObject150.bin

image149.wmf
)

3

(

1

)

60

(

1

3

min,

10

60

min,

10

f

il

f

il

P

T

G

P

T

G

+

=

+

=

oleObject151.bin

oleObject152.bin

oleObject153.bin

oleObject154.bin

oleObject155.bin

oleObject156.bin

oleObject157.bin

oleObject158.bin

image13.wmf
(

)

1.7730

10.627

/

1013

W

=

P

-

oleObject159.bin

image150.png
Login - Mozilla Firefox.
Fle Edt Vew Go Bookmarks Toos el

G- 5D 800G L &[0 vpirene.cs fuedueasrooy

Florida Public Hurricane Loss Model

User Login Page

UserID:

PassWD:

image151.png
Login - Mozilla Firefox.
Fle Edt Vew Go Bookmarks Toos el

@59 (800 Q| &[0 rpirene.csfiuedsssmnrooyidoto v

Florida Public Hurricane Loss Model

Relogin Page

UserID:

PassWD:

‘Wrong user name/password!

image152.png
=lo/x|
| &

o o tow Famis 1o tob

(@ 0~ 21 &) 3| Jores o @ - 5 BB

| ress [&3 tgivene o o cdwaBssiFoOIdokognsn 80 [Juwe >

Service Selection Page

Please choose an online service: [——————— B

[View documentations
FDOI related Publications
Storm Track Genesis

Validation Tests

IDL RPC Testing

Prepare standard document (Q84)
[WSC (without Wind Direction)

Logout

Done T

NI

Internet

image153.jpeg
Interpolation

Run interpolation code?

Interpolation runs at server. __
‘Select

Roughness

image154.jpeg
Interpolation

Run interpolation code?

IDL s at server
Name for interpolation run: —
Number ofveors TR

image155.jpeg
Roughness

Open terrair (z0=0.03) .
Residential roughness (z0=0.35) ®
Read in roughness o

Roughness sets at server | pm S
Policy data

image156.jpeg
Roughness

Open terrain (z0=0.03) o
Residential roughness (z0=0.35) ®
Read in roughness .

image157.jpeg
Roughness

Open terain (z0=0.03) .
Residential roughness (z0=0.35) &
Read in roughness .

image158.jpeg
Policy data

Policy sets at server: | S
L
Other Options

oleObject10.bin

image159.jpeg
Other Options

Number of height levels: |
Gust Residential

Name for the WSC run: |

image160.jpeg
Other Options
Number of height levels: m

Gust:

sec gusts
Narme for the WSC un: | W

image161.jpeg
Other Options

Number of height levels:
Gust:

Narme for the WSC run: |

image162.jpeg
Name for the WSC r

image163.jpeg
Interpolation
IRun interpolation code? ml

Interpolation runs at server.

Roughness
Open terrain (z0=0.03) »
Residential roughness (z0=035) &
Read in roughness »
Policy data
Policy sets at server:
Other Options

Number of height levels: | RN
Gust T

Name for the WSC run: |

image164.png
Interpolation

Run interpolation code? @

DL runs at server mustsslectone

Name for interpolation run:

ytestrun

Numberofveors: NS

Roughness
Open terrain (z0=0.03) »
Residential roughness (z0=0.35) @
Read in roughness »
Policy data

IPelicy s el Semer st seloct one
Other Options

Number of height levels: | RN
Gust T

Name for the WSC run: |

image165.emf

image166.emf

image167.emf

image168.emf

image14.wmf
(

)

1.8737

12.016

/

1013

W

=

P

-

image169.wmf
Initialize roughness

grid to water

Predefine sector and

distance arrays

Read in the

roughness grid

Read zip code

Get roughness

coordinate nearest to

the zipcode

Compute effective

roughness

Compute coastal

roughness

Output effective

roughness

More

zipcode

?

Yes

End

No

oleObject160.bin
Initialize roughness grid to water

Predefine sector and distance arrays

Read in the roughness grid

Read zip code

Get roughness coordinate nearest to the zipcode

Compute effective roughness

Compute coastal roughness

Output effective roughness

More zipcode?

Yes

End

No

image170.emf
+effective()

+coastal()

-nx

-ny

-nzip

-nsec

Rough_coast

oleObject161.bin
+effective()
+coastal()

-nx
-ny
-nzip
-nsec

Rough_coast

image171.png
Sehcion of S Type. Defion o Geamy

Loop for Angle Ot g o o

Dot i spres

Loop for Buiding
Fanran Vi Soee 51 e
e Fosiarms
T
T
o Faen Grec
e, s, s
T

rom Openrg Falus e

Crr——

Fo iy oo
g Shasing
i Cone
ot s

[

e Dumege i

i Fovt
oo Aray

image172.emf
+Damage_Model_C_W_G()

+Damage_Model_C_CB_G()

+Damage_Model_N_W_G()

+Damage_Model_N_CB_G()

+Damage_Model_C_W_H()

+Damage_Model_C_CB_H()

+Damage_Model_N_W_H()

+Damage_Model_N_CB_H()

+Damage_MOdel_S_W_G()

+Damage_Model_S_CB_G()

+Damage_Model_S_W_H()

+Damage_Model_S_CB_H()

+Damage_Model_MH_1_pre_NTD()

+Damage_Model_MH_1_pre_TD()

+Damage_ModelMH_HUD_II()

+Damage_Model_MH_HUD_III()

-count

-winds

-date

MCS Driver

+campacity_manuf_house()

+capacity_opening()

+capacity_r2w()

+capacity_roofcover()

+capacity_sheathing()

+capacity_wall()

+capacity_wall_sheathing()

+misile_impact()

+pressures()

+r2w_conn_uplift()

+r2w_conn_uplift_hip()

+r2w_conn_uplift_hip5638()

+r2w_conn_uplift_hip_5644()

+r2w_conn_uplift_hip6044()

+r2w_conn_uplift_hip6044()

+redist_gable()

+redist_uplift()

+rooflayout5638()

+rooflayout5644()

+rooflayout6038()

+rooflayout6044()

+wall_loading()

+window_pressure_check()

MCS Damage Models

oleObject162.bin
+campacity_manuf_house()
+capacity_opening()
+capacity_r2w()
+capacity_roofcover()
+capacity_sheathing()
+capacity_wall()
+capacity_wall_sheathing()
+misile_impact()
+pressures()
+r2w_conn_uplift()
+r2w_conn_uplift_hip()
+r2w_conn_uplift_hip5638()
+r2w_conn_uplift_hip_5644()
+r2w_conn_uplift_hip6044()
+r2w_conn_uplift_hip6044()
+redist_gable()
+redist_uplift()
+rooflayout5638()
+rooflayout5644()
+rooflayout6038()
+rooflayout6044()
+wall_loading()
+window_pressure_check()

MCS Damage Models

+Damage_Model_C_W_G()
+Damage_Model_C_CB_G()
+Damage_Model_N_W_G()
+Damage_Model_N_CB_G()
+Damage_Model_C_W_H()
+Damage_Model_C_CB_H()
+Damage_Model_N_W_H()
+Damage_Model_N_CB_H()
+Damage_MOdel_S_W_G()
+Damage_Model_S_CB_G()
+Damage_Model_S_W_H()
+Damage_Model_S_CB_H()
+Damage_Model_MH_1_pre_NTD()
+Damage_Model_MH_1_pre_TD()
+Damage_ModelMH_HUD_II()
+Damage_Model_MH_HUD_III()

-count
-winds
-date

MCS Driver

image173.emf
Initialization and Parameter Definition:

Region: central, south, north;

Wall type: concrete block, wood;

Roof type: gable, hip; and etc.

Loop for Wind Angle:

0,45,90,135,180,225,270,315

Loop

Z

Loop for Wind Speed:

50-250 mph in increments of 5 mph

Loop

Y

Loop for Simulation:

Count per Wind Speed Per Wind Angle

Loop

X

Randomize Wind Speed, Pressure

Coefficient’s Sample Resistence

Calculation of Pressures:

Initial

Loads &

Capacities

Calculation

Roof

& Wall

Door, Window

& Garage

Calculation of Capacities:

Roof to Wall

Connection

Opening: Door,

Window

& Garage

Sheathing,

Roofcover,

& Wall

Manufactured?

Overturning

& Sliding

Yes

No

Gable Roof?

No

Yes

Panel

Triple

Loop

Simulation

Structure

A

Site Built?

Loading &

Gable End

Yes

No

Start

oleObject163.bin
The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

Roof
& Wall

Initialization and Parameter Definition:
Region: central, south, north;
Wall type: concrete block, wood;
Roof type: gable, hip; and etc.

Loop for Wind Angle:
0,45,90,135,180,225,270,315

Loop for Wind Speed:
50-250 mph in increments of 5 mph

Loop
Z

Door, Window
& Garage

Loop
Y

Loop for Simulation:
Count per Wind Speed Per Wind Angle

Loop
X

Randomize Wind Speed, Pressure
Coefficient’s Sample Resistence

Calculation of Pressures:

Calculation of Capacities:

Roof to Wall
Connection

Initial Loads & Capacities
Calculation

Opening: Door, Window
& Garage

Sheathing, Roofcover,
& Wall

Manufactured?

Overturning
& Sliding

Yes

No

Gable Roof?

No

Yes

Panel

Triple
Loop
Simulation
Structure

A

Site Built?

Loading &
Gable End

Yes

No

Start

Initial Failure Check

Re-check Internal Pressure: Sheathing Roof and Wall, Impacted Door and Window

Check Internal Pressure

Additional Failure Checks:

Failed Roof
& Wall

A

Roof to Wall
Connection

Internal Pressure Check

Final
Failure Check

X

Finish
Simulation?

New Pressure Calculation
& Loads Re-calculation

One Row of Damage Matrix

Overturning
& Sliding

Y

Save Damage Matrices

Z

Impacted Door,
Window, Garage

Manufactured?

No

Site Built?

No

Yes

Wall Loading
& Gable-End

No

Yes

Yes

Finish
Wind Speed?

Finish
Wind Angle?

No

No

Yes

Yes

End

oleObject11.bin

image174.emf
Initial

Failure

Check

Check Internal Pressure

A

Internal Pressure Check

New Pressure Calculation

& Loads Re-calculation

Re-check Internal Pressure: Sheathing Roof

and Wall, Impacted Door and Window

Additional Failure Checks:

Final

Failure

Check

X

One Row of Damage Matrix

Y

Save Damage Matrices

Z

Failed Roof

& Wall

Impacted Door,

Window, Garage

Roof to Wall

Connection

Manufactured?

No

Site Built?

No

Yes

Wall Loading

& Gable-End

Overturning

& Sliding

Yes

Finish

Simulation?

No

Yes

Finish

Wind Speed?

Finish

Wind Angle?

No

No

Yes

Yes

End

oleObject164.bin
The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

Roof
& Wall

Initialization and Parameter Definition:
Region: central, south, north;
Wall type: concrete block, wood;
Roof type: gable, hip; and etc.

Loop for Wind Angle:
0,45,90,135,180,225,270,315

Loop for Wind Speed:
50-250 mph in increments of 5 mph

Loop
Z

Door, Window
& Garage

Loop
Y

Loop for Simulation:
Count per Wind Speed Per Wind Angle

Loop
X

Randomize Wind Speed, Pressure
Coefficient’s Sample Resistence

Calculation of Pressures:

Calculation of Capacities:

Roof to Wall
Connection

Initial Loads & Capacities
Calculation

Opening: Door, Window
& Garage

Sheathing, Roofcover,
& Wall

Manufactured?

Overturning
& Sliding

Yes

No

Gable Roof?

No

Yes

Panel

Triple
Loop
Simulation
Structure

A

Site Built?

Loading &
Gable End

Yes

No

Start

Initial Failure Check

Re-check Internal Pressure: Sheathing Roof and Wall, Impacted Door and Window

Check Internal Pressure

Additional Failure Checks:

Failed Roof
& Wall

A

Roof to Wall
Connection

Internal Pressure Check

Final
Failure Check

X

Finish
Simulation?

New Pressure Calculation
& Loads Re-calculation

One Row of Damage Matrix

Overturning
& Sliding

Y

Save Damage Matrices

Z

Impacted Door,
Window, Garage

Manufactured?

No

Site Built?

No

Yes

Wall Loading
& Gable-End

No

Yes

Yes

Finish
Wind Speed?

Finish
Wind Angle?

No

No

Yes

Yes

End

image175.emf
MCS Driver

MCS Damage

Model Simulator

MCS Common

Files

story, wall type, etc.

A matrix

(probabilistically assigned capacity of the wall sheathing panels),

3 of sheathing panels, roof pressure, etc

Structural Damage

Matrices

perct_failed_sheathing,

perct_failed_roofcover, failed_walls, etc.

Engineering

Module

Input file

of sims, # of damage models to sim, etc.

of Simulations, # of Speeds, Wind Speed Vector, type of model

oleObject165.bin
of Simulations, # of Speeds, Wind Speed Vector, type of model

MCS Driver

MCS Damage Model Simulator

MCS Common Files

story, wall type, etc.

 A matrix
(probabilistically assigned capacity of the wall sheathing panels),
3 of sheathing panels, roof pressure, etc

Structural Damage Matrices

perct_failed_sheathing,
perct_failed_roofcover, failed_walls, etc.

Engineering Module

Input file

of sims, # of damage models to sim, etc.

image176.emf
MCS Driver

of Simulations, # of Speeds, Wind Speed Vector, type of model

Randomize

wind speed,

Cp’s sample

resistence

Initial Loads

Calculation

Initial failure

check

Internal

Pressure

calculation

and loads re-

calculation

Final Failure

Check

Wind Speed (V), pressure coefficients (Cp_R, Cp_wall,etc.), etc.

Velocity pressure, internalt pressure, roof_shaething capacity, etc.

Perct_failed_sheathing (percentage of roof sheathing failure), perct_failed_roofcover, etc.

Updated uplift pressure, updated roof cover capacuty, failed windows, etc.

rooflayout6044.m

roof type, structure's dimensions, etc.

of sheathing panels, pressure coeff.,

of r2w connections

Pressures.m

Cp_R, Cp_wall,Cp_i, etc.

roof and wall pressure

capacity_sheating.m

sheathing_type, roof_pressure

a matrix (randomly assigned sheathing capacities)

capacity_roofcover.m

cover type, roof pressure

a matrix

(shingles capacities)

capacity_wall.m

wall_type, truss_spacing, etc.

Shearcapacity vector

(capacity of wall in shear failure mode), etc.

capacity_r2w.m

Dim, wall_type, connetion, etc.

Capacity, capacity_gable

r2w_conn_uplift.m

Roof_pressure, sheathing_w, etc

Uplift_r2w, uplift_gable

capacity_opening.m

front_door (type), back_door (type), etc.

garage_cap, fdoor_cap, etc.

wall_loading.m

Wall_type, roof_type, truss_spacing, etc.

Wall_check, V_locon, Fvmax

missile_impact.m

Impact_windows, lg_cap, skinny_cap, etc.

Lg_cap, med_cap, small_cap, etc.

Window_pressure_check

Lg_cap, skinny_cap, small_cap, etc.

Failed_window, internal_pressure

Pressures.m

Cp_R, Cp_wall,Cp_i, etc.

roof and wall pressure

window_pressure_check.m

Lg_cap, skinny_cap,

med_cap, etc.

Failed_window,

internal pressure

r2w_conn_uplift.m

Roof_pressure, sheathing_w, etc.

Uplift_r2w, uplift_gable

wall_loading function

Wall_type, roof_type, truss_spacing, ttc.

Wall_check, V_locn, Fvmax

Structural

Damage Matrices

Perct_failed_sheathing,

perct_failed_roofcover, failed_wall, etc.

Engineering

Code

Module

Input File

Num_of_sims, damage_model, etc.

Capacity_wall_sheathing.m

dim (length of vector to be created)

Capacity matrix

(

capacity of each

of the sheathing panels on the wall)

oleObject166.bin
MCS Driver

of Simulations, # of Speeds, Wind Speed Vector, type of model

Randomize wind speed, Cp’s sample resistence

Initial Loads Calculation

Initial failure check

Internal Pressure calculation and loads re-calculation

Final Failure Check

Wind Speed (V), pressure coefficients (Cp_R, Cp_wall,etc.), etc.

Velocity pressure, internalt pressure, roof_shaething capacity, etc.

Perct_failed_sheathing (percentage of roof sheathing failure), perct_failed_roofcover, etc.

Updated uplift pressure, updated roof cover capacuty, failed windows, etc.

rooflayout6044.m

roof type, structure's dimensions, etc.

of sheathing panels, pressure coeff.,
of r2w connections

Pressures.m

Cp_R, Cp_wall,Cp_i, etc.

roof and wall pressure

capacity_sheating.m

sheathing_type, roof_pressure

a matrix (randomly assigned sheathing capacities)

capacity_roofcover.m

cover type, roof pressure

a matrix
(shingles capacities)

capacity_wall.m

wall_type, truss_spacing, etc.

Shearcapacity vector
(capacity of wall in shear failure mode), etc.

capacity_r2w.m

Dim, wall_type, connetion, etc.

Capacity, capacity_gable

r2w_conn_uplift.m

Roof_pressure, sheathing_w, etc

Uplift_r2w, uplift_gable

capacity_opening.m

front_door (type), back_door (type), etc.

garage_cap, fdoor_cap, etc.

wall_loading.m

Wall_type, roof_type, truss_spacing, etc.

Wall_check, V_locon, Fvmax

missile_impact.m

Impact_windows, lg_cap, skinny_cap, etc.

Lg_cap, med_cap, small_cap, etc.

Window_pressure_check

Lg_cap, skinny_cap, small_cap, etc.

Failed_window, internal_pressure

Pressures.m

Cp_R, Cp_wall,Cp_i, etc.

roof and wall pressure

window_pressure_check.m

Lg_cap, skinny_cap,
med_cap, etc.

Failed_window,
internal pressure

r2w_conn_uplift.m

Roof_pressure, sheathing_w, etc.

Uplift_r2w, uplift_gable

wall_loading function

Wall_type, roof_type, truss_spacing, ttc.

Wall_check, V_locn, Fvmax

Structural Damage Matrices

Perct_failed_sheathing,
perct_failed_roofcover, failed_wall, etc.

Engineering Code Module

Input File

Num_of_sims, damage_model, etc.

Capacity_wall_sheathing.m

dim (length of vector to be created)

Capacity matrix
(capacity of each
of the sheathing panels on the wall)

image177.png

image178.png

image15.wmf
(

)

2.0929

14.172

/

1013

W

=

P

-

image179.png
-

Interior Entry Door

Middie
Unit Unit
Middle (O/K/e//
Unit Unit Exterior Entry Door

image180.png
Map Building
Components’ Matrices

Determine and Process
Fxternal Pressure
Coeflicients

No

Endor
yis Wind

N0

Endor
Simuaions

Initialze the Building Randomize
Components Maps to Building
erodamageand ™ Components'
ialize Enclosure Type | Capacilics

N0

Randomize the Wind
Specds

A 2

Determine the

Randomized Pressure|
and lmpact Loads,

Y

Assess the Building
Damage

A 2
Analyze the Damage
and Update the

Specds
Loy

Loop

Building’s Enclosure
Type.

image181.png
K

image182.emf
Scientist

MCS-CRB

image183.wmf
Model Control

:

sets up model to

run in batch mode

Number of Simulations

Building types

Unit locations

Shutter protection types

Glazing types

Missile exposure types

Unit zone

Main Driver

:

Mid

-

high

opening analysis

OPENINGCORRECTIONFACTOR

adimcalculator

image184.jpeg
< Input:
. ShutterProtection

. ImpactResistance

ShutterProtection

—f{ ImpactResistance

If ShutterProtection = ‘None’
PFactor =1.00

If ShutterProtection = ‘Plywood’
PFactor =1.15

If ShutterProtection = “Steel’

PFactor =1.25

If ShutterProtection = ‘Engineered’

PFactor =1.25

If ImpactResistance = ‘Normal Glass’

MFactor = 1.00

If ImpactResistance = ‘Laminated Glass’

MFactor = 1.5

If ImpactResistance = ‘Impact Resistant Glass’

MFactor = 2.00

CorrFactor = PFactor x MFactor

O Output:

CorrFactor

image185.jpeg
Determining the *

* variable

based on ASCE 7-05 Provisions
0.1 % Width

0.4 * Height

0.04 % Width

al
a2
a3
ot

3

I

Reassign al as
the minimum of
the original al
and a2

v

s the
maximum of al,
adandad

image186.jpeg
Round the Round the
LengthFLR 1o the WIHFLR @ he
earest value nearest value
divisible by 4 nd divsile by und
reasign or reasion for
LengthFLR WidhFLR
Calelat the Length of the rout Coleulte the Widh of the of

ncluding 20 ovethangs
Lengeh = WidtFLR +4

including 20 overhanes
Width = WidhFLR + 4

oleObject12.bin

image187.jpeg
)

)

Assigna value o PRactr based on
instlled shtter potecion

(ShuerPrroction)
Pracior= 10 (No Shuter)
Pracor = 15 (Plywood)

Pracor = 125 (Sieel)
Practor - LS (Engineered)

[Assign a value o Winductor based|
on nsaled window fype
(mpact Resisance)

| Wind\factor = 10 (Normal)
| Windifuctor = 15 (Luminated)
[WindMifucor = 2.0 (mpact Resis)

(A Values Tor The Tollowing Varabl Gased 0 e il comsirucion QUaly (ComsimacianQuiliy)

| mashinglecapaciy - COV_shinglecapaciy - mavoofsheating. “COV._oofsheating.
| mncapaciyaicover - COV wallcovercapacity - mncapacityaliheets ~COV_allshectscapacy

| mocapaciyindon - COV windowscapacity - mncapaciySldingDoor - COV_SiidingDaorscapacy
- mocapacityEniryDoor - COV EnyDoorscapaciy

[The valuesofthe following vriabes are dependent on both the inpotted consiructon qualiy (ConstctonQuliy) and he type of
wall (Wall_Type)

2 -cov_nw

!

[Calultin the capucity facors for
the diffcentopening ypes basd an
e il WindMFactor

[SidMFactor =225 WindMFactar
[EneyMFactor = 2.0°WindMFactor
| WindFactor = 0.45* WindMFactor

v
Detrmiig fhe oAl opening cometion icor

WindConFacior = Practor WindM¥actor
SHdCartactor = PactorSidMFactor
[ExteyCoracor = PRactor EntryMFactor

image188.jpeg
Calelatng the C Varisle for the various oenings(windovs, ey docrs sl
Siding doors) n difleret Loations n the builing (long o shrt side) . The
Variable i il ofthe opening 0 the talare of e wall.

e Enry door on Long Side |

|CLongSideEntyDoor = EntryDoorAvesLongSide(LengthFLR Eavellcigh)

image189.jpeg
Redefine 2 as “spec”

“The capacity of the roof to wall comection i muliplied by fictor 3 to elminatethe facto ofsfey placed on
commersial comection, (Rating 2 r 3)

ifroting =1
mesn resisespect |
itming=20r3

men sesis = et

Detine the cocfiientofvariain (Caef1V)and he facor (fctr)that s sed 0 dieate the number of standard

deviaionsavay from the mean that the boundary i st
Randomization of Capactes:

g th randomizaion a randorn value based on Gaussan disrbuted i crested (rundorn valoe),

A\ random capaciy for exch 12w comection i produced using a combiaion ofthe andomized valoe, mean, coeficient of vaciton and standard deviaion
20_cap=random,_value*mean_esise*Coeff\ + mean_resst

ch rundomized capacity i suncated witin 2 standard deviaions frorn the mean. This i done by repeating the randomizaton proces for thatslecton when vl exceeds thesc
boundarics. This e andornization proces will contiue uni the rndom capaciy is it the defined boundary.
Standird Deviation = mean, resst*CocllV

image190.jpeg
Redefine 2 as “spec”

“The capacity of the roof to wall comection i muliplied by fictor 3 to elminatethe facto ofsfey placed on
commersial comection, (Rating 2 r 3)
ifroting =1
mesn resisespect |
itming=20r3
men sesis = et

Detine the cocfiientofvariain (Caef1V)and he facor (fctr)that s sed 0 dieate the number of standard

deviaionsavay from the mean that the boundary i st
Randomization of Capacics

Using th randomizaion a randor value based on » Gaussian disrbuted i creard (random_ae)**

A randorm capaciy for each 12w conmection i produced i a combinason of he randornized value, e, coelicient of varation und standard deviaion**
20 _cop- random value*mesn_esisi*CoefTV + mem,_resist

ch randomized capacty i uncated within 2 sandand eviations from the mean. Ths i done by repeaingthe randomizaron process for thatselection when vl excseds these
boundarics. Ths e andomizaon proceswill continueun the randomcspaciy s within the defined boundary.
Standard Deviation = mean,resis*CocllV

= This s conducted fo bt the Mainand Hip Regions afthe roof

image191.jpeg
Relefin “rmroobheating” as “sheatbing fsl”
00 “COV_rooTheating’” ss “sheating_COV"

Randomization of Capacites:
g th randomization a randorn valus based on » Gaussan disrbuted i crested (rundorn vale),

A random capaciy for esch shathing el i produced using combiation ofthe sndomized value, meen, coeTicient of ariaion and stadard deviion.
capacty_sheathing = rndom e shesthing Tl sheating_ COV + sheathing. 6l

ach rundomized capacity i uncated witin 2 sandard deviations fromthe mean. This i done by repeating the randorizaton proces or thatslecton when value exceeds thesc
bousdaries. T re-andormization process will cntiue un he sandom capacity is within the defined boundary.
Standird Deviation = shesthing s beathing COV

image192.jpeg
Relefine “smroobheating” as “sheubing i
00 “COV_rooTheating’” ss “sheating_COV"

Randomization of Capaciics:
Using th randomizion a randorn value based on # Gaussan disrbued i creaed (andom_value) **

A randorm capaciy for each shathing panel is produced using corabination ofte undomized valoe, e, coelicient of variaion and standurd eviation **
capacty._sheating = sndom_vlueshesthing " sheating COV + sheathing. 6l

ch randomized capacty i mncared within 2 sandard eviations from the mean. Ths i done by repesting the randomizaron prcss for thatselecton when vl exceeds these
boundaric. This e andomizason proces will continue uns the randomcapaciy s within the defined boundary.
Standund Deviation = sheathing ui"sbeating COV

= This s conducted fo b the Main and Hip Regionsofthe roo. i nd Hip regions ls consiss of 2 sides, side 1" nd *2”

image193.jpeg
L2
s colapae oceurs on ithr sid af e Gable End.
buiding, the sheathin that were atached 0 ny of the
damaged nses are s comsidered dumaged, Therelore
the sheathing in the “FaiuredentShething” maix hat
were il dendified s fnac e now considered filed
‘and reassigned e identficasion.

)

v
T rof o wal somnetions thit were comnecied t the
collpsed trusses are comsidered o be damaged. Therefore
e ndicaton nthe flure i (Falure Tdent Truses)
e eassgned a filed idendfcaion

The mumbe ofsheathing damaged s sunened and defied s e variable
ot dumage.Sheuhing”

e percen:damage o sheathin (percent_damage_Shething) s then calulatd by
verging the mumber of dumaged sheathing by total umber of il shething pancs.
. S =ttt N o RN o S, o) 100

The nunnber of damged sheahin fo e inerior (percent_damage_Sheathing Interior)
and overhang total dumage._Shesthing_Overhang) regions of the rof are calculsied
iivousha simlar summing and vecaging process

The mumber o 23 connections damaged are summed and defined as the variable
“ol_damage 2w

[The percent dumage tosheating (percent damage 12w i then calclated by averasing.
e e of dumaged 23 comnections By total b o intal connections
[R SR ———

image194.jpeg
|Cretethe vector “Tibutary Widi, which defines
the rbutry widehthat cach rss i assigned for
roof uplif. The inerorruss ae ssigned 20
butary widh, assuming 211 spacing while e
end tuses e ssigned I widthdue 10 the
nclusion of th overhangs

)

the locstion f sl ofthe trsses s compared the locatons
o the cach sheathing. By doing s0,u mati called
“Sheating B is created depictng the number of the
Sheating for tht ow counting from fft 0 ght) i s
Jasched o tht paricolar s, This will b usedinthe
identiicaton of which sheathing piece is producing an
it fore o the cach russ.

image195.jpeg
Definethe number of trussesin the Hip and Vi roof
areas of the hip oof
[Number_of Trusses Row =Lengi2 - |

Number_of Trsses Rovs_Hip = Widt'2

i

(Cratethe vector “Trbutary Widi”, which defines the tibutary widh hat each
russ s asigned fr oof uplf, The nteror tuss ae assigned 2 bty widh,
sssuming 20 spaing, whie theend ruses are assigncd 3 widh due o the
inclusion of e overhungs**

+ This s conducted for both he M and Hip Regions of e oo,

)

[The tocuion fal ofthe trsses s comapured the locarons
Jfthe cach sheathing. By doing s0,u i clled
“Sheuting Equiv is created depicting he number of the
sheating fr that ow (counting from et 10 ight) hat s
Jacached o that particola rus. This sl b used inthe
dentiicaton of which sheahing piece i producing an
ot fore on theexch russ.+*

[+ This i conducted fo b e Main and Hip Regions of
the rot.

image196.jpeg
D) Input:

~Mo_of Simulations Uit Locstion
- Bldg_Typs Unit Ext_ Lengths Uit Jnt Withs

- StuateProtsction InpactResistance
MissieEsposusType - ColumaOrder
MissiteOriy st Zewe Locsion

v

Assign values to variables:
Missile Module Information

- mn_shinglecaparity -COV_shinglecspacty - mn_shingledensity

-COV_shingledensity - mn_shingleLength -COV_shingleLengih

- mn_shingleWilth - COV_shingleWidth - un_shingleWidth

- COV_shingleWidh - mun_thickness -COV_thickness
- CF -COV_CF a1
-cov1 cmn] -covt

-mn_mom_esistance -COV_mom_sesistance

Wind Analysis and Effects Information

- COV_WindSpeeds - mn_GCp_toof

-COV_GCpsRaof -COV_GCpsWalls

Openings Information

-mn_windowesparity -COV_windoweapacity - mn_windoweapacity

-COV_windoweapacity - mn_entrydoorespacity - COV_ertrydonscapacity

- mn_slidingioorcapacity - COV_slidingiooreapacity

Assign values to variables:

General Building Information

- Height_Story - Total_Number_of Stories
Missile Module Information

- Subutban Disthlult - Open_Dismuitt

- graviy - Standard_AiDensity

- Huse_Red_ Factor

Wind Analysis and Effects Information

TotaDisecticns - WindSpeeds_avg
-GCpZened - GCpZanes
-acgi

Openings Information
“WindawLengh WindowHeight
SLDosiLertgh - SLDocHeight

Run admincalculator sub function:

Inputs: Height Bldg,
Width Building

Output:

Run OPENINGCORRECTIONFACTOR
sub function:

Inputs: ShutterProtection, ImpactResistance

Output: CorrFactor

A 4

Calculate the standard deviation of the previously defined mean
and coefficient of variations

Standard Deviation = Mean x Coefficient of Variation
Created Variables
Missile Module Information

- STDEYV_shingleLenghh

- STDEYV_thickness

- STDEYV_shinglecapacity

- STDEV._shingleWidth

- STDEVshingledensity
- STDEV_shingleWita
-STDEV_CF -STDEV_I -STDEV_J
- STDEV_mom_sesistance

Wind Analysis and Effects Information

- STDEV_GCp_roof

Openings Information

- STDEV_windowcepacity - STDEV windowespacly - STDEV_ertryooresgacity

- STDEYV_stidingtoorapacity

Caloulating length and area dimensions for build-
ing, windows, entry doors and sliding docrs

Length
Hoight, Bldg = Height, Story Total_Number_of Stores
VWidh_Bldg = Unit_lt_Widtho"2 + Unit_Ext_Lengths

Lengh Bldg= Uit Ex._Lengths*3

Area:

Asen Standont Window = WindowLength s WindowHeight
Aten Standant Slding_ Do = SLDoorLengh xSLDooHeight

Enter Loop “Bldg_Type”

- “Interior Stairway’” or “Exterior Stainvay”

Enter Loop “Unit_Location”
- “Corme” or Miclle”

Map the

Iocation:

- No_of Windows_Lengih

Define the Fallowing vasiables for the specific tuilding type and vt

- No_of Windaws_Width

image16.wmf
(

)

2.3079

16.086

/

1013

W

=

P

-

image197.jpeg
Enter Loop “direction_i”

- The direction ofthe wind from 1 to§

Enter Loop “velocity”

~Value from 1 to 41, representing the 41 wind speeds ranging from 50 to 250 mph in 5 mph incremerts

Enter Loop “simulation_r”
- Vele anges from 1 to a vser defined mmber of desied simultions to be an
Tnitializing component maps

Create variables ID_Windows, ID_Sliding Door and ID_EntryDocr which identifies the number of components in a vector format populated with ones. For most situations the windows term is the only
variable that represents more than one opening of its type per unit.

Randomization of Capacities and Wind Speeds(l.1): Using the randomization a random value based on a Gaussian distributed is created.

Random Capacities for the different opening types (window, entry door and sliding docr) found in the previous step are produced using a combination of the randomized value, mean, coefficient of varia-
tion and standard deviation.

Roanudom_Capacity=antom, e mess,_vasisbleCOV_variable+mean vasishle
Each randomized varizble is truncated within 2 standard deviations from the mean. This is done by repeating the ¢ selection when a value exceeds these boundaries.
‘The Random_Capacity is then multiplied by the appropriate CorrFactor, rendering the final capacity

Randomized Variables Output: CapWindows, CapEntryDoor and CapSlidingDoor

Similar routine is then done for randomizing the 41 wind speeds, outputting the varisble WindSpeedsRand

Determining the pressure coefficient(12)

Create 8x1 vectors indicating the direction of the pressures acting on the opening (whether the pressures are positive o negative) for each direction. Entries can include values of either 0, -1 or 1, represent-
ing no wind pressure, negative wind pressure and positive wind pressure respectively.

Depending on the location of the Unit, a combination of the following variables are created Entry_Door Pressure_Signs, Sliding_Door_Pressure_Signs, Windows_Front_ Pressure_Signs, Win-
dows_Side_Pressure_Signs and Windows_Back_Pressure_Signs,

Pressure coefficients for each opening are determined by multiplying the previous discussed vector by the predetermined GCpZoned and GCpZones values from ASCE 7-05.

Pressure Loads(1.3)
Randomized pressure loads (for either Zone 4 or Zone 5) acting on the opening are determined by using the following equation
Load= (Hure_Rec Faotor * 00256 *WindSpeedRaut) * ks * (GCp - GCpi * COV +(GCp - GCp)

Where randn = a generated random varigble

Opening Failure Due to Pressure

Damages due to pressure are determined by comparing the capacity of the opening to the pressure load acting on it
GOpening= ID_Operig* (CapOpering sbe(LosdOpening)

If the capacity is exceeded by the load, ie. GWindows < 0, the opening is considered failed and the entry in the ID Matrix is replaced with a 0.
FOpening = find(GOpening<0)
FailedOpeningPressure=leng th(FOpening) (Ouput)

Missile Module
Define the variable NOS_Factor based on the zone (Z1,72 or Z3) that the unit is located. Where NOS_Factor is equal to 1, 0.5 0r 0.25 for Z1, Z2 or Z3 respectively.
Define the variables NA (umber of available missiles) and Req_Travel (Required debris travel distance) based on the MissileEzposureType and the direction of the winds.

Randomization of debris information is conducted using the same process as previously described in this section. Randomized variables include ShingleCapacitylmpactModule, ShingleDensity, thickness,
1,CF, J, ShingleLength, ShingleWidth and mom _resistance. (variables are of length NA)

With respect to the NA (the number of available missles), the nurmber of failed shingles is determined by assigning a randornized uplift pressure acting on each available missile, Pressure LoadShinglelm-
pactModule , by applying a randornized GCp_roof variable to process 1.3. The number of failed shingles is equal to the number of shingles whose capacity is exceeded by the applied pressure.

. ShinglelpactModale = ShingleCapacitylmpachlods - Pressus LosStinglelmpactiocile
Variable Atemp1 identifies the shingles that have been unattached

Sum all the number of shingles where G._ShinglelmpactModule < 0 to determine the number of unattached shingles, NoofPreMissiles
Shingles that have been damaged are assigned their respective dimensions and properties fromthe shingles identified by Atemp1

Determine the number of shingles that take flight under the effects of wind traveling over the roof by calculating the threshold that is required to be exceeded to initiate flight (4) and comparing it to the
wind speed acting on it (B),

4 UF = st((2* | * ShingleDerity "gravity*ticness(AisDensity CF)*G600/S280)
B) G_Windbotnss = UF - WindSpesdscnShingle

WVariable Aemp? identifies the shingles that have taken flight
Atemp2 = findG_Windbornsss < 0)

Position of the flying shingles are recorded a one within a zero matrix called WindBorneDebris

Summing all of the shingles with the potential to flying off the building called AirBorneMissiles is established.
AiBorneMissies = sur(G_Windbomess)

WVariable Avar represents the ratio of the number of airborne debris to the number of available missiles
fvar= AiBomebisses ATA

Determine the number of shingles that have the potential to travel the distance to the building by calculating the threshold that is required to be exceededthe travel distance (&) and comparing it to distance
that has to be traveled (B)

4 Pot_Travel = ShingleD iy bicknsss*() * WiseSpssdsonsShingls'2 /(A iDensty * CF * (WiniSpeedscnShingle - WinelSpeedscriShingls)
B) G_Travel = Reg_Travel - Pt Travel

WVariable Atemp3 identifies the shingles that have the potential of striking the building,
Aten3 = findG_Trarel <)

Position of the flying shingles are recorded a one within & zero matrix called Hitters

Summing all of the shingles with the potential to hit the building a total number called NumberofHitters is established
NoberoHiters = sanhiters)

WVariable Buar represents the ratio of the number of hitters to the number of airborne missiles

Bver= NumberofHitiers f4irBomeMissiles

image198.jpeg
CONTINUED

Determine the number of shingles have the potential of hting the building that also have the foroe required o break the glazing by calculating the acceleration of the missile in the wind field (&), the
‘mormenturm of the impacting shingle (B) and comparing it to the momentum reqired to damage the opening (C).

) aceel= (RuDersty s DRI gD

B) V_impactis equal to the smaller of o (2R TreveUSZ80faces and | “WinSpaaoeShinge
Ao impact SingleDerssy icwce * Shinge gt * Shngle Wik (v_impact S TED3610)D foimpactpprdiclr o opeieg
or
Mo mpact = s GhingleDensty * Bickness * SingleL g * Singl Vbt (v impact“SZEI000/) forimpact o245 degron e
©) 6 _Busaksc = mom_sestncs - mom_impact
Variable Atemp4 identifies the shingles that have the required momentum to damage the opening.
‘Position of the flying shingles are recorded a one within a zero matri called Breakers
Surmrming all of the shingles with the potential to hit the building a total number called NumberofBreakers is established
Humberofeskors = s srs)
Variable Dvar represents the ratio of the number of possible breskers to the number of possible hitters
Dvas = NumberofBrskemisnbenofites

Variable Cvar represents the ratio of the area of the opening to the total surface area of the wall that the opening is part of There are 4 variables created for the different opening type and location combina-
tiors (CEntryDOOR, CSLDOOR, CLongSide and CShortSide)

o Wandow onthe g it of e sbing CLongil = Atva St Wik (LarghhT] Nuber_of StorieHeight Sory)

Based onthe Location of the openings, matrices are made depicting from what direction is the window vulnerable to damage. Therefore ifthe it depictsat what wind directions in the opening on the wind-
ward (llustrated with a 1) and when it’s on a leeward Gllustrated with a O)side of the building. Matrices where the eriry doors are on the inside of the building, the matrix is populated with zeros

T Stcing Dot Impac_Volosriity = D011,100]
Calculate the probability of damage of the opening (P_DamageWindows, _DamageSlidingDoor, P_DamageEntryDoor)
P_DamagOpeming - I0_Opaning * Opeig mpac_ Vuursity * 1 - /(1 * Avas Bras * Cra* Dvae * NAY)

Failure of openings due to impact are datermined by comparing the probability of damage with the probability of resistance with the windows that were not damaged by the wind pressure (acccrdingto the
D)

(O0pieing It = ID_Opening® OpeisglapactCipacty. ¥ DamgeOpeicg.

FOprming - fnd@0pening Impci<®)

FailedOpeninglingct - leng MFOpering) (Ouipu)

Output for the particular Direction, Wind Speed and simulation:
- FailedWindowsPressure - FailedEntryDoorPressure - FailedSlidingDoorPressure
- FailedWindowsImpact - FailedEntryDoorTmpact - FailedSlidingDoorImpact

Outputted damage information is then stored in a 4 dimen-
sional matrix called ‘Output’. The four dimensions repre-
sents the simulations, Limit State being analyzed , the wind
speed and the direction of the wind.

Alist of information about the model that was ran is stored
under the name ‘Header’

image199.jpeg
Consiructon
CONSTRUCTIO aualty
NQLTYTOBLDG |#————

STRENGTHm

‘Three properties and

ihree capacies —‘
‘THe strengih rating of

MCS Driver

§ o Corfar ————

TheBuldingsize, he [TpulFle
‘geomelric propentes. stc ~|_(input by user)
‘ShuterProtection

and ImpactResisiance OPENINGCORRECTIO

NFAGTORm

imension infeet |

sheetsinLongSide,

Compore: Mppers
WALLSHEETAREAMAP M [t Area Maps e |
EaveHeight LengthFLR

WidhFLR otc
|——The C mairic

CVARIABLE m

LengthFLR WIGHFLR,
direction el

WINDEFFECTIVEARE
AFINDER m

WindEffaciveArea——

External Pressure
‘Coaffciant Possiilles

WALLPRESSURE
COEFFASGEm

MainStonHeights. | ap Buiding
WINDSPEEDat0miosP | *InnerStoryeighis.etc. Gompones
EEDateverysionpualm | ——Mean Wind pecds—am | 7PN

Loop for Wind

e sverih et J—
RaW Capaciy_ Y+ tbo comporerts Tongh and v BuLDNGoIMR
G [o Truses Row | e e
= plan length and width,etc.
o it CorghFLRWNELR,
oty —

Direction

Determine and Process.
Extemal Pressure Cosflcients

Length and s P st Length and width of
Watnor [Te Assemblycithe | g it S
cathing 1
Sheathing Sheathing Layout avout The Trbutary Width
o 0 Assembly of [Sheathing Equivic’
Lengh widnah _Lengh of o Spoopior | (RawrTuss | e R2wi Length and with of
drectontc SheathingHIP andrumberof [L&YOU | Truss Layout Sneathing etc
e Simulatons Trbutary Wicth
. Tritary_Widh_Hip
Sheathing Layon Sheating_Layou =
LGablem Hipm g .
shestsinLongsice, sheetsinGableEnd.
WINDOWSRAN J#———,oreeistiongsite, ShestsinLongSide elc

DOMCAPACITIE

b Gapaciy Matices———»|
SMAPPED.m el

sheetsinLongSide,
|+ sheetsinShorSice etc

|———impact Capaciy Matrices——

WINDOWSIMPAC
TRANDOMCAPAC
ITIESMAPPED.m

Number_of Trusses Row
RaW_Capacty_ | Number_of_Trusses_Row_HIP.sic.
Hipm | Row cap Hip and 2w,_cap_ Main—»|

WALLSWINDSP
EEDRANDOMZ
EDm

|a—ean Wind Speeds velociy etc
F———Randomized Wind Spesds——

Randomize
Buiding

Components

Capacties

Row_cap_Hip
Raw_cap Nain etc

Randomize the.
vind spescs

< MainSionHegh, nrerSryHeghis,

A

InnerSionHeiaht etc

GableEndHelghis etc.

MainStoryHeighs,

nnerStonyHeians et
Glazed Component Mappersund

Glazed Companent Area Maps

—» | winoowsareas
NDHEIGHTMAP.m

MissleEsposureType,

Nothér_of shingles Numberofavailablemissie

objecism

G matrces, NA Component Mappers etc

Extemal Pressure
‘Coslicient Possibltes elc
Weighted External
Pressure Cosfiients’

| WEIGHTEDEXTERNA
LWALLPRESSURECO
EFFICIENTS m

| Gapaciy Matices:

L Number_of Rows Lengin,etc- “Sheating Capa
[e—————Chpaciy_sheathing ciy_Gablem

Number_of Rows.
Number_of_Rows_Hipetc.

| — :’[Sheathing_Capa
aity_Hpm
[Capacity_sheathing_Main #.

CaPaciy_sheathing #.
Number_c

{ Trssos, Row
Raingeic > RaW.Capacry_
DR et ablam

Impact Capacy Matices,

Lngth, Width RoofSiope.
Randomized Wind Speeds,stc.

image200.jpeg
EnclosureConditionAttic,
otalNumberofStores elc.
itermal Pressure Cosflcents— |

WALLINTPRESSU
RECOEFFASCEm

\————Length, Width RoofSiope, etc. ————(
Percent_damage_Sheathing
[Porcent_damage_Sheatfing Overhangeic™{

ih, Widih, RoofSlope,stc.————f

engih, Widih RoofSiope elc-
M [pacart s Sreonng. Gvopangas]

f————percent_damage,_2u——————

Area_zonetvelocty,

~+—Lengh, Widh RoofSiops.elc-
———percent_damage. 12—

Area_zonetvelociy,
P g p——

RoofType sheetsinGableEn,
sheelsinLongSide et
nal Pressure Coeficints——|

WALLSHEETPRESS
URECOEFFICIENTS
RANDOMIZED.m

Final Pressure Coaffch

Percent_Roof_Gover_Los:

OBABILITYOFA
COMPONENTFALLI
Nem

NumberofPotbisslesbecoming
AVARIABLE m “AitbomeperWindSpeed NA e(c.
>

looindSpseds NA etc———
(umberofShinglesFaiedperWindSpeed-m

Determine the Direction ..
Randomized («————Parcant_Roof Cover_Loss:
Pressure

Jents, Final Extemal

>

RoofType shestsinLongSide,
sheetsinShorSide ete.

——Resulting Pressure Coeffciont Matices:

RoofType sheetsinLongSide,
shestsinshorSide ste.
J——Final Extemal Pressure Cosficients

TecomineAitbomeperWindSpeed
TotaiNumberorStores.

)

EXTONLYWALLSHE
ETPRESSURECOEF

WINDOWSPROBA

‘Sheathing Loading

_Failure_Gable.m

©_Gablem

Roof_Cover Los

MAXIMUMWALLG.
CHEXTminusGCp!
NTFINDERm

FICIENTSRANDOM!
ZEDm

Prassure Cosfficents
st
ROBABILITYOFD
NumberofShinglesFailedperWindSpeed. EBRISBECOMNG
NumberofPorMissles T _ARBORNEM

NooWincSpeeds e
Bkt 1 Probabiy that cebts damage a e T
\mpact Gapachy Matrices, Impact Loads SemeaDm R el
pac Load iltcos o TG AR
Glazed Component Mappers, R ‘:‘(;s g" El‘sldﬂ"gls\d " WALLLOADER m
e oo e B L sheisnShorideic
NootWindspeeds RoofTypo shetsinLongsie
oo 0ADE shestsinlongrle o hemsShorside s, -~ (WALLCOVERLO
-0ad Matrioes ———————s» - id Matrice ADERm

Load Matrices

Capacy Matricss,
DAMAGECOUNT M
ERWINDOWS.m catEMACRS el

—
Capacy Matricss,
Load Matioss etc

all Covering Mappers. —nf
Wall Cover Damage Mappers

DAMAGECOUNTE
RWALLCOVER m

Wall Cover Damage M

Diecton | EndlosureConditionc,
ENCLOSURECO = —
OHONURDAT |+ Buiding Properies et

ERm nciosureCondiionAfic. — |
EnciosuraCondionlFioors

PACITIESUPDAT
ERm

Component Mappers,
Capacil Malrices

apaciy Maticas ™|

Engineering
Code Module

for Wall, Window, Wall Cover etc

b

Assess the
Buiding Damage

1

fappers, Component

o

Analyzo the
Damage and
Update the
Building s
Endosure Type

‘Capacity Matrices,

Impact Capaciy Matrcss stc.

5 — |

[-—RoofType, Capaciy Matrices,Load Matrices,etc.—f

‘Conmponent Mappers.
[Component Damage Mappers

Damage Mappers ec.

Glazed Companent Mappers,
Impact Capacy Matrices,c.

ft—————impact Capaciy Matrices——————
Glazedt Companent Mappers,

Capacty Matioes elc.
e Capacity Matces-

—

Dimensional
Damage
Matrices

DAMAGECOUNTE
RWALLSHEETS.m

WINDOWIMPAC
TCAPACITIESUP
DATERm

WINDOWCAPACIT
IESUPDATER m

image201.emf
Model Control

Mid High

Opening

Analysis Driver

Header, Output,

Output_Legend,

Total_No_of_Windows,

and plots

Number of simulations, Unit location, Bldg Type,

Unit_Ext_Length, Unit_Int_Length, Shutter protection,

Impact resistance, Missile exposure type,

Missile only, Unit zone location

‘a’ Dim

Calculator

Bldg height, Bldg width

‘a’ dimension

Opening

Protection Factor

Shutter protection,

Impact resistance

Correction factor

Num. of simulations, Building types,

Unit locations, Shutter protection types,

Glazing types, Missile exposure types,

Unit zone

Output matrix containing six

failure types:

Damages to windows, entry doors,

and sliding doors due to both

pressure and impact

oleObject171.bin
Model Control

Mid High Opening Analysis Driver

Header, Output,
Output_Legend,
Total_No_of_Windows,
and plots

Number of simulations, Unit location, Bldg Type,
Unit_Ext_Length, Unit_Int_Length, Shutter protection,
Impact resistance, Missile exposure type,
Missile only, Unit zone location

‘a’ Dim Calculator

Bldg height, Bldg width

‘a’ dimension

Opening Protection Factor

Shutter protection,
Impact resistance

Correction factor

Num. of simulations, Building types,
Unit locations, Shutter protection types,
Glazing types, Missile exposure types,
Unit zone

Output matrix containing six
failure types:
Damages to windows, entry doors,
and sliding doors due to both
pressure and impact

image202.emf
+Z_Pressure_First_MAIN_DRIVER()

-NoofSims

-Protection

-Windows

-All_MissileExposureTypes

-Roof

-Story

-Dimensions

-Quality

-WallType

-Cover

-date

Model Control

+adimcalculator()

+BUILDINGDIMREASSIGNER()

+CONSTRUCTIONQLTYTOBLDGSTRENGTH()

+CVARIABLE()

+DAMAGECOUNTERIMPACTWINDOWS()

+DAMAGECOUNTERWALLCOVER()

+DAMAGECOUNTERWALLSHEETS()

+DAMAGECOUNTERWINDOWS()

+ENCLOSURECONDITIONUPDATER_GABLE()

+ENCLOSURECONDITIONUPDATER_HIP()

+EXTONLYWALLSHEETPRESSURECOEFFICIENTSRANDOMIZED()

+MissilePhysParam()

+Numberofavailablemissileobjects()

+OPENINGCORRECTIONFACTOR()

+r2w_Capacity_Gable()

+r2w_Capacity_Hip()

+r2w_Loading_Failure_Gable_New_Approach()

+r2w_Loading_Failure_Hip_New_Approach()

+redist_uplift()

+Roof_Cover_Loss_Gable_Truncation_Fix_8_20\()

+Roof_Cover_Loss_Hip_Truncation_Fix_8_20()

+Sheathing_Capacity_Gable_Truncation_Fix_8_20()

+Sheathing_Capacity_Hip_Truncation_Fix_8_20()

+Sheathing_Layout_Gable_Nov_2009()

+Sheathing_Layout_Hip()

+Sheathing_Loading_Failure_Gable_New_Approach()

+Sheathing_Loading_Failure_Hip_New_Approach()

+Sheathing_R2W_Interface()

+Truss_Layout_Gable_Reduced_Aug_20_2009()

+Truss_Layout_Hip_Reduced_Aug_20_2009()

+Variables_A_B_D_Bakers()

+WALL_GCpe_MINUS_GCpi()

+WALLCOVERLOADER()

+WALLLOADER()

+WALLPRESSURECOEFFASCE()

+WALLSHEETAREAMAP()

+WALLSHEETCAPACITIESUPDATER()

+WALLSHEETPRESSURECOEFFICIENTSRANDOMIZED()

+WALLSHEETRANDOMCAPACITIESMAPPED()

+WALLSSHEETHEIGHTMAP()

+WALLSWINDSPEEDRANDOMIZED()

+WEIGHTEDEXTERNALWALLPRESSURECOEFFICIENTS()

+WINDEFFECTIVEAREAFINDER()

+WINDOWCAPACITIESUPDATER()

+WINDOWIMPACTCAPACITIESUPDATER()

+WINDOWLOADER()

+WINDOWSAREAANDHEIGHTMAP()

+WINDOWSIMPACTRANDOMCAPACITIESMAPPED()

+WINDOWSPROBABILITYOFIMPACTFAILURE()

+WINDOWSRANDOMCAPACITIESMAPPED()

+WINDSPEEDat10mtoSPEEDateverystorywalls()

-ConstructionQuality

-NoofSimulations

-ShutterProtection

-RoofType

-TotalNumberofStories

-LengthFLR

-WidthFLR

Main Driver

oleObject172.bin
+Z_Pressure_First_MAIN_DRIVER()

-NoofSims
-Protection
-Windows
-All_MissileExposureTypes
-Roof
-Story
-Dimensions
-Quality
-WallType
-Cover
-date

Model Control

+adimcalculator()
+BUILDINGDIMREASSIGNER()
+CONSTRUCTIONQLTYTOBLDGSTRENGTH()
+CVARIABLE()
+DAMAGECOUNTERIMPACTWINDOWS()
+DAMAGECOUNTERWALLCOVER()
+DAMAGECOUNTERWALLSHEETS()
+DAMAGECOUNTERWINDOWS()
+ENCLOSURECONDITIONUPDATER_GABLE()
+ENCLOSURECONDITIONUPDATER_HIP()
+EXTONLYWALLSHEETPRESSURECOEFFICIENTSRANDOMIZED()
+MissilePhysParam()
+Numberofavailablemissileobjects()
+OPENINGCORRECTIONFACTOR()
+r2w_Capacity_Gable()
+r2w_Capacity_Hip()
+r2w_Loading_Failure_Gable_New_Approach()
+r2w_Loading_Failure_Hip_New_Approach()
+redist_uplift()
+Roof_Cover_Loss_Gable_Truncation_Fix_8_20\()
+Roof_Cover_Loss_Hip_Truncation_Fix_8_20()
+Sheathing_Capacity_Gable_Truncation_Fix_8_20()
+Sheathing_Capacity_Hip_Truncation_Fix_8_20()
+Sheathing_Layout_Gable_Nov_2009()
+Sheathing_Layout_Hip()
+Sheathing_Loading_Failure_Gable_New_Approach()
+Sheathing_Loading_Failure_Hip_New_Approach()
+Sheathing_R2W_Interface()
+Truss_Layout_Gable_Reduced_Aug_20_2009()
+Truss_Layout_Hip_Reduced_Aug_20_2009()
+Variables_A_B_D_Bakers()
+WALL_GCpe_MINUS_GCpi()
+WALLCOVERLOADER()
+WALLLOADER()
+WALLPRESSURECOEFFASCE()
+WALLSHEETAREAMAP()
+WALLSHEETCAPACITIESUPDATER()
+WALLSHEETPRESSURECOEFFICIENTSRANDOMIZED()
+WALLSHEETRANDOMCAPACITIESMAPPED()
+WALLSSHEETHEIGHTMAP()
+WALLSWINDSPEEDRANDOMIZED()
+WEIGHTEDEXTERNALWALLPRESSURECOEFFICIENTS()
+WINDEFFECTIVEAREAFINDER()
+WINDOWCAPACITIESUPDATER()
+WINDOWIMPACTCAPACITIESUPDATER()
+WINDOWLOADER()
+WINDOWSAREAANDHEIGHTMAP()
+WINDOWSIMPACTRANDOMCAPACITIESMAPPED()
+WINDOWSPROBABILITYOFIMPACTFAILURE()
+WINDOWSRANDOMCAPACITIESMAPPED()
+WINDSPEEDat10mtoSPEEDateverystorywalls()

-ConstructionQuality
-NoofSimulations
-ShutterProtection
-RoofType
-TotalNumberofStories
-LengthFLR
-WidthFLR

Main Driver

image203.jpeg
Model Control

-No_of_simulations
-ColumnOrder
-All_Bldg_Types
-All_Unit_Locations
-All_Shutter_Locations
-All_Shutter_Protection_Types
-All_Glazing_Types
-All_MissileExposure_Types
-Unit_Zone
-No_of_Simulations
-Unit_Location

-Bldg_Type
-Unit_Ext_Lengths
-Unit_Int_Widths
-ShutterProtection
-ImpactResistance
-MissileExposureType
-ColumnOrder

-MissileOnly
-Unit_Zone_Location

+Mid_High_Opening_Analysis_Driver()

Mid High Opening Analysis Driver

-No_of_Simulations
-Unit_Location
-Bldg_Type
-Unit_Ext_Lengths
-Unit_Int_Widths
-ShutterProtection
-ImpactResistance
-MissileExposureType
-ColumnOrder
-MissileOnly
-Unit_Zone_Location
-Height_Story
-Total_Number_of_Stories
-Height_Bldg
-Width_Bldg
-Length_BIdg
-Suburban_DistMult
-Open_DistMult
-m_shinglecapacity
-COV_shinglecapacity
-STDEV_shinglecapacity
-mn_shingledensity
-COV_shingledensity
-STDEV_shingledensity
-mn_ShingleLength
-STDEV_ShingleLength
-COV_ShingleLength
-mn_ShingleWidth
-COV_ShingleWidth
-STDEV_ShingleWidth
-mn_thickness
-COV_thickness
-STDEV_thickness
-gravity
-Standard_AirDensity
-Hurr_Red_Factor
-AirDensity

-mn_CF

-COV_CF

-STDEV_CF

-mn_|

-COV_

-STDEV_I

-mn_J

-COV_J

-STDEV_J
-mn_mom_resistance
-COV_mom_resistance
-STDEV_mon_resistance
-Number_of_shingles
-TotalDirections
-WindSpeeds_avg
-COV_WindSpeeds
-NoofWindSpeeds
-mn_GCp_roof
-GCpZone4

-GCpZoneb

-GCpi

-COV_GCpsRoof
-COV_GCpsWalls
-WindowLength
-WindowHeight
-SLDoorLength
-SLDoorHeight
-mn_windowcapacity
-COV_windowcapacity
-STDEV_windowcapacity
-mn_entrydoorcapacity
-COV_entrydoorcapacity
-STDEV_entrydoorcapacity
-mn_slidingdoorcapacity
-COV_slidingdoorcapacity

-STDEV_slidingdoorcapacity
-Window_Dist_From_Corner

+OPENINGPROTECTIONFACTOR()
+adimcalculator()

image204.emf
Select Building

Type

Load Exterior

Damage Matrices

DM(I,comp) for

each wind speed &

angle

Load Exterior

Damage Array

DA(I,comp,α,V

w

)

Estimate Total

and Component

Cost Ratios

RES

Monte Carlo Simulation

CLR

Vary Angles:α = 0:45:315

&

Wind speeds:V

w

= 50:5:250

Assess Interior & Utilities

Vulnerability

Interior Damage Model

Estimate water ingressing into

the building and convert to

interior damage

Exterior Damage Assessment

Percent Damage multiplied by

percent cost participation for

each modeled component

Interior and Utilities Damage

Assessment

Model based on empirical

exterior-interior damage

relationships

Exterior Damage Assessment

Percent Damage multiplied by

replacement cost ratio’s for each

modeled component

RES

RES CLR

Calculate Total Vulnerability

Exterior + Interior Vulnerability

Save Vulnerability Matrix

Replacement cost analysis

CLR

Determine Exterior Vulnerability

Determine Interior Vulnerability

Residential Model: RES

Low Rise Commercial

model:CLR

Assess Exterior Vulnerability

Propagation Engine

Vertical Propagation

oleObject13.bin

image205.png
100%

90%

80%

70%

60%

50%

40%

Damage Ratio (%)

30%

20%

10%

0%

Central WBDR Masonry Building Vulnerabilities

—o—Weak-Version 5.0

—=—Medium-Version 5.0

—A—Strong-Version 5.0

——Age-Weighted-Version 5.0

Wind Speed m/s (3 sec gust)

100

image206.emf
Input Data Cost Estimation Model

Library of

Damage Matrices

Leak Model

Interior Damage Model

Adjustment for Treshhold

Compute Total Building Damage

Compute ALE and Content

Generate

Vulnerability Type 1

Generate

Vulnerability Type

2

Save the Results

a b

e

h

d

f

g

i

j

k

c

image207.emf
General Scheme of Weighting Process for SF Residential Model

Save the

Results

Classify Counties and Define

Main Parameters of Building

Define the limits for

(Eras, Sub-regions, etc)

Data Base for Exposure

Study(Survey)

Calculate Probabilities of Buildings

Read Required Vulnerability Matrices

(Region, Subregion, Wall Type, Roof Cover, Roof Shape, Story and

Shutter)

Library of Available

Vulnerability Matrices

Calculate Weighted Matrix

a b

c

d

e

f

image208.emf
Input Data

Cost Estimation

Define Areas of Homes Regions=South, Central, North

IM(Replacing Cost)=(Unit cost + Removal Cost)

CMS (Total Cost) =∑ (IM)

Y=1 TO 24

X=1 TO 14

CR(Cost Ratio)=

((Unit Cost + Removal Cost)(X)*Area(Y))/

Total_Home_Cost(Y)

Save CMS

Save CR

Number of Story, Building

Type, Shutter, Strength,

Roof Shape,Date, Weibull

parameters (Bmin,Bmax)

,number of Simulation

,Wind increments

1

3

2

2

3

Damage Matrices

P=1 To 41

R=1 To 8

F=1 To 15

Load MC_File(F,S)

EDM(F,S)=(MC

File(F,S)/100)

4

5

a

b

c

START

Y= Type of

Homes

X=Home’s

Component

P= Wind

Speed

increments

50 mph to

250 mph in 5

mph

increment

R= Angels, 0

degree to

315 degree in

45 degree

increment

F= Failure

Modes

Convert

Damage into

Decimal

Detailed Flow Chart of Vulnerability Program for SF Residential Model

image209.emf
k

i

i

,

k

i

c

k

i

i

,

k

i

c

k

i

i

,

k

i

c

Number of Story = 1

Leak Model

Strong

Medium

Weak

no

no

yes

yes

yes

55<=wind(P)<=85

K2=1

K2=1.1 no

yes

SouthCentralNorth

SouthCentralNorth

SouthCentralNorth

yes ki=kii*(-0.000024*(wind(P)^2+0.0041*(wind(P))-0.1459)

no

90<=wind(P)<=95

yes

ki=kii*(-0.000024*85^2+0.0041*85-0.1459)

no

wind(P)=100

yes

ki=kii*(-0.000024*85^2+0.0041*85-0.1459)/exp((wind(P)-

99)/80)

no

100<wind(P)

yes

ki=kii*(-0.000024*85^2+0.0041*85-0.1459)/

exp((wind(P)-100)/80)

ki=0

d

P= Wind

Speed 50

mph to 250

mph in 5

mph

increment

wind(P)=Win

d speed in

increment P

image210.emf
F

a

i

l

u

r

e

M

o

d

e

s

D

e

t

a

i

l

s

f

o

r

F

a

i

l

u

r

e

M

o

d

e

F

u

n

c

t

i

o

n

s

R= Random Weibull Variables

Weibull parameters

(Bmin,Bmax)

F=1, 2, 3, 4, 5, 6 and 14

y1=g(x)

y2=h(x)

y1>=1

Int1(F)=1

Int1(F)=0

yes

no

y2>=1 Int2(F)=0

Int2(F)=1

no

yes

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}

Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}

F=1 : Roof Sheathing

F=2 : Roof Cover

F=3 : Roof to Wall Connection

F=4 : Walls

F=5 : Windows

F=6 : Doors

F=14 : Gable Ends

For F=1

y1 = ((2.4396x5 -8.7785x4 + 12.004x3 -7.7251x2 +

2.4637x)*k2+ki)*R

y2 = ((2.4396x5 -8.7785x4 + 12.004x3 -7.7251x2 +

2.4637x)-ki*kic)*R

For F=2

y1 = ((-0.0913x4 + 0.5939x3 -0.7679x2 +

0.4283x)*k2+ki)*RD*R

y2 = ((-0.0913x4 + 0.5939x3 -0.7679x2 + 0.4283x)-

ki*kic)*RD*R

For F=3

y1 = ((-5.7867x5 + 9.6475x4 -3.4349x3 + 0.3824x2

+ 0.3696x)*k2+ki)*R

y2 = ((-5.7867x5 + 9.6475x4 -3.4349x3 + 0.3824x2

+ 0.3696x)-ki*kic)*R

For F=4

y1 = ((1.8526x2 -0.1053x)*k2+ki)*R

y2 = ((1.8526x2 -0.1053x)-ki*kic)*R

For F=5

y1= ((0.3x)*k2+ki)*R

y2 = ((0.3x)-ki*kic)*R

For F=6

y1 = ((0.26x)*k2+ki)*R

y2 = ((0.26x)-ki*kic)*R

For F=14

y1 = ((-1.7194x5+5.0411x4-4.5769x3+1.1428x2+

0.339x)*k2+ki)*R

y2 = ((-1.7194x5 + 5.0411x4 -4.5769x3 + 1.1428x2

+ 0.339x)-ki*kic)*R

Interior Damage

e1

x= Component Damage

y= Interior Damage

image211.emf
F

a

i

l

u

r

e

M

o

d

e

s

D

e

t

a

i

l

s

f

o

r

F

a

i

l

u

r

e

M

o

d

e

F

u

n

c

t

i

o

n

s

F=1, 2, 3, 4, 5, 6 and 14

y1=g(x)*ke

y2=g(x)*kp

y3=g(x)*km

y1>=1 Elec(F)=0

Elec(F)=1

yes

no

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5),

Elec(F6),Elec(F14)}

Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5),

Plum(F6),Plum(F14)}

Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5),

Mech(F6),Mech(F14)}

y2>=1

Plum(F)=0

Plum(F)=1

no

yes

y3>=1 Mech(F)=0 no

yes

Mech(F)=1

Electrical-Plumbing-Mechanical Damage

F=1 : Roof Sheathing

F=2 : Roof Cover

F=3 : Roof to Wall Connection

F=4 : Walls

F=5 : Windows

F=6 : Doors

F=14 : Gable Ends

ke=Electrical Factor

kp=Plumbing Factor

km=Mechanical Factor

For F=1

g(x) = ((2.4396x5 -8.7785x4 + 12.004x3 -

7.7251x2 + 2.4637x)*k2+ki)*R

For F=2

g(x) = ((-0.0913x4 + 0.5939x3 -0.7679x2 +

0.4283x)*k2+ki)*RD*R

For F=3

g(x) = ((-5.7867x5 + 9.6475x4 -3.4349x3 +

0.3824x2 + 0.3696x)*k2+ki)*R

For F=4

g(x) = ((1.8526x2 -0.1053x)*k2+ki)*R

For F=5

g(x)= ((0.3x)*k2+ki)*R

For F=6

g(x) = ((0.26x)*k2+ki)*R

For F=14

g(x) = ((-1.7194x5+5.0411x4-

4.5769x3+1.1428x2+ 0.339x)*k2+ki)*R

e2

image212.emf
F

a

i

l

u

r

e

M

o

d

e

s

F=1, 2 and 5

F=5 yes

no

Strong yes AM(O,S)=EDM(F,S)

no

EDM(F,S)>Limit

O=1, 2

yes AM(O,S)=1 no AM(O,S)=EDM(F,S)

F=5 : Windows

F=1 : Roof Sheathing

F=2 : Roof Cover

O=1 : Windborne Debris

Region

O=2: High Velocity

Hurricane Zone

Limit : Depends on the

Region and the Failure

mode

S : Simultion

AM=Adjusted Damage

EDM=Damage in Decimal

Adjustment for Treshhold

f

image213.emf
Y=1 To 24

Building_Damage(Y,s)={(CR(3)*EDM(F3,s))+(CR(4)*EDM(F4,s))+(CR(6)*EDM(F6,s))+(CR(7)*EDM(F7,s))+(C

R(8)*EDM(F9,S)+CR(13)*EDM(10)+CR(9)*Int1

Total)+(CR(10)*MechTotal)+(CR(11)*ElecTotal)+(CR(12)*PlumTotal)+(CR(1)*AM(F1,S))+(CR(2)*AM(F2,S))+(

CR(5)*AM(F5,S))

Building Damage

ALM(S)={(2*(Int2 Total)^3)+(0.25*(Int2 Total)^2)+(0.11*Int2

Total)*Ra(s)}

CD(s)={Rc(s)*(0*Int2 Total(s)^6+51.54*Int2 Total(s)^5+(-38.62)*Int2

Total(s)^4+16.14*Int2 Total(s)^3+(-2.9896)*Int2 Total(s)^2+0.266*Int2 Total(s))}

CD(s)<=0.001 yes

CD(s)=0

no

CD(s)>=1 yes CD(s)=1 no CD(s)=CD(s)

ALE and Content

g

h

ALM=ALE

Rc, Ra=Weibull

Variables

CD=Content

Damage

image17.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

a

Pda

rh

es

+

rh

=

b

Pda

ts

rv

e

es

Lv

e

=

a

ts

=

Lv

es

rh

=

Pda

ts

ts

=

es

ts

ts

=

e

=

rh

=

rv

*

*

*

*

*

*

-

*

*

-

-

*

*

-

-

-

*

-

/

log

1

1

/

273

2320.

10

2.5

1013

29.5

/

273.

17.67

exp

6.112

/

to

0.80

461

6

image214.emf
K=1 To 32

K<11

yes

no ω=4%

ω=2%

Limit(K)=Limit(K-1)+ω

Limit(K+1)=Limit(K)+ω

S=1 To nnn Y=1 To 6

Limit(K)<BDM(S,Y)<Limit(K+1)

no

yes

BM(K,wi)=BM(K,wi)+1

Limit(K)<CD(s)<Limit(K+1) no

yes

CM(K,wi)=CM(K,wi)+1

Limit(K)<ALE(s)<Limit(K+1) no

yes

AM(K,P)=AM(K,wi)+1

6

7

7

6

Vulnerability Type 1

i

K=Damage

Limit Range;

32

increments

for the

damage

BDM is the

building

damage;

calculated on

previous

page

nnn=Number

of Simulation

Y=Type of

Homes

1-Not

Windborne

Debris Zone

2-Windborne

Debris Zone

3-High

Velocity Zone

Roof Type :

Shingle and

Tile

(regardless of

wall type and

region; wall

type and

region are

defined

before)

wi=1(50

mph) to

41(250 mph)

(for Wind

Increment 5

mph)

image215.emf
K=1 To 32

K<11 yes no ω=4%

ω=2%

Limit(K)=Limit(K-1)+ω

Limit(K+1)=Limit(K)+ω

S=1 To nnn Y=1 To 6

Limit(K)<BDM(S,Y)<Limit(K+1)

Limit(K)<CD(s)<Limit(K+1)

no

yes

CM2(K,wi)=CM2(K,wi)+1

Limit(K)<BDM(S,Y)<Limit(K+1)

Limit(K)<ALE(s)<Limit(K+1)

no

yes

AM2(K,wi)=AM2(K,wi)+1

Total(CM2)=∑CM 2(K)

Total(AM2)=∑AM 2(K)

8

9

8

9

5

4

Vulnerability Type 2

j

image216.emf
1

BV(K,wi)=BM(K,wi)/(8,nnn)

CV1(K,wi)=CM(K,wi)/(8,nnn)

AV1(K,wi)=AM(K,wi)/(8,nnn)

CV2(K,wi)=CM(K,wi)/Total(CM2)

AV2(K,wi)=AM(K,wi)/(Total(AM2)

Save:

BV(K,wi)

CV1(K,wi)

AV1(K,wi)

CV2(K,wi)

AV2(K,wi)

Saving The Results

k

END

BV: Building

Vulnerability

Matrix

CV: Content

Vulnerability

Matrix

AV: ALE

Vulnerability

matrix

image217.emf
Define the Date

Select Type of Model (00, 01 or 10)

Model=00 Model=01 Model=10

no no

Assign

Characteristics

for 00 Model

Assign

Characteristics

for 01 Model

Assign

Characteristics

for 10 Model

yes yes yes

Load Counties name with Cat numbers

Divide Counties

Between

Different

Regions

Separate Counties in

each region into sub

regions, WBDR,

NWBDR and HVHZ

Region =1,2,3,4 Strength=1,2,3

1 2

Strength=1

Limit1=5

Limit2=6

Strength=2

Limit1=5

Limit2=2

Strength=3

Limit1=4

Limit2=1

Year Built = Limit1 to Limit2 Wall Type =1 to 2

4

3

Classify Counties and Define Main Parameters of Building

Define the Limits

a

b

START

Sensitive to

Decking and

Roof Cover

South,

Central,

North and

Keys

Weak,

Medium and

Strong

Limit is Era of Time

Distribution

1:Pre-60

2:60-70

3:71-80

4:81-93

5:94-01

6:Pos-01

(Sensitive to Model

Distribution in Time)

Sensitive to

Wind Map

Masonry,

Timber

Detailed Flow Chart of Weighting Program for SF Residential Model

image218.emf
Data Base for Exposure

Study(Survey)

Read the Required Statistics

From Data Base for the

corresponding County

Calculate Probabilities of different Home

Types (Excluding Shutter) for each Era

{P (RC, RS, NS | EX) = P (RS)*P (NS)*P (RC|EX)}

{Home Types: RC(Shingle, Tile), NS(1 story, 2 story),

RS(Gable Hip), EX (CB, Timber), 16 types}

County=First to Last

First=First County in the Region

Last=Last County in the Region

5

Divide the Statistics Between different Sub Regions

using Shutter Data

{P (RC, RS, NS, OP| EX)=P (RC, RS, NS | EX)*P(OP)}

{OP(With Shutter, Without Shutter)}

Normalize Calculated Probabilities

NP(i)=P(i)/∑P(i)

∑NP(i)=100%

i=1 to 16 (for different wall types in each

subregions

Read Required Vulnerability Matrices

(Region, Subregion, Wall Type, Roof Cover, Roof

Shape, Story and Shutter)

Library of Available

Vulnerability Matrices

Calculate the Probability for Building Types

Read Vulnerability Matrices

c

d

Shutter Data

are Sensitive

to Sub

regions and

Year Built

image219.emf
Multiply Each Vulnerability Matrix by Corresponding

Probability and add up the results

Weighted Matrix = ∑Vulnerability(i)*Normal Probability(i)

i=1 to 16 (for different wall types in each subregions)

Save the Results in Selected County and Sub Region

5

4

3 2

1

Saving the Results

Calculate Weighted Matrix

e

f

END

image220.emf
Define the Date

Select Type of Model (00, 01 or 10)

Model=00 Model=01 Model=10

no no

Assign

Characteristics

for 00 Model

Assign

Characteristics

for 01 Model

Assign

Characteristics

for 10 Model

yes yes yes

Load Counties name with Cat numbers

Divide Counties

Between

Different

Regions

Separate Counties in

each region into sub

regions, WBDR,

NWBDR and HVHZ

Region =1,2,3,4 Strength=1,2,3

1 2

Strength=1

Limit1=5

Limit2=6

Strength=2

Limit1=5

Limit2=2

Strength=3

Limit1=4

Limit2=1

Year Built = Limit1 to Limit2 Wall Type =1 to 2

4

3

Classify Counties and Define Main Parameters of Building

Define the Limits

a

b

START

Sensitive to

Decking and

Roof Cover

South,

Central,

North and

Keys

Weak,

Medium and

Strong

Limit is Era of Time

Distribution

1:Pre-60

2:60-70

3:71-80

4:81-93

5:94-01

6:Pos-01

(Sensitive to Model

Distribution in Time)

Sensitive to

Wind Map

Masonry,

Timber

Detailed Flow Chart of Age Weighting Program for SF Residential Model

image221.emf
Data Base for Exposure

Study(Survey)

Read the Required Statistics

From Data Base for the

corresponding County

Calculate Probabilities of different Eras

County=First to Last

First=First County in the Region

Last=Last County in the Region

5

Divide the Statistics Between different Sub Regions

Normalize Calculated Probabilities

NP(i)=P(i)/∑P(i)

∑NP(i)=100%

Read Required Matrices Library of Available

Weighted Matrices

Calculate the Probability for Building Types

Calculate Age Weighted Matrices

c

d

Shutter Data

are Sensitive

to Sub

regions and

Year Built

image222.emf
Multiply Each Vulnerability Matrix by Corresponding

Probability in Era and add up the results

Weighted Matrix = ∑Vulnerability(i)*Normal Probability(i)

Do the Process for WBDR,

INLAND (NWBDR), HVHZ

and Keys County Seperatly

Calculate Weighted Matrix

e

Save the Results in Selected County and Sub Region

5

4

3 2

1

Saving the Results

f

END

image223.emf
Vulns_calc_PMH011309.m

Select the Main Parameters:

>Date the file (date, RUNdate)

>Set number of Simulation (nnn)

>Set Wind increments (wi)

>Define type of home(type)

>Define Weibull parameters (Bmin,Bmax)

type=1 (single wide)

type=2 (double wide)

PrePost= 1 to 2

PrePost=1 yes

kii=1.0

kic=0.7

no

PrePost can be

only 1 or 2

Note: There is one

extra IF in the

program

kii=4.6

kic=0.913

PrePost=1 yes

loop1=2

loop2=3

no

loop1=0

loop2=0

zone= loop1 to loop2

Note: loop1 and

loop2 and loop3

and loop4 are only

variables

zone=0 yes

loop3=1

loop4=2

no

loop3=0

loop4=0

W

Z

oleObject14.bin

oleObject173.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes

CR is defined on

Rc, Ra=Weibull Variables

CD=Content Damage

S: stands for simulation number (nnn)�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulns_calc_PMH011309.m�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image224.emf
anchors=loop3 to loop4

anchors:

Tie-downs=1

No tie down=2

Achored=0

Define Unit Cost and Removal Cost of the

Home’s Components ($/ft)

This section Includes price of

different home’s components and

the removal cost and price of new

retrofit materials

Define building area, roof area

4*4 Area matrix

Area Matrix: There are two

types of homes single wide

and double wide; two roof

areas and two building

areas.

n=1 to 2

X=1 to 13

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)

Total_Home_Cost(13,n)=

∑(Unit cost(X) * Area(Y))

η

η

Ұ

Ұ

Cost of single wide homes

X is the number of home’s

components

n=1 to 2

Z=1 to 11

CR

(Z,n)

=((Unit Cost + Removal Cost)(z)*Area(z))/

Total_Home_Cost(13,n)

CR

(11,n)

=

∑CR(Z,n)

CR: Cost Ratio

increment

This section calculates the

cost ratio for single wide

homes, Z is the number of

retrofit components

α

α

Δ

Δ

H

oleObject174.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image225.emf
n=2 to 3

X=1 to 13

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)

Total_Home_Cost(13,n)=

∑(Unit cost(X) * Area(Y))

η

η

Ұ

Ұ

Cost of double wide homes

X is the number of home’s

components

n=3 to 4

Z=1 to 11

CR

(Z,n)

=((Unit Cost + Removal Cost)(z)*Area(z))/

Total_Home_Cost(13,n)

CR

(11,n)

=

∑CR(Z,n)

CR: Cost Ratio

increment

This section calculates the

cost ratio for double wide

homes, Z is the number of

retrofit components

α

α

Δ

Δ

Save

CR

The final result is 11*4

matrix; column one and

column two contain CR for

the single wide homes;

column 3 and column 4

contain CR for the double

wide homes; the last row of

the matrix has the sum of

each column

oleObject175.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image226.emf
Prepost=1 LabelOutput:”HUD”

no

yes

LabelOutput:”p”

zone=0 LabelOutput:” ”

zone=1

zone=2

no

no

yes

yes

yes

LabelOutput:”_I”

LabelOutput:”_II”

LabelOutput:”_III”

no

anchors=2 LabelOutput:”_noTD ”

anchors=1

no

yes

yes LabelOutput:”_TD”

no

LabelOutput:” ”

Labeling process

oleObject176.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image227.emf
wi=1 To 41

angles=1 To 8

ki=0

1<=wi<=14 ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)

yes

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)

no

wi= Wind

Speed

increments 50

mph to 250

mph in 5 mph

increment

wind(wi)=Wind

speed in

increment wi

Angels: 0

degree to 315

degree in 45

degree

increment

F=1 To 9

Load MC_File(F,S)

Convert MC file’s Values into

Decimal

EDM(F,S)=(0.94*(MC File(F,S)/100))

F= Failure

Modes

(windows,

sheathing, etc)

0.94 is a

reduction factor

in air density

during a

hurricane

oleObject177.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=14�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image228.emf
F=1, 2, 3, 4, 5, 8 and 9

y1=g(x)*ke

y2=g(x)*kp

y3=g(x)*km

Electrical-Plumbing-

Mechanical Damage

y1>=1 Elec(F)=0

Elec(F)=1

yes

no

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}

Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}

Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}

y2>=1 Plum(F)=0

Plum(F)=1

no

yes

y3>=1 Mech(F)=0 no

yes

Mech(F)=1

F=Failure Modes

ke=Electrical

Factor

kp=Plumbing

Factor

km=Mechanical

Factor

For F=1

g(x)

=(0.429x^2+0.341x+ki)*R

For F=3

g(x)

= (0.286x+ki)*R

For F=4

g(x)

= (2x+ki)*R

For F=5

g(x)

= (0.7x+ki)*R

For F=6

g(x)

= (8.701x^3-

9.57x^2+4.631x)*R

For F=8

g(x)

=0.1 *R

For F=9

g(x)

= 1*R

F= Failure Mode,

F=1 : windows

F=3 : doors

F=4 : sheathing

F=5 : cover

F=6 : wall sheathing

F=8 : sliding

F=9 : overturning

image18.wmf
(

)

(

)

b

x

a

=

x

-

-

/

1

exp

oleObject178.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image229.emf
F=1, 4 and 5

F=Failure

Modes

F=1 : Windows

F=4 : Roof

Sheathing

F=5 : Roof

Cover

Adjustment for Treshhold

AM=Adjusted

Damage

DP=Damage in

Decimal

DP(S,F)>Limit

yes AM(S,F)=1

no

AM(S,F)=DP(S,F)

Limit : Depends on

the Region and the

Failure mode

S : Simultion (nnn)

Limit=0.50 (for

windows)

Limit=0.25 (cover)

Limit=0.35 (roof

sheathing)

oleObject179.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image230.emf
Calculate Total Damage

type=1 & Prepost=0

ll=1

no

no

yes

yes

yes

ll=2

ll=3

ll=4

no

type=1 & Prepost=1

type=2 & Prepost=0

DP(S,8)=0 Ks=1

DP(S,8)=1

no

no

yes

yes Ks=1.2

Ks=1.4

DP(S,8): Sliding

DP(S,9): Overturning

DP(S,9)>=1.0 BuildingDamage(S,1)=1

no

yes

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP

(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W

connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(

plumbing)

oleObject180.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image231.emf
ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}

Compute ALE Losses

Rf=0.75

Y: Type of Homes

CR is defined on

Rc, Ra=Weibull

Variables

CD=Content

Damage

S: stands for

simulation number

(nnn)

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}

Content Damage

Determination

CD(S)<=0.001 yes CD(S)=0

no

CD(S)>=1 yes CD(S)=1

no

CD(S)=CD(S)

ALE(S)<=0.001 yes ALE(S)=0

no

ALE(S)>=1 yes ALE(S)=1

no

ALE(S)=ALE(S)

oleObject181.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes

CR is defined on

Rc, Ra=Weibull Variables

CD=Content Damage

S: stands for simulation number (nnn)�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image232.emf
rnum=K=1 To 32

K=Damage

Limit Range;

32 increments

for the damage

BDM is the

building

damage;

calculated on

page 9

K<11

yes

no

ω=4%

ω=2%

Limit(K)=Limit(K-1)+

ω

Limit(K+1)=Limit(K)+

ω

S=1 To nnn

Y=1 To 6

Limit(K)<BDM(S,Y)<Limit(K+1) no

yes

BM(K,wi)=BM(K,wi)+1

Construct Vulnerability

Matrices type1

α

X

J

oleObject182.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image233.emf
Limit(K)<CD(s)<Limit(K+1) no

yes

CM(K,wi)=CM(K,wi)+1

Limit(K)<ALE(s)<Limit(K+1) no

yes

AM(K,P)=AM(K,wi)+1

X

J

oleObject15.bin

oleObject183.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image234.emf
K=1 To 32

K=Damage

Limit Range;

32 increments

for the damage

BDM is the

building

damage;

calculated on

previous page

K<11

yes

no

ω=4%

ω=2%

Limit(K)=Limit(K-1)+

ω

Limit(K+1)=Limit(K)+

ω

S=1 To nnn

Y=1 To 6

nnn=Number

of Simulation

Y=Type of

Homes

1-Not

Windborne

Debris Zone

2-Windborne

Debris Zone

3-High Velocity

Zone

Roof Type :

Shingle and

Tile

(regardless of

wall type and

region; wall

type and

region are

defined before)

wi=1(50 mph)

to 41(250 mph)

(for Wind

Increment 5

mph)

Limit(K)<BDM(S,Y)<Limit(K+1)

Limit(K)<CD(s)<Limit(K+1)

no

yes

CM2(K,wi)=CM2(K,wi)+1

Construct Vulnerability

Matrices type2

α

X

J

oleObject184.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image235.emf
Limit(K)<BDM(S,Y)<Limit(K+1)

Limit(K)<ALE(s)<Limit(K+1)

no

yes

AM2(K,wi)=AM2(K,wi)+1

X

J

Δ

€

BV(K,wi)=BM(K,wi)/(8,nnn)

CV1(K,wi)=CM(K,wi)/(8,nnn)

AV1(K,wi)=AM(K,wi)/(8,nnn)

CV2(K,wi)=CM(K,wi)/Total(CM2)

AV2(K,wi)=AM(K,wi)/(Total(AM2)

Save:

BV(K,wi)

CV1(K,wi)

AV1(K,wi)

CV2(K,wi)

AV2(K,wi)

Total(CM2)=

∑CM2(K)

Total(AM2)=

∑AM2(K)

BV: Building

Vulnerability

Matrix

CV: Content

Vulnerability

Matrix

AV: ALE

Vulnerability

matrix

W

Z

End

H

oleObject185.bin
�

�

�

�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

�

�

�

Prepost=1�

LabelOutput:”HUD”�

zone=0�

LabelOutput:” ”�

zone=1�

no�

zone=2�

yes�

no�

no�

LabelOutput:”p”�

yes�

yes�

yes�

LabelOutput:”_I”�

LabelOutput:”_II”�

LabelOutput:”_III”�

no�

anchors=2�

LabelOutput:”_noTD ”�

anchors=1�

no�

yes�

yes�

LabelOutput:”_TD”�

no�

LabelOutput:” ”�

Labeling process�

wi=1 To 41�

angles=1 To 8�

ki=0�

1<=wi<=13�

ki=kii*(-0.000024*(wind(wi)^2)+0.0041*wind(wi)-0.1459)�

yes�

ki=kii*(-0.000024*(115^2)+0.0041*115-0.1459)/exp((wind(wi)-120)/40)�

no�

wi= Wind Speed increments 50 mph to 250 mph in 5 mph increment

wind(wi)=Wind speed in increment wi�

 Angels: 0 degree to 315 degree in 45 degree increment�

F=1 To 9�

Load MC_File(F,S)
�

Convert MC file’s Values into Decimal�

EDM(F,S)=(0.94*(MC File(F,S)/100))�

F= Failure Modes
(windows, sheathing, etc)
�

0.94 is a reduction factor in air density during a hurricane

�

R= Random Weibull Variables
�

F=1, 3, 4, 5, 6, 8 and 9
y1=g(x)
y2=h(x)�

x= Component Damage
y= Interior Damage
�

y1>=1�

Int1(F)=1�

Int1(F)=0�

yes�

no�

y2>=1
�

Int2(F)=0�

Int2(F)=1�

no�

yes�

For F=1
y1 =(0.429x^2+0.341x+ki)*R
y2 = (0.429x^2+0.341x+ki-kic*ki)*R
For F=3
y1 = (0.286x+ki)*R
y2 = ((0.286x+ki)-kic*ki)*R
For F=4
y1 = (2x+ki)*R
y2 = ((2x+ki)-ki*kic)*R
For F=5
y1 = (0.7x+ki)*R
y2 = ((0.7x+ki)-ki*kic)*R
For F=6
y1 = (8.701x^3-9.57x^2+4.631x)*R
y2 = ((8.701x^3-9.57x^2+4.631x)-ki*kic)*R
For F=8
y1 =0.1 *R
y2 = 0.4*R
For F=9
y1 = y2= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

Int1 Total = Max{Int1(F1), Int1(F2), Int1(F3), Int1(F4), Int1(F5), Int1(F6), Int1(F14)}
Int2 Total = Max{Int2(F1), Int2(F2), Int2(F3), Int2(F4), Int2(F5), Int2(F6), Int2(F14)}�

F=1, 2, 3, 4, 5, 8 and 9
y1=g(x)*ke
y2=g(x)*kp
y3=g(x)*km
�

Electrical-Plumbing-Mechanical Damage�

y1>=1�

Elec(F)=0�

Elec(F)=1�

yes�

no�

Elec Total = Max{Elec(F1), Elec(F2), Elec(F3), Elec(F4), Elec(F5), Elec(F6),Elec(F14)}
Plum Total = Max{Plum(F1), Plum(F2), Plum(F3), Plum(F4), Plum(F5), Plum(F6),Plum(F14)}
Mech Total = Max{Mech(F1), Mech(F2), Mech(F3), Mech(F4), Mech(F5), Mech(F6),Mech(F14)}�

y2>=1�

Plum(F)=0�

Plum(F)=1�

no�

yes�

y3>=1�

Mech(F)=0�

no�

yes�

Mech(F)=1�

F=Failure Modes
ke=Electrical Factor
kp=Plumbing Factor
km=Mechanical Factor
�

For F=1
g(x) =(0.429x^2+0.341x+ki)*R

For F=3
g(x) = (0.286x+ki)*R

For F=4
g(x) = (2x+ki)*R

For F=5
g(x) = (0.7x+ki)*R

For F=6
g(x) = (8.701x^3-9.57x^2+4.631x)*R

For F=8
g(x)=0.1 *R

For F=9
g(x)= 1*R�

F= Failure Mode,
F=1 : windows
F=3 : doors
F=4 : sheathing
F=5 : cover
F=6 : wall sheathing
F=8 : sliding
F=9 : overturning�

F=1, 4 and 5�

F=Failure Modes
F=1 : Windows
F=4 : Roof Sheathing
F=5 : Roof Cover�

Adjustment for Treshhold�

AM=Adjusted Damage
DP=Damage in Decimal
�

DP(S,F)>Limit�

yes�

AM(S,F)=1�

no�

AM(S,F)=DP(S,F)�

Limit : Depends on the Region and the Failure mode
S : Simultion (nnn)�

Limit=0.50 (for windows)

Limit=0.25 (cover)

Limit=0.35 (roof sheathing)�

Calculate Total Damage�

type=1 & Prepost=0�

ll=1�

type=1 & Prepost=1�

type=2 & Prepost=0�

no�

no�

yes�

yes�

yes�

ll=2
�

ll=3
�

ll=4�

no�

DP(S,8)=0�

Ks=1�

DP(S,8)=1�

no�

no�

yes�

yes�

Ks=1.2�

Ks=1.4�

DP(S,8): Sliding
DP(S,9): Overturning�

DP(S,9)>=1.0�

BuildingDamage(S,1)=1�

BuildingDamage(S,1)=Ks*(AM(S,F1)*CR(windows)+DP(S,3)*CR(doors)+AM(S,F4)*CR(sheathing)+AM(S,F5)*CR(cover)+DP(S,6)*CR(wall sheathing)+DP(S,7)*CR(R to W connection))+IntTotal(S,1)*CR(interior)+MechTotal(S,1)*CR(mechanical)+ElecTotal(S,1)*CR*(electrical)+PlumTotal(S,1)*CR(plumbing)�

no�

yes�

ALE(S)={Rf*(0.8102*Int2 Total^3+0.2203*Int2 Total^2+0.1077*Int2 Total)*Ra(s)}�

Compute ALE Losses�

Rf=0.75
Y: Type of Homes(defined on page 2)

CR is defined on page 3

Rc, Ra=Weibull Variables (defined on page 5)

CD=Content Damage

S: stands for simulation number (nnn); defined on page 1�

CD(S)={Rc(s)*(kc1*Int2 Total^3+kc2*Int2 Total^2+kc3*Int2 Total)}�

Content Damage Determination�

CD(S)<=0.001�

yes�

CD(S)=0�

no�

CD(S)>=1�

yes�

CD(S)=1�

no�

CD(S)=CD(S)�

ALE(S)<=0.001�

yes�

ALE(S)=0�

no�

ALE(S)>=1�

yes�

ALE(S)=1�

no�

ALE(S)=ALE(S)�

Vulnerability Program for Manufactured Homes�

Select the Main Parameters:
>Date the file (date, RUNdate)
>Set number of Simulation (nnn)
>Set Wind increments (wi)
>Define type of home(type)
>Define Weibull parameters (Bmin,Bmax)

�

PrePost= 1 to 2�

PrePost=1�

yes�

kii=1.0
kic=0.7�

no�

kii=4.6
kic=0.913�

PrePost=1�

yes�

loop1=2
loop2=3�

no�

PrePost can be only 1 or 2

Note: There is one extra IF in the program�

loop1=0
loop2=0�

zone= loop1 to loop2�

Note: loop1 and loop2 and loop3 and loop4 are only variables �

zone=0�

yes�

loop3=1
loop4=2�

no�

loop3=0
loop4=0�

W�

Z�

type=1 (single wide)
type=2 (double wide)�

anchors=loop3 to loop4�

anchors:
Tie-downs=1
No tie down=2
Achored=0�

Define Unit Cost and Removal Cost of the Home’s Components ($/ft)�

This section Includes price of different home’s components and the removal cost and price of new retrofit materials�

Define building area, roof area
4*4 Area matrix �

Area Matrix: There are two types of homes single wide and double wide; two roof areas and two building areas.
�

n=1 to 2�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of single wide homes
X is the number of home’s components�

n=1 to 2�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for single wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

H�

n=2 to 3�

X=1 to 13�

Cost of each Component(X,n)=(Unit cost(X) * Area(Y)
Total_Home_Cost(13,n)=∑(Unit cost(X) * Area(Y))
�

η�

η�

Ұ�

Ұ�

Cost of double wide homes
X is the number of home’s components�

n=3 to 4�

Z=1 to 11�

CR(Z,n)=((Unit Cost + Removal Cost)(z)*Area(z))/Total_Home_Cost(13,n)

CR(11,n)=∑CR(Z,n)�

CR: Cost Ratio
increment�

This section calculates the cost ratio for double wide homes, Z is the number of retrofit components�

α�

α�

Δ�

Δ�

Save CR

�

The final result is 11*4 matrix; column one and column two contain CR for the single wide homes; column 3 and column 4 contain CR for the double wide homes; the last row of the matrix has the sum of each column�

rnum=K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on page 9�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

Limit(K)<BDM(S,Y)<Limit(K+1)�

no�

yes�

BM(K,wi)=BM(K,wi)+1�

Construct Vulnerability Matrices type1�

α�

X�

J�

Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM(K,wi)=CM(K,wi)+1�

Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM(K,P)=AM(K,wi)+1�

X�

J�

K=1 To 32�

K=Damage Limit Range;
32 increments for the damage

BDM is the building damage; calculated on previous page�

K<11�

yes�

no�

ω=4%�

ω=2%�

Limit(K)=Limit(K-1)+ω
Limit(K+1)=Limit(K)+ω�

S=1 To nnn�

Y=1 To 6�

nnn=Number of Simulation

Y=Type of Homes
1-Not Windborne Debris Zone
2-Windborne Debris Zone
3-High Velocity Zone
Roof Type : Shingle and Tile (regardless of wall type and region; wall type and region are defined before)

wi=1(50 mph) to 41(250 mph) (for Wind Increment 5 mph)�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<CD(s)<Limit(K+1)�

no�

yes�

CM2(K,wi)=CM2(K,wi)+1�

Construct Vulnerability Matrices type2�

α�

X�

J�

Limit(K)<BDM(S,Y)<Limit(K+1)
Limit(K)<ALE(s)<Limit(K+1)�

no�

yes�

AM2(K,wi)=AM2(K,wi)+1�

X�

J�

Δ�

€�

BV(K,wi)=BM(K,wi)/(8,nnn)
CV1(K,wi)=CM(K,wi)/(8,nnn)
AV1(K,wi)=AM(K,wi)/(8,nnn)
CV2(K,wi)=CM(K,wi)/Total(CM2)
AV2(K,wi)=AM(K,wi)/(Total(AM2)
�

Save:
BV(K,wi)
CV1(K,wi)
AV1(K,wi)
CV2(K,wi)
AV2(K,wi)
�

Total(CM2)=∑CM2(K)
Total(AM2)=∑AM2(K)�

BV: Building Vulnerability Matrix
CV: Content Vulnerability Matrix
AV: ALE Vulnerability matrix�

W�

Z�

End�

H�

image236.emf
Open Program

and Start

Weight_calc_PMH011309.m

This Program creates the weighted damage matrices for pre-94 manufactured homes (output) from the vulnerability

matrices (input)

Type 1

(vs. Windspeed)

Type 2

(vs. Structural

Loss)

South Central North Keys

Define Type 1 to Type 5 % (for South, Central, North, and Keys) Types are: Pre-94 TD

(type 1), Post-94 TD(type 2), Pre-94 No TD(type 3, Pre-94 Partial TD(type 4), and

Unknown(type 5). These are based on statistics for each region. *TD-tie down

Input Data:

1 vulnerability matrix for building.

1 vulnerability matrix for Contents

1 vulnerability matrix for ALE

Pre 94 not Tied Down

Bld. VM

Variables: X1

ALE VM

Variable: X1a

Content VM

Variable: X1c

Pre 94 Partially Tied Down

weighted from not tied down and

tied down matrixes

Bld. VM

Variables: Xp-Xp2

ALE VM

Variable: Xpa-Xp2a

Content VM

Variable: Xpc-Xp2c

Ex:

Xp1=VM_not tied down*.75

Xp2=VM_tied down*.25

Xp = Xp1 + Xp2

For pre 94 Tied Down

Bld. VM

Variables: X2

ALE VM

Variable: X2a

Content VM

Variable: X2c

For post 94 Tied Down

zone 2

Bld. VM

Variables: X3

ALE VM

Variable: X3a

Content VM

Variable: X3c

a

oleObject186.bin
Open Program and Start

Weight_calc_PMH011309.m
This Program creates the weighted damage matrices for pre-94 manufactured homes (output) from the vulnerability matrices (input)

Type 1
(vs. Windspeed)

Type 2
(vs. Structural Loss)

South

Central

North

Keys

Define Type 1 to Type 5 % (for South, Central, North, and Keys) Types are: Pre-94 TD (type 1), Post-94 TD(type 2), Pre-94 No TD(type 3, Pre-94 Partial TD(type 4), and Unknown(type 5). These are based on statistics for each region. *TD- tie down

Input Data:
1 vulnerability matrix for building.
1 vulnerability matrix for Contents
 1 vulnerability matrix for ALE

Pre 94 not Tied Down
Bld. VM Variables: X1 ALE VM Variable: X1a Content VM Variable: X1c

Pre 94 Partially Tied Down weighted from not tied down and tied down matrixes Bld. VM Variables: Xp-Xp2 ALE VM Variable: Xpa-Xp2a Content VM Variable: Xpc-Xp2c

Ex:
Xp1=VM_not tied down*.75
Xp2=VM_tied down*.25
Xp = Xp1 + Xp2

For pre 94 Tied Down
Bld. VM Variables: X2 ALE VM Variable: X2a Content VM Variable: X2c

For post 94 Tied Down zone 2
Bld. VM Variables: X3 ALE VM Variable: X3a Content VM Variable: X3c

a

image237.emf
a

Define weighted pre-94 matrices for building, contents, and ALE

VM

n

= X1 * Adj_Type1 + X3 * Adj_Type3 + Xp * Adj_Type4

VM

n

= X1c * Adj_Type1 + X3c * Adj_Type3 + Xpc * Adj_Type4

VM

n

= X1a * Adj_Type1 + X3a * Adj_Type3 + Xpa * Adj_Type4

Adjust Types 1,3,and 4

Adj_Typej= Typej/ (Type1+Type3+Type4)

Repeat for each region

Output: Weighted Matrices in a folder named as ‘Weighted’ in the same folder as the Vulnerability Matrices.

For consistency, the post 94 matrices are also added. There are 6 matrices for building, 6 for ALE and 6 for

Contents (one pre-94 for each of the 4 regions, one post-94 zone 2, one post-94 zone3).

End

oleObject187.bin
a

Define weighted pre-94 matrices for building, contents, and ALE

VMn = X1 * Adj_Type1 + X3 * Adj_Type3 + Xp * Adj_Type4
VMn = X1c * Adj_Type1 + X3c * Adj_Type3 + Xpc * Adj_Type4
VMn = X1a * Adj_Type1 + X3a * Adj_Type3 + Xpa * Adj_Type4

Adjust Types 1,3,and 4 Adj_Typej= Typej/ (Type1+Type3+Type4)

Repeat for each region

Output: Weighted Matrices in a folder named as ‘Weighted’ in the same folder as the Vulnerability Matrices. For consistency, the post 94 matrices are also added. There are 6 matrices for building, 6 for ALE and 6 for Contents (one pre-94 for each of the 4 regions, one post-94 zone 2, one post-94 zone3).

End

image238.emf
+Vulns_calc_PSB062110()

+Weight_calc_PSB060810()

+Age_Weigt_calc_PSB060810()

+walltype()

+region()

+strength()

+shutters()

+wi()

-date

-nnn

-Bmax

-Bmin

SiteBuiltMatrixGenerator

+Manufac_Homes_Prog_0113091()

+Matrix_Weight_Manuf_111404()

-wi

-date

-nnn

-Bmax

-Bmin

ManufMatrixGenerator

image19.wmf
(

)

(

)

(

)

(

)

(

)

(

)

es

rh

x

es

rh

+

Pmsl

=

RI

*

-

-

*

-

-

1013

1

/

1

1013

oleObject188.bin
+Vulns_calc_PSB062110()
+Weight_calc_PSB060810()
+Age_Weigt_calc_PSB060810()
+walltype()
+region()
+strength()
+shutters()
+wi()

-date
-nnn
-Bmax
-Bmin

SiteBuiltMatrixGenerator

+Manufac_Homes_Prog_0113091()
+Matrix_Weight_Manuf_111404()

-wi
-date
-nnn
-Bmax
-Bmin

ManufMatrixGenerator

image239.emf
Vulnerability

Matrix Process

USER

Site built structural damage data

Type of construction,

of simulations,

Weibull dist. parameters, etc.

Weighted

Vulnerability

Matrix Process

Manufactured

Vulnerability

Matrix Process

Manufactured structural damage data

of simulations,

Weibull dist. parameters, etc.

Age-Weighted

Vulnerability

Matrix Process

Monte Carlo

Simulation

Age-weighted

vulnerability

matrices

Type of matrix, bldg shape,

date, wi, range of winds,

list of windborne derbis,

northern, central, southern,

and keys counties, etc

Type of matrix, bldg shape,

date, wi, range of winds,

list of windborne debris,

northern, central, southern,

and keys counties, etc

Statistical data from

exposure study

Weighted

Manufactured

Vulnerability

Matrix Process

Manufactured vuln.

matrices

Type of matrix,

Bmax, Bmin,

weighting stats

Site built vuln.

matrices

Site built

weighted

vuln. matrices

Age-weighted

vuln. matrices

Weighted

manuf.

matrices

Manuf. vuln.

matrices

oleObject189.bin
Vulnerability
Matrix Process

Weighted
Vulnerability
Matrix Process

Manufactured
Vulnerability
Matrix Process

Manufactured structural damage data

of simulations,
Weibull dist. parameters, etc.

Age-Weighted
Vulnerability
Matrix Process

Monte Carlo
Simulation

USER

 Site built structural damage data

Type of construction,
of simulations,
Weibull dist. parameters, etc.

Age-weighted
vulnerability
matrices

Type of matrix, bldg shape,
date, wi, range of winds,
list of windborne derbis,
 northern, central, southern,
and keys counties, etc

Type of matrix, bldg shape,
date, wi, range of winds,
list of windborne debris,
northern, central, southern,
and keys counties, etc

Statistical data from
exposure study

Weighted
Manufactured
Vulnerability
Matrix Process

Manufactured vuln.
matrices

Type of matrix,
Bmax, Bmin,
weighting stats

Site built vuln.
matrices

Site built weighted
vuln. matrices

Age-weighted
vuln. matrices

Weighted manuf.
matrices

Manuf. vuln.
matrices

image240.wmf
Area14(Y))

×

4(X)

 UnitCost1

…+

+

Area2(Y)

×

(X)

 UnitCost2

+

Area1(Y)

×

(X)

(UnitCost1

=

n)

(X,

Total_Cost

oleObject190.bin

image241.wmf
tal_Cost(Y

Area(Y)/To

×

t)(X)

RemovalCos

+

(UnitCost

=

Y)

CR(X,

oleObject191.bin

image242.wmf
)

tal_Cost(Y

Area(Y)/To

×

t)(X)

RemovalCos

+

t

CR(UnitCos

=

Y)

(14,

CR

oleObject192.bin

image243.wmf
 /100

S)

MC_File(F,

=

S)

EDM(F,

oleObject16.bin

oleObject193.bin

image244.wmf
km

*

g(x)

=

y3

kp;

*

g(x)

=

y2

ke;

*

g(x)

=

y1

R)

ki,

2,

Function(k

=

g(x)

wi);

ii,

Function(k

=

ki

oleObject194.bin

image245.wmf
Int1(F14)}

Int1(F6),

Int1(F5),

Int1(F4),

Int1(F3),

Int1(F2),

1),

Max{Int1(F

=

Total

Int1

oleObject195.bin

image246.wmf
Int2(F14)}

Int2(F6),

Int2(F5),

Int2(F4),

Int2(F3),

Int2(F2),

1),

Max{Int2(F

=

Total

Int2

oleObject196.bin

image247.wmf

S)

DP(F,

=

S)

EDM(F,

=

S)

AM(F,

oleObject197.bin

image248.wmf
g)

CR(plumbin

*

S,1)

PlumTotal(

+

l)

(electrica

*

CR

*

S,1)

ElecTotal(

+

cal)

CR(mechani

*

S,1)

MechTotal(

+

r)

CR(interio

*

,1)

IntTotal(S

+

on))

 Wconnecti

 to

CR(R

*

DP(S,7)

sheathing)

CR(wall

*

DP(S,6)

+

CR(cover)

*

F5)

AM(S,

+

ng)

CR(sheathi

*

F4)

AM(S,

CR(doors)

*

DP(S,3)

+

)

CR(windows

*

F1)

(AM(S,

*

Ks

=

S)

(Y,

age

BildingDam

+

+

image20.emf
Scientist

WindSpeedCalUseCase

oleObject198.bin

image249.wmf
Rc(s))

Total,

nt2

Function(I

=

CD(S)

Ra(s))

Total,

nt2

Function(I

=

ALE(S)

oleObject199.bin

image250.wmf
n)

×

wi)/(8

AM(K,

=

wi)

AV1(K,

n)

×

wi)/(8

CM(K,

=

wi)

CV1(K,

n)

×

wi)/(8

BM(K,

=

wi)

BV(K,

1

+

wi)

AM(K,

=

wi)

AM(K,

1

+

wi)

CM(K,

=

wi)

CM(K,

1

+

wi)

BM(K,

=

wi)

BM(K,

oleObject200.bin

image251.wmf
AM

wi)/Total_

AM2(K,

=

wi)

AV2(K,

K)

AM2(wi,

=

Total_AM

1

+

wi)

AM2(K,

=

wi)

M2(K,

CM2

wi)/Total_

CM2(K,

=

)

CV2(K,

CM2(K)

=

Total_CM2

1

+

wi)

CM2(K,

=

wi)

CM2(K,

å

å

oleObject201.bin

image252.wmf

EX)

|

(RC

P

*

(NS)

P

*

(OP)

P

*

(RS)

P

=

EX)

|

NS

OP,

RS,

(RC,

P

oleObject202.bin

image253.wmf
å

=

P(i)

P(i)/

(i)

NP

image21.wmf
Initilize bins

Read

control file

Read

HURDAT

Desired year?

Interpolate pressures if possible, or

use wind-pressure relation

Pressure Report

Yes

No

In threat area and

hurricane?

Yes

HURDAT

Compute motion

change and bin

Bin initial motion and

intensity

Compute translation

speed and heading

angle

Yes

Pressure report

compatible?

Compute change in

intensity

Yes

Compute relative

intensity and bin

Output for

Stormgen

Compute PDFs

Resize bins if

needed

oleObject203.bin

image254.wmf
(i)

NP

*

V(i)

W(i)

å

=

oleObject204.bin

image255.wmf
Area12(Y))

×

2(X)

 UnitCost1

+

…

+

Area2(Y)

×

(X)

 UnitCost2

+

Area1(Y)

×

(X)

(UnitCost1

=

n)

(X,

Total_Cost

oleObject205.bin

oleObject206.bin

oleObject207.bin

oleObject208.bin

oleObject209.bin

image256.wmf
Int1(F7)}

Int1(F6),

Int1(F5),

Int1(F4),

Int1(F3),

Int1(F2),

1),

Max{Int1(F

=

Total

Int1

oleObject17.bin
�

�

�

�

Initilize bins�

Read control file�

Read HURDAT�

Desired year?�

Interpolate pressures if possible, or use wind-pressure relation�

Pressure Report�

Yes�

No�

In threat area and hurricane?�

Yes�

HURDAT�

Compute motion change and bin�

Bin initial motion and intensity�

Compute translation speed and heading angle�

Yes�

Pressure report compatible?�

�

Compute change in intensity�

Yes�

Compute relative intensity and bin�

Output for Stormgen�

Compute PDFs�

Resize bins if needed�

oleObject210.bin

image257.wmf
Int2(F7)}

Int2(F6),

Int2(F5),

Int2(F4),

Int2(F3),

Int2(F2),

1),

Max{Int2(F

=

Total

Int2

oleObject211.bin

oleObject212.bin

oleObject213.bin

oleObject214.bin

oleObject215.bin

oleObject216.bin

image22.emf
+getcat()

+getcatp()

+region()

+fmap()

+fmapinv()

+ibox()

+direction2()

+direction()

+distance2()

+windpress()

+land()

+wind2press2()

+indp()

+is_threat()

+ri2p()

+p2ri()

+ri()

+pmin()

-maxnt

-nstypes

-ncoast

-khmax

genPDF

+zcrit()

+getcat()

+getcatw()

+rmax()

+holland()

+nsample()

+ibox()

+land()

+windpress()

+fmap()

+fmapinv()

+distance()

+cdf_inv()

+indp()

+region()

+above()

+ri2p()

+p2ri()

+ri()

-nbin

-ncount

-maxnt

-naho

-nzip

StormGen

image258.emf
Interior Damage Ratio Exterior Damage Value

Read building features

from insurance file

1

Convert Water ingressed into Interior

Damage (per story)

10

11

Assess number of

corner “a

C

”and

middle “a

M

”apartments

2

Compute cost of damaged openings

per story (CDO

s

)

6

M M C C s

CDO a CDO a CDO

 

Count damaged openings per story

(V

W,D,S

: damaged windows, doors, sliders)

...

Wind

 

z w

4

Compute the cost of damaged

openings (CDO) per apartment

5

Calculate total cost of damaged

openings (TECDO)

7

Assess average breach size curve

size (per story) B

A

  

 

S D W M

S D W C A

B B B a

B B B a s B

  

   





8

Select corresponding

Damage V

W

, V

D

, V

S

and

Breach B

W

, B

D

, B

S

curves

3

Estimate water intrusion (per story)

and vertical percolation

I

m

p

i

n

g

i

n

g

R

a

i

n

F

a

l

l

h

8

= h

C

+ h

M

...

h

7

= h

C

+ h

M

h

1

= h

C

+ h

M

9

Calc. Expected Interior Damage

Ratio

Calculate Expected Damage

Value

12

V

W,D,S

(w(z

7

))

V

W,D,S

(w(z

8

))

V

W,D,S

(w(z

1

))

   

S S D D W W s

V C V C V C z w CDO

  







S

s

s

CDO TECDO

1







S

s

s

IDR

S

EIDR

1

1

BV k EIDR TECDO EDV

I B

  

image259.emf
Load Exterior Damage

and existing Defects

Breach area

Choose wind

speed

v

w

Compute ingressing water

for all components for

given v

w

and

 a

Choose wind

angle

a

Last

v

w

?

Last

a

?

No

START

No

END

Sample Impinging Rain

Wind Speed

I

m

p

i

n

g

i

n

g

R

a

i

n

Convert ingressed water to

Interior Damage ID by interior

damage threshold t

id

I

n

t

e

r

i

o

r

D

a

m

a

g

e

Water

t

id

Save

information

image260.wmf
t

h

V

V

rr

=

IR

/

×

·

oleObject219.bin

image261.wmf
γD

α

G

D

e

D

N

=

N

-

oleObject220.bin

image262.wmf
α

G

D

D

M

=

N

rr

=

M

M

=

D

=

α

D

=

γ

÷

÷

ø

ö

ç

ç

è

æ

-

0

4

0

6

0.913

0.1681

0

0

1

10

512.85

0.062

0.1571

2.160

/

5.5880

oleObject221.bin

image263.wmf
3

2

54888

.

0

888016

.

91844

.

4

166033

.

)

(

D

D

D

D

V

t

×

+

×

-

×

+

-

=

oleObject222.bin

oleObject18.bin
+getcat()
+getcatp()
+region()
+fmap()
+fmapinv()
+ibox()
+direction2()
+direction()
+distance2()
+windpress()
+land()
+wind2press2()
+indp()
+is_threat()
+ri2p()
+p2ri()
+ri()
+pmin()

-maxnt
-nstypes
-ncoast
-khmax

genPDF

+zcrit()
+getcat()
+getcatw()
+rmax()
+holland()
+nsample()
+ibox()
+land()
+windpress()
+fmap()
+fmapinv()
+distance()
+cdf_inv()
+indp()
+region()
+above()
+ri2p()
+p2ri()
+ri()

-nbin
-ncount
-maxnt
-naho
-nzip

StormGen

image264.wmf
(

)

(

)

ò

ò

dD

V

D

N

dD

V

D

N

V

=

V

t

D

t

D

t

t

3

3

oleObject223.bin

image265.wmf
(

)

t

V

=

rr

DRF

1

oleObject224.bin

image266.wmf
(

)

(

)

(

)

ò

drr

rr

,

rr

g

rr

DRF

=

rr

DRF

oleObject225.bin

image267.wmf
rr

oleObject226.bin

image268.wmf
(

)

(

)

(

)

B

m

R

B

m

r

e

r

R

ρ

Bdp

+

W

+

W

=

W

/

/

/

2

0

0

-

oleObject227.bin

image23.emf
Storm Track

Outputs

genPDF

Historical

Hurricane

Data

(HURDAT)

Land Mask

File

Hurricane Data

Land Mask

Data

Outflow

Temperature

Sea Surface

Temperature

Outflow

Temperature

Sea Surface

Temperature

Initial Storm Location,

motion, and intensity PDFs;

Storm motion and

intensity change PDFs

Hurricane Genesis Time

Diagnostic

Output File

StormGen

Land Mask Data

Zip Code

Data

Zip Code

Location

Sea Surface

Temperature

Outflow

Temperature

Simulated

Storm Track Data;

Landfall Data; etc.

Diagnostic

Output File

image269.wmf
(

)

(

)

fr

θ

c

=

W

-

sin

0.5

0

oleObject228.bin

image270.wmf
(

)

(

)

b

C

C

C

C

C

d

C

A

S

A

d

IR

A

d

IR

RAF

k

h

i

i

i

i

i

i

ú

ú

û

ù

ê

ê

ë

é

+

×

=

4

3

4

2

1

3

2

1

Area

 Defects

breach

-

Post

2

Area

 Defects

Total

1

oleObject229.bin

image271.wmf
[

]

b

B

C

b

C

A

A

IR

RAF

k

h

i

i

×

×

=

2

oleObject230.bin

image272.emf
Scientist

VM-CRB

image273.emf
Control Routine

(Vulns_run_CL111110)

Starts all process & builds Vuln. Tensors (VOT’s) for:

·

Building & Contents

Format:

VOT(Damage,#Stories,Wall,shutters,Roof,Cover,Region)

Vulnerability Routine

(Vulns_calc_CL022711)

Produces Vulnerability Matrices (VM’s)

for:

·

Building & Contents

Input

Damage Matrices (DM)

Cost Analysis Sheet

2

D

M

’

s

Interior Damage Module

(IntExt_calc_CL041111)

Produces interior damage curves

Plot & Vuln. Curves Routine

(Vulns_plotter_CL030911)

Produces & Save Vuln. plots for:

·

Building & Contents

Produce & Save Vuln. Curves (VC’s)

+ Std deviation

Vulnerability Weighting Control

(Weight_run_CL111110)

Produce Weighted Vuln. Tensors (WVT) for:

·

Building & Interior

Plot Non-Weighted curves

WVT Format:

WVT(Damage,#Stories,Wall,Region)

End

Calculate weighted conditional

probabilities

(Weight_CondProbs_CL111110.m)

Open external .xls with statistics and

calculate

P[RT,RC

|

EW,YB], P[RT

|

YB],

P[RC

|

EW,YB]

1

3

4

5

6

8

7

13

Control Module

Vulnerability Module

Weighted Vulnerabilities Module

V

C

’

s

V

T

’

s

W

V

T

’

s

Call

C

a

l

l

Call

VC

i

S

t

a

t

s

C

o

s

t

M

a

t

r

i

x

Weighted Curves Routine

(Weight_calc_CL111110)

Run all possible combinations of missing

parameters and produce the decadal

“unweighted” curves

10

11

12

9

oleObject19.bin
Storm Track Outputs

genPDF

Historical Hurricane Data
(HURDAT)

Land Mask File

Hurricane Data

Land Mask
Data

Outflow Temperature

Sea Surface Temperature

Outflow
Temperature

Sea Surface
Temperature

Initial Storm Location,
motion, and intensity PDFs;
Storm motion and
intensity change PDFs
Hurricane Genesis Time

Diagnostic Output File

StormGen

Land Mask Data

Zip Code Data

Zip Code
Location

Sea Surface
Temperature

Outflow
Temperature

Simulated
Storm Track Data;
Landfall Data; etc.

Diagnostic Output File

image274.emf
Damage

Matrices (DM)

Water Intrusion Routine

(IntExt_calc_CL041111)

For a bldg type, computes breaches,

impinging rain, water entered and

transforms to interior damage:

Format:

f(Walltype,Rooftype,#Stories,Shutters,

Strength,plot)

3

Exterior – Interior curves generation

End

Plotter routine

(IntExt_plotter_CL011811)

Format:

f(EXT,WAT,wat_threshold,ext_weights

,cell_title)

6

Water to Interior Damage Converter

(IntExt_plotter_CalcMatrcs_CL011811)

Format:

f(EXT,WAT,wat_threshold,ext_weights)

4

5

Water intrusion at different levels

computation

(IntExt_addPressDebr_CL111110)

Format:

f(Damage,#Stories,Component id)

2

1

7

Plot auxiliar

(IntExt_plotter_SeprtPlots_CL111110)

Plotter routines

image275.emf
Calculator for exterior vulnerabilities and

breach curves for mid-/high-rise buildings

(Vulns_calc_CM110910)

oleObject231.bin
Calculator for exterior vulnerabilities and breach curves for mid-/high-rise buildings
(Vulns_calc_CM110910)

image276.emf
Vulns_run_CL080112

Strength

1= Strong

2 = Medium

3= Weak

Set Run Date

of

Stories

1,2,3

Wall Type

1= Concrete

2 = Timber

Run Vulns_run_CLdate(Strength,# stories, Wall

type, shutters, Roof Type, Roof Cover, Region,

DataRainSum)

Shutters

1= No

2 = Yes

Region

HVHZ = 1

WBDR = 2

Inland = 3

1

Roof Cover

Shingles

Tile

Metal

Last

Region?

Roof Shape

1= Gable

2 = Hip

Last

Shutters?

Last Roof

type?

Last Roof

Cover?

Last Story?

Last

Strength?

Last Wall

type?

Calculate

Weighted Curves

Weight_run_CL08

0112

2 3

4

5

6

1 2 3 4 5 6

Y Y Y Y Y Y

N N N N N N

N

Y

END

Load impinging

rain simulation

DataRainSim

oleObject232.bin
�

�

Vulns_run_CL080112

Strength
1= Strong
2 = Medium
3= Weak

Last Shutters?

Set Run Date

of Stories
1,2,3

Wall Type
1= Concrete
2 = Timber

Last Roof type?

Run Vulns_run_CLdate(Strength,# stories, Wall type, shutters, Roof Type, Roof Cover, Region, DataRainSum)

Last Roof Cover?

Shutters
1= No
2 = Yes

Last Story?

Region
HVHZ = 1
WBDR = 2
Inland = 3

Last Strength?

1

Last Wall type?

image277.emf
Costs

Interior Damage Estimation

Vulnerability Curves

FBC thresholds

Exterior Damage

Vulnerability Matrices

Input

Year Built, # Stories, Wall, Roof Shape,

Roof Cover, Opening Protection, Bldg.

Strength, Region

Vulns_calc_CL080112

Initialize Variables &

Build Damage matrices filename

Load Building Type Damage Array

DA

Î Â

Sims × #Comps(75) × #Angles × #Winds

Load Model Variables

Units/ Floor, Width &

Length, #Windows, etc

Normalize Damage

Array to 0-100%

Set Florida Building Code

(FBC) thresholds for roof

damage / replacem = 25%

Load Percentage

Cost matrix PC

from Excel File

Update Roof Damage

if Damage > 25%

Damage = 100%

Select building Interior

Percentage for current

building type from PC

PCint

Estimate Exterior Damage Ratio

(DAE)

DAE = DA ×PC ×Cost_Factors

Estimate Water Ingress (WAT) to

breached building

·

Call RoutineIntExt_calc_CLdate

·

Set water threshold of complete

interior damage t

W

(inches) inside

IntExt_calc_CLdate

WAT = water contents

Combine Exterior and interior

Damage Arrays (DAC)

DAT= DAE+ PC

INT

×DAI

Convert Water Array to Interior Damage

Array (DAI)

100% DAI : t WAT

100% 100

t

WAT

 DAI : t WAT

w

w

w

 

   

Build Building Vuln. Matrix (VM

BLDG

)

VM

BLD

ßVM

BLD

+ histogram(DAT(ii,jj),d)

ÎÂ

75

x41

Build filenames for

VC’s and VM’s

Create folder for

storing VM’s

Save only VM’s

Save VC’s and plot Figures

External routine

Vulns_plotter_CL080112

END

Create folder for

storing VC’s

Loop over winds

(ii) and angles (jj)

Build Interior Vuln. Matrix (VM

INT

)

VM

INT

ßVM

INT

+ histogram(DAI(ii,jj),d)

ÎÂ

75 x41

VM

ÎÂ

75 x41

ii , jj = wind (41) and

angle (8) dimensions

d = damage vector [0,

0.02, …, 1]

Î Â

1x75

Aggregate components Damage

8 41 NbrSims

j

l) k, j, DAE(i, DAE     

Aggregate all water ingressed per

component

8 41 NbrSims

j

l) k, j, WAT(i, WAT

    



Build Vulnerability Curves VC

1 41

l j i

l) k, j, DAT(i,

I

1

L

1

VC

   



Apply Cost Factors For damage

size (Cost_Factors)

percent failures 100-90;75-

90;50-75 ;30-50;0-30;

RC_Factor =[1.00 1.25 1.50

2.00 2.50](roof cover)

% RS_Factor= [1 1.0625 1.125

1.5 1.875](sheathing)

% WC_Factor= [1 1.25 1.5

2 2.5] (walls)

% Int_Factor = [1 1.15 1.25

1.5 2.0] (Interior)

Apply Fixed Cost as % of total

building value

Fixed Costs (%) = (mobilization +

permits)/Total replacement cost.

DAT = DAT+ Fixed Costs

oleObject233.bin
�

�

Vulnerability Curves

FBC thresholds

Exterior Damage

Vulnerability Matrices

Input
Year Built, # Stories, Wall, Roof Shape, Roof Cover, Opening Protection, Bldg. Strength, Region

Vulns_calc_CL080112

image278.emf
Convert Rain into Impinging Rain

Define Existing Defects

Rainfall Data Sampling

Constant Definition & Initialization Variables

Input

Stories, Wall type, Roof type,

Shutters, Building Quality,

Plots (Y/N), Dam. Matrix

version, Dam. Array (DA),

Header

Initialize Constants and file

Naming

Normalize Exterior

Damage Array

columns

Fix Random number

Generator seed

Sample Rainfall

Rate PDF

Define Roof

Sheathing

“Porosity”

Call exterior routine

IntExt_WDR_AppMethod_CL

Convert Rainfall

into Impinging

Rain

Read Constants

from DA

headers

Sample Rainfall

Duration PDF

Define density of

existing defects in

openings

Define density of

existing defects in

Bldg. Envelope

Define RAF

(Rain

Admittance Factor) &

Gust Factor

Select Damage

Matrix From

Array

DP= DA(:,:,ii,jj)

ÎÂ

5000x75

Vary Wind

=50,55,..., 250

Vary Angles

0,45,…,315

1 2

Water intrusion through components

Roof Cover

dm= 1, (damage mode)

1) ED = [DP (:,dm) -DP(RoofShtg)]/100

2) WI = (ED x Rain Rate x Rain Duration x

Sheathing porosity x ...)/ Bldg Area

3) WAT(:,1) = WI

4) EXT(:,1) = ED

Roof Sheathing

dm= 2

1) ED = DP (:,dm)/100

2) WI = (ED x Rain Rate x Rain Duration x

...)/ Bldg Area

3) WAT(: , 2) = WI

4) EXT(: , 2) = ED

Gable End Cover

dm= 7:8 (each end separately)

1) ED = DP (:,dm)/100

2) WI = ED x Rain Rate x Rain Duration x

[1-DP(GableShtg)/100]x .../ Bldg Area

3) Remaining Area (RA) = gable size x (1-

ED)

4) WD = (Rain Rate x Rain Duration x

defects x RA)/ Bldg Area

5) WAT(: , 3) = WI + WD

6) EXT(: , 3) = ED

Wall Cover

dm= 11:14(by wall ID)

WIn= water hitting the bldg per unit vertical area

stories = 1 to 3

1) ED = [DP(dm)-DP(WallShtg)]/100

2) WI = WIn x ED

3) RA = Total Wall Area x (1-ED)

4) WD = (RA x Rain Rate x Rain Duration x

Defects x ...) / Bldg Area

5) WAT(: , 5) = WI + WD

6) EXT(: , 5) = ED

7) Repeat 1 thru 5 for stories > 2 &3

IntExt_calc_CL080112

Glossary (For more details on the equations, see Glossay

document)

WI = water ingressed due to pressure

WD = water ingressed due to debris

WAT = Total Ingressed Water

Gable Sheathing

dm = 9:10 (both ends separately)

1) ED = DP (:,dm)/100

2) WI = (ED x Rain Rate x Rain Duration x ...)/

Bldg Area

3) WAT(: , 4) = WI

4) EXT(: , 4) = ED

Go

to A

oleObject234.bin
�

�

Convert Rain into Impinging Rain

Define Existing Defects

Rainfall Data Sampling

Constant Definition & Initialization Variables

Input
Stories, Wall type, Roof type, Shutters, Building Quality, Plots (Y/N), Dam. Matrix version, Dam. Array (DA), Header

Initialize Constants and file Naming

Normalize Exterior Damage Array columns

Fix Random number Generator seed

Sample Rainfall Rate PDF

Define Roof Sheathing
“Porosity”

Call exterior routine IntExt_WDR_AppMethod_CL

Convert Rainfall into Impinging Rain

Read Constants from DA headers

Sample Rainfall Duration PDF

Define density of existing defects in openings

Define density of existing defects in Bldg. Envelope

Define RAF (Rain Admittance Factor) & Gust Factor

image279.emf
Wall Sheathing

dm =15:18 (by wall ID)

WInBr = factors

´

IR2

1) ED = DP(: , dm)/100; SF = (1-ED)

2) WI = WInBr x ED

3) WAT(: , 6) = WI

6) EXT(: , 6) = ED

Windows

dm = 19:22

(windows by wall ID)

WInBr = factors

´

IR2

´

AreaWindow / BldgArea

WInDef = factors

´

DefsWindow / BldgArea

1) ED(story) = (EDw+EDd) / #Windows; SF = (1-ED)

3) WI(story) = (EDw+EDd)

´

WInBr

4) RA = #Windows

´

SF

5) WD(story) = WInDef

´

(IR1

´

#Windows + IR2

´

RA)

6) WAT(:,7) = WI + WD

7) EXT(:,7) = ED

Glossary

EDw = % of breached opening breached by wind pressure

EDd = % of breached opening breached by debris

RA: # remaining undamaged wallArea/openings

WInBr: Water impinging per area of breach (simplify eqn.)

WInDf: Water impinging per area of defect (simplify eqn.)

Plot curves and

Rearrange ED & WAT,

Call Exterior Routine

Graph_ext_int.m

Last

Wind ii?

Last

Angle jj?

2 1

N N

Plot

Curves?

N

END

Y

IntExt_calc_CL080112

A

Wall Cover

dm = 11:14 (

(by wall ID)

WInBr = factors

´

SheathGapsArea

WInDf = factors

´

Defects(cracks,penetrations,etc)

1) ED = [DP(dm)-DP(WallShtg)]/100 ; SF = 1 -ED

2) WI = WInBr x ED

3) RA = WallArea

´

SF

4) WD = WInDf

´

(IR1

´

WallArea + IR2

´

RA) / Bldg

Area

5) WAT(: , 5) = WI + WD

6) EXT(: , 5) = ED

Sliders

dm = 27

WInBr = factors

´

IR2

´

AreaSlider / BldgArea

WInDef = factors

´

DefsSlider / BldgArea

1) ED(story) = (EDw+EDd) / #Sliders; SF = (1-ED)

2) WI(story) = (EDw+EDd)

´

WInBr

3) RA = #Sliders

´

SF

4) WD(story) = WInDef

´

(IR1

´

#Sliders + IR2

´

RA)

5) WAT(:,7) = WI + WD

6) EXT(:,7) = ED

Entry Doors

dm = 29

WInBr = factors

´

IR2

´

AreaDoors / BldgArea

WInDef = factors

´

DefsDoors / BldgArea

1) ED(story) = (EDw+EDd) / #Doors; SF = (1-ED)

3) WI(story) = (EDw+EDd)

´

WInBr

4) RA = #Doors

´

SF

5) WD(story) = WInDef

´

(IR1

´

#Doors + IR2

´

RA)

6) WAT(:,7) = WI + WD

7) EXT(:,7) = ED

If stories

= 2 or 3

WAT = WAT(2)+ fPerC

21

´

WAT(2) + WAT(1)

2

WAT = WAT(3)+ (fP

32

´

WAT(3) + WAT(2))+ (fP

31

´

WAT(3) + fP

21

´

WAT(2) + WAT(1)); 3

Water intrusion through components

Components (2): All Stories

Soffits

dm = 72:75

(windows by wall ID)

WInBr = factors

´

IR2

´

Soffit Area (by ID) / BldgArea

WInDef = factors

´

Soffit Area (by ID) / BldgArea

1)

ED = DP(: , dm)/100; SF = (1-ED)

3) WI(story) = (EDw+EDd)

´

WInBr

4) RA = #Doors

´

SF

5) WD(story) = WInDef

´

(IR1

´

#Doors + IR2

´

RA)

6) WAT(:,7) = WI + WD

7) EXT(:,7) = ED

image24.wmf

u

¶

u

¶

r

-

v

2

r

-

fv

+

v

r

¶

u

¶

f

+

¶

p

¶

r

-

K

Ñ

2

u

-

u

r

2

-

2

r

2

¶

u

¶

f

æ

è

ç

ö

ø

÷

+

F

r

c

,

u

(

)

=

0

=

¶

u

¶

t

oleObject235.bin
�

�

Water intrusion through components

Wall Sheathing
dm =15:18 (by wall ID)
WInBr = factors ´ IR2
1) ED = DP(: , dm)/100; SF = (1-ED)
2) WI = WInBr x ED
3) WAT(: , 6) = WI
6) EXT(: , 6) = ED

image280.emf
Input

Vulnerability Curves,

Vulnerability Matrices,

Wall type, region,

graphs labels ? Yes,

No

Declare Filename Auxiliaries

Build Vuln Plots

Create Folder for

Vuln Curves

Save

Vulnerability

Curves

Build Plots’

labels

Create folders for

graphics files

Coverage

Building= 1

Interior= 2

Last

Coverage?

Save Graphs as

.jpeg

N

Y

END

Vulns_plotter_CL080112

oleObject236.bin
�

�

Input
Vulnerability Curves, Vulnerability Matrices, Wall type, region, graphs labels ? Yes, No

Declare Filename Auxiliaries

Build Vuln Plots

Create Folder for Vuln Curves

Save Vulnerability Curves

Build Plots’ labels

Create folders for graphics files

Coverage
Building= 1
Interior= 2

Last Coverage?

Save Graphs as .jpeg

N

Y

END

image281.emf
Calculation of Weighted

Curves

Get individual VC

Vulnerability. Curve from

Wk

case

array

Save VC Weighted

Decadal Vuln Curves Splitting and savings

Get individual VC

From V

k

YB

Save Decadal VC

Last Risk?

END

Y

N

Risk

Bldg = 1

Interior = 2

Declare Filename

Auxiliaries

Create Weighted

Vulnerability curves

W

k,case

and decadal

weighted curves V

k

Yb

case

Calling

Weight_calc_CL080112

Create Label for new

folder

Vary # stories

Ns = 1,2,3

Vary Exterior wall

1= CB

2 = Wood

Vary Zone

1-HVHZ

2-WBDR

3-Inland

4-Keys

Vary Year Built Eras

1-pre 1960

2-1960-70

3-1971-80

4-1981-93

5-1994-2001

6-2002-present

Vary Missing Variable

Case

1-RT, RC, OP

2-RC, OP

3-RT, RC

4-RT, OP

5-OP

6-RC

7-RT

1

2 3 4

5

6

0

0

Weight_run_CL080112

Splitting of Wk

CASE

arrays

oleObject237.bin
�

�

Splitting of WkCASE arrays

Calculation of Weighted Curves

Get individual VC
Vulnerability. Curve from Wk case array

Save VC Weighted

Decadal Vuln Curves Splitting and savings

Get individual VC
From VkYB

Save Decadal VC

Last Risk?

END

Y

N

Risk
Bldg = 1
Interior = 2

Declare Filename Auxiliaries

image282.emf
Assemble all 3 (s/m/w) vuln.

arrays into one called VOT

Declare opening

statistics

Create table of

Correspondence

between cases and

their corresponding

conditional

probabilities (T3)

Weights for combining

strength expressed

Vulnerability curve (S/M/W)

into Year Built eras

Vulnerability Curves YBEE

matrix

(nested loop)

Span all parameters

Zn = subregions

ns = stories

ew = exterior wall

Ybe = year built eras

T3 = table of

correspondences

All Variables

scanned?

All Parameters

scanned?

Load conditional

probabilites

call routine

Weighted_cond_prob

Y

END

(nested Loop) Span all Parameters

Input

-Case Missing

-Vuln Arrays

-Plot Flag

Declare

Constants

Declare Missing

Cases Matrix C

Vary # Stories

NS = 1,2,3

Vary Exterior Wall

ew = CB=1, WD = 2

Vary Zones

zn =

1-hvhz

2-wbdr

3-Inland

4-Keys

Vary Year Built Eras

1-pre 1960

2-1960-70

3-1971-80

4-1981-93

5-1994-2001

6-2002-present

Build

Vulnerability

Basic kernel

V

k

(8x41)

Build Array of Vuln

Curves to Combine

V

k

YB(8,41,ns,ew,zn,y

be) = V

k

N

Y

Build Selector

Matrix S

P

n

← P

n

×S

n

×OP

Build weights-selector

matrix

Plot =

Yes?

Plot curves

Y

N

Weight Vuln Curves

according to Pn

W

k

=

P

n

T

V

k,ybe,n

Calc weight matrices

N

Weight_calc_CL080112

Arrange Weights

oleObject238.bin
�

�

Assemble all 3 (s/m/w) vuln.
arrays into one called VOT

Declare opening statistics

Create table of Correspondence between cases and their corresponding conditional probabilities (T3)

Weights for combining strength expressed
Vulnerability curve (S/M/W) into Year Built eras Vulnerability Curves YBEE matrix

(nested loop)
Span all parameters
Zn = subregions
ns = stories
ew = exterior wall
Ybe = year built eras
T3 = table of correspondences

All Variables scanned?

All Parameters scanned?

Load conditional probabilites call routine Weighted_cond_prob

Y

END

(nested Loop) Span all Parameters

Input
-Case Missing
-Vuln Arrays
-Plot Flag

Declare Constants

Declare Missing
Cases Matrix C

Vary # Stories
NS = 1,2,3

Vary Exterior Wall
ew = CB=1, WD = 2

Vary Zones
zn =
1-hvhz
2-wbdr
3-Inland
4-Keys

Vary Year Built Eras
1- pre 1960
2- 1960-70
3- 1971-80
4-1981-93
5-1994-2001
6- 2002-present

Build Vulnerability Basic kernel
Vk(8x41)

Build Array of Vuln Curves to Combine
VkYB(8,41,ns,ew,zn,ybe) = Vk

N

Y

Build Selector Matrix S

Pn← Pn × Sn × OP
Build weights-selector matrix

Plot = Yes?

Plot curves

Y

N

Weight Vuln Curves according to Pn
Wk = PnTVk,ybe,n

Arrange Weights

Calc weight matrices

N

Weight_calc_CL080112

image283.emf
Weight_CondProbs_CL080112

Calculate P(RT,RC|EW,YB)

Input

-Damage Matrix

-Number of stories

-Selector of Columns

Load Selected County

Spreadsheet

Delete from datasets the

unmodeled cases

E.g. rt = flat

Declare labels

auxiliaries

Calculate

P(RT,RC,EW,YB)

Calculate

YB) P(EW,

YB) EW, RC, P(RT,

YB) EW, | RC P(RT,



Calculate

P(EW,YB)

Rearrange P(.) fore

weighting routine

Calculate P(RT|YB)

Calculate

P(YB)

Calculate

P(YB)

YB) P(RT,

YB) | P(RT



Calculate

P(RT,YB)

Rearrange P(.) for

weighting routine

Calculate

P(RC,EW,YB)

Calculate

YB) P(EW,

YB) EW, P(RC,

YB) EW, | P(RC 

Rearrange ... END

Calculate P(RC | EW , YB)

oleObject239.bin
�

�

Weight_CondProbs_CL080112

Calculate P(RT,RC|EW,YB)

Input
-Damage Matrix
-Number of stories
-Selector of Columns

Load Selected County Spreadsheet

Delete from datasets the unmodeled cases
E.g. rt = flat

Declare labels
auxiliaries

Calculate
P(RT,RC,EW,YB)

Calculate

Calculate
P(EW,YB)

Rearrange P(.) fore weighting routine

Calculate P(RT|YB)

Calculate
P(YB)

Calculate

Calculate
P(RT,YB)

Rearrange P(.) for weighting routine

Calculate
P(RC,EW,YB)

Calculate

Rearrange ...

END

Calculate P(RC | EW , YB)

image284.emf
IntExt_plotter_CL011811

Input

-Exterior damage

-Ingressed Water Array

-water thresholds

-cell_title

Declare Parameters

Wind, Roof type,

plot_y_n

Esstimate interior Damage ratios call

IntExt_plotter_CalcMatrcs_CL111110

Subplot 1

Plot individual damage

curves of all components

Subplot 3

Plot wind vs.

Interior damage per

component

Subplot 2

Plot exterior vs. interior

curve + variation bands

Subplot 4

Plot exterior vs. Interior

per component as areas

IntExt_plotter_CalcMatrcs_CL011811.m

Subplot 5

Plot wind vs. Exterior

per Component

Subplot 6

wind vs. Exterior &

Interior

Plots update

Graphs

Call

IntExt_plotter_SeprtPlots_CL111110

Plot=yes?

Y

END

N

Input

-Exterior damage Array

-Ingressed Water Array

-water thresholds

-Header from Exterior

Damage array

Condense Exterior

damage. Average out

cumulating and wind

angles Ext

 Î

R

41x9

Aggregate water ingressed

average by Angles and # of

Simulations

WAT

41,1000

Î

R

41x1000

Estimate Exterior damage

to the envelope as a fn of

wind speed

EXT_411

Î

R

41x1

Convert ingressed water

to Interior Damage and

combine per component

ID

Î

R

41x9

Express per component

Estimate Total interior

damage as a funcion of

wind speed

IDR

Î

 R

41x1

END

IntExt_plotter_SeprtPlots_CL111110.m

Input

-Exterior damage info

-interior damage info

Declare

line types

Line colors

Plot Exterior vs. Interior END

image25.wmf

u

¶

v

¶

r

+

v

r

æ

è

ç

ö

ø

÷

+

fu

+

v

r

¶

v

¶

f

-

K

Ñ

2

v

-

v

r

2

+

2

r

2

¶

u

¶

f

æ

è

ç

ö

ø

÷

+

F

r

c

,

v

(

)

=

0

=

¶

v

¶

t

image285.emf
Vulns_calc_CM070612

Input

Opening dimensions

RunDates

Exterior Damage

Arrays

Plot Labels

Loop apartment

types 1to 4

Loop over Debris impact

Zones

Declare # of

openings per Apt

type

Load Damage

Array

Add Pressure and debris

damage columns for each

opening type

Ed

w

, ED

D

,ED

s

Plot

Vulnerability

Curves and

Breach Curves

N

Y

Plot=yes?

END

Loop over openings

(noShutters,shutters)

Calculate Breach Curves

VB

w

= ED

w

x Area

window

→ windows

VB

D

= ED

D

x Area

D

→ Doors

VB

S

= ED

S

x Area

S

→ Sliders

Calculate Exterior Vulnerability

Curve

VC

ext

= ED

w

+ ED

D

+ ED

S

+

oleObject240.bin
�

�

Vulns_calc_CM070612

Input
Opening dimensions
RunDates
Exterior Damage Arrays

Plot Labels

Loop apartment types 1to 4

Loop over Debris impact Zones

Declare # of openings per Apt type

Load Damage Array

Add Pressure and debris damage columns for each opening type
Edw, EDD,EDs

Plot Vulnerability Curves and Breach Curves

N

Y

Plot=yes?

END

Loop over openings (noShutters,shutters)

Calculate Breach Curves
VBw= EDwx Areawindow → windows
VBD= EDDx AreaD → Doors
VBS= EDSx AreaS → Sliders

image286.emf
+Vulns_calc_CL022711()

-RUNdate

-Constr_Qlty

-Tot_No_Stories

-walltype

-shutters

-rooftype

-roofcover

-region

MainDriver

+IntExt_calc_CL041111()

+IntExt_addPressDebr_CL111110()

+IntExt_plotter_CL011811()

+IntExt_plotter_CalcMatrcs_CL011811()

+IntExt_plotter_SeprtPlots_CL111110()

+Vulns_plotter_CL030911()

-winds

-angles

-VM_bldg

-VM_int

-VM_cont

-VM_cont_A

-Roof

-roofpc

-Qlty

-Wall

-Shutter

-roofcvrpc

-Roofcvr

-RUNdate

-Tot_no_Stories

-walltype

-Shut_Prot

-locat

-counter

-path to CR_Cost_Analysis_Percentages_110210e.xls

UnWeightedMatrixGenerator

+Weight_calc_CL111110()

-RUNDate

-Strong_unweight_Bldg

-Medium_unweight_Bldg

-Weak_unweight_Bldg

-Strong_unweight_Int

-Medium_unweight_Int

-Weak_unweight_Int

WeightedDriver

+Weight_CondProbs_CL111110()

-c_case

-Strong_unweight_Bldg

-Medium_unweight_Bldg

-Weak_unweight_Bldg

-plotF

WeightedMatrixGenerator

image287.emf
+Vulns_calc_CM110910()

-wdw_ar

-sld_ar

-door_ar

-winds

-MCSdate

-RUNdate

MidHighRiseVulnCurveGenerator

oleObject241.bin
+Vulns_calc_CM110910()

-wdw_ar
-sld_ar
-door_ar
-winds
-MCSdate
-RUNdate

MidHighRiseVulnCurveGenerator

image288.emf
Monte Carlo

Simulation

Main Driver

Vuln. Matrix

Process

date,#stories,walltype,

rooftype, roofcover,

shutters, constr. Quality,

region, etc.

Weighted Vuln.

Matrix Process

Date,strong, medium, and weak

unweighted matrices’ arrays

CR Cost

Analysis

Percenages

Interior

Damage

Process

walltype, rooftype,

#stories,shutter protection,

const. quality,

Dmversion,PCv,etc.

Exterior damage array,

Total exterior damage vector

Total interior damage vector,

Water ingressed inside bldg

Bldg. and Int.

Vuln. Plotter

bldg vuln. matrix,

conts. vuln. matrix,

Int. vuln. matrix,

walltype, subregion,

etc.

curves

Weighted Vuln.

Matrix Process

date,mising variables,

strong, medium, and

weak un-weighted arrays

Cond.

Probability

Calculator

missing attrs.

Name of county

from which to

get cond. Prob.

Cond. Prob. matrix

St. Lucie

Probabilities

Marion

Probabilities

case selector matrix,

cond. prob. Matrix,

Weighted decadal vuln. curves,

devcadal un-weighted vuln. curves

Int. vs. Ext.

Damage

Plotter

damage arrays,

water ingressed,

thresholds,

etc.

Plots

total damage

vectors

un-weighted

curves

USER

date

image289.emf
USER

Exterior Vuln. and

Breach Curves

Calculator

Opening dimensions,

date

Exterior Vuln.

Curves

Breach

Curves

Monte Carlo

Simulation for

MHB

Exterior damage array

oleObject242.bin
USER

Exterior Vuln. and Breach Curves Calculator

Opening dimensions,
date

Exterior Vuln. Curves

Breach Curves

Monte Carlo Simulation for MHB

Exterior damage array

image290.wmf
fLoglaw

fRunWat

edGbl

f

fPerc

F

Area

Def

Area

)

ED

(ED

IR

F

WatIngrBr

Total

Sheath

Gable

h

GableSheat

GableCover

2

´

´

´

=

´

´

-

´

´

=

R

oleObject243.bin

image26.jpeg
Storm Centered Polar Grid

o

image291.wmf
fLoglaw

fRunWat

edGbl

f

fPerc

F

Area

Area

ED

IR

F

WatIngrBr

Total

Gable

h

GableSheat

2

´

´

´

=

´

´

´

=

R

oleObject244.bin

image292.wmf
each

 WatIngrBr

WAT

=

oleObject245.bin

image293.wmf
fLoglaw

)

sin(

f

fRunWatRoo

fSimRoof(

)

fredRoof(

fPerc

F

Area

Area

Def

)

ED

(ED

IR

F

WatIngrBr

Total

Roof

Sheath

RoofSheath

RoofCover

2

´

´

´

)

´

´

=

´

´

-

´

´

=

a

q

q

oleObject246.bin

image294.wmf
fLoglaw

)

sin(

fRunWat

fSimRoof(

)

fredRoof(

fPerc

F

Area

Area

ED

IR

F

WatIngrBr

Total

Roof

RoofSheath

2

´

´

´

)

´

´

=

´

´

´

=

a

q

q

oleObject247.bin

image295.wmf
fLoglaw

fRunWat

(

fSimAngles

F

Area

Area

Def

IR

F

WatIngrBr

Total

ries

EffWallSto

Sheath

2

N

´

´

)

=

´

´

´

=

q

oleObject248.bin

image27.png
6

EARTH RELATIVE TOTAL WINDS (M/S)

. e=5 m/s

image296.wmf
fLoglaw

(

fSimAngles

fPerc

F

Area

Def

F

WatIngrDef

Total

k

WallPetrCr

N

´

)

´

=

´

=

q

oleObject249.bin

image297.wmf
(

)

(

)

(

)

S

D

W

EffWalls

Area

Area

Area

NbrWdows

h

W

L

2

NbrStories

Area

+

+

´

-

´

+

´

=

oleObject250.bin

image298.wmf
i

story

at

ED

ED

ED

i

,

WallSheath

i

WallCover,

i

WC,

-

¬

oleObject251.bin

image299.wmf
(

)

(

)

[

]

WC,1

WC,2

21

WC,3

31

WC,2

WC,3

32

WC,3

N

ED

ED

fPerc

ED

fPerc

ED

ED

fPerc

ED

 WatIngrBr

WatIngrBr

+

+

+

+

+

=

oleObject252.bin

image300.wmf
(

)

(

)

[

]

Remains

2

ory

EffWallsSt

1

N

Area

IR

Area

IR

WatIngrDef

k

WatIngrLea

´

+

´

´

=

oleObject253.bin

image28.wmf

p

r

(

)

=

p

o

+

D

pe

R

max

r

æ

è

ç

ç

ö

ø

÷

÷

B

image301.wmf
k

WatIngrLea

WatIngrBr

WAT

+

=

oleObject254.bin

image302.wmf
fLogLaw

fRunWat

(

fSimAngles

F

Area

Area

IR

F

WatIngrBr

Total

ries

EffWallSto

2

N

´

´

)

=

´

´

=

q

oleObject255.bin

image303.wmf
(

)

(

)

[

]

WS,1

WS,2

21

WS,3

31

WS,2

WS,3

32

WS,3

N

ED

ED

fPerc

ED

fPerc

ED

ED

fPerc

ED

 WatIngrBr

WatIngrBr

+

+

+

+

+

=

oleObject256.bin

image304.wmf
fLogLaw

fRunWat

(

fSimAngles

F

Area

Area

IR

F

WatIngrBr

Total

Windows

2

N

´

´

)

=

´

´

=

q

oleObject257.bin

image305.wmf
fLogLaw

(

fSimAngles

fPerc

F

Area

)

strength

(

Def

F

WatIngrDef

Total

Window

N

´

)

´

=

´

=

q

oleObject258.bin

image29.wmf

D

p

image306.wmf
(

)

(

)

[

]

W,1

W,2

21

W,3

31

W,2

W,3

32

W,3

N

ED

ED

fPerc

ED

fPerc

ED

ED

fPerc

ED

 WatIngrBr

WatIngrBr

+

+

+

+

+

=

oleObject259.bin

image307.wmf
(

)

(

)

[

]

Remains

2

1

N

Wdow

IR

NbrWindows

IR

WatIngrDef

k

WatIngrLea

´

+

´

´

=

oleObject260.bin

image308.wmf
fLogLaw

fRunWat

(

fSimSlider

F

Area

Area

IR

2

1

F

WatIngrBr

Total

Sliders

2

N

´

´

)

=

´

´

´

=

q

oleObject261.bin

image309.wmf
fLogLaw

(

fSimSlider

fPerc

F

Area

)

strength

(

Def

F

WatIngrDef

Total

Sliders

N

´

)

´

=

´

=

q

oleObject262.bin

image310.wmf
(

)

(

)

[

]

S,1

S,2

21

S,3

31

S,2

S,3

32

S,3

N

ED

ED

fPerc

ED

fPerc

ED

ED

fPerc

ED

 WatIngrBr

WatIngrBr

+

+

+

+

+

=

oleObject263.bin

image30.wmf

p

r

(

)

=

p

o

+

D

pe

R

max

r

æ

è

ç

ç

ö

ø

÷

÷

B

image311.wmf
(

)

(

)

[

]

Remains

2

1

N

Slider

IR

NbrSliders

IR

WatIngrDef

k

WatIngrLea

´

+

´

´

=

oleObject264.bin

image312.wmf
s

fSimSlider

oleObject265.bin

image313.wmf
fLogLaw

fRunWat

fSimDoors(

F

Area

Area

IR

F

WatIngrBr

Total

Doors

2

N

´

´

)

=

´

´

=

q

oleObject266.bin

image314.wmf
fLogLaw

fSimDoors(

fPerc

F

Area

)

strength

(

Def

F

WatIngrDef

Total

Doors

N

´

)

´

=

´

=

q

oleObject267.bin

image315.wmf
(

)

(

)

[

]

D,1

D,2

21

D,3

31

D,2

D,3

32

D,3

N

ED

ED

fPerc

ED

fPerc

ED

ED

fPerc

ED

 WatIngrBr

WatIngrBr

+

+

+

+

+

=

oleObject268.bin

image31.wmf

f

image316.wmf
(

)

(

)

[

]

Remains

2

1

N

Door

IR

NbrDoors

IR

WatIngrDef

k

WatIngrLea

´

+

´

´

=

oleObject269.bin

image317.wmf
fSimDoors

oleObject270.bin

image318.wmf
RAFsoff

fLogLaw

fSimSoff(

F

Area

Area

IR

F

WatIngrBr

Total

soff

2

N

´

´

)

=

´

´

=

q

oleObject271.bin

image319.wmf
(

)

250)

:

5

:

50

(ii

0

0.0424

-

ii

*

0.0007.

=

)

funSoff(ii

fLogLaw

fSimSoff(

*

*

*

f

Factor_sof

Area

ExtDam)

-

(1

f

Factor_sof

Area

IR

f)

Factor_sof

Area

(IR

WatIngrDef

Total

soff

2

soff

1

N

=

>

´

)

=

´

´

´

+

´

´

=

q

a

funSoff

Soff

RAFsoff

oleObject272.bin

image320.wmf
n

T

n

n

Vk

P

W

=

oleObject273.bin

image32.wmf

s

=

r

R

=

image321.wmf
Pop

n

n

n

o

o

S

P

P

¬

oleObject274.bin

image322.wmf
(8,41)

(m,8);

4,6);

(8,41,3,3,

n

T

n

Â

Î

Â

Î

Â

Î

Vk

P

W

oleObject275.bin

image323.wmf
(

)

(

)

(

)

YB

EW,

P

YB

EW,

RT,

RC,

P

YB

EW,

|

RT

RC,

P

=

oleObject276.bin

image324.wmf
(

)

(

)

(

)

YB

EW,

P

YB

EW,

RC,

P

YB

EW,

|

RC

P

=

oleObject277.bin

image325.wmf
(

)

(

)

(

)

YB

P

YB

RT,

P

YB

|

RT

P

=

oleObject278.bin

image33.wmf
)

(

s

v

g

image326.wmf
%

100

:

%

100

100

:

=

³

<

´

=

<

IDR

t

WAT

t

WAT

IDR

t

WAT

W

W

W

oleObject279.bin

image327.wmf
1

41

,

,

,

´

Â

Î

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

=

å

i

l

j

l

k

j

i

CDR

VC

m

m

oleObject280.bin

image328.wmf
W

W

W

A

t

WAT

t

WAT

WAT

t

IDR

³

=

<

=

:

%

100

:

1

oleObject281.bin

image329.wmf
(

)

(

)

9

41

,

,

,

9

,

41

´

Â

Î

=

i

l

l

k

j

i

IDR

IDR

m

m

oleObject282.bin

image330.wmf
1

41

,

,

,

411

1

´

Â

Î

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

=

å

i

l

j

l

k

j

i

W

WAT

t

IDR

m

m

oleObject283.bin

oleObject20.bin

image331.wmf
S

D

W

EXT

ED

ED

ED

VC

+

+

=

oleObject284.bin

image332.wmf
W

W

W

Area

ED

VB

=

oleObject285.bin

image333.wmf
D

D

D

Area

ED

VB

=

oleObject286.bin

image334.wmf
S

S

S

Area

ED

VB

=

oleObject287.bin

image335.wmf
ijnw

ijk

ijknw

X

V

DM

´

=

oleObject288.bin

image34.wmf
s

p

Rfv

s

v

g

g

¶

¶

=

+

r

1

2

image336.wmf
ijnw

C

ijkw

C

mean

LM

C

mean

´

=

oleObject289.bin

image337.wmf

AP

mean

LM

AP

mean

ijnw

AP

ijkw

´

=

oleObject290.bin

image338.wmf

ALE

mean

LM

ALE

mean

ijnw

ALE

ijkw

´

=

oleObject291.bin

image339.wmf
(

)

[

]

D

AP

C

DM

DM

D

S

S

s

´

+

+

=

oleObject292.bin

image340.wmf
(

)

[

]

D

AP

C

DM

C

D

s

c

´

+

+

=

oleObject293.bin

oleObject21.bin

image341.wmf
(

)

[

]

D

AP

C

DM

AP

D

s

AP

´

+

+

=

oleObject294.bin

image342.wmf
0

=

ALE

D

oleObject295.bin

image343.wmf
s

D

oleObject296.bin

image344.wmf
(

)

å

å

+

-

=

=

S

S

s

s

i

P

LM

P

D

DM

)

(L

E

Loss

Structure

Expected

s

oleObject297.bin

image345.wmf
(

)

å

å

+

-

=

=

c

c

c

c

P

LM

P

D

C

)

(L

E

Loss

Content

Expected

c

oleObject298.bin

image35.wmf

f

=

2

W

sin

J

image346.wmf
(

)

å

å

+

-

=

=

AP

AP

AP

AP

P

LM

P

D

AP

)

(L

E

Loss

t

Appurtenan

Expected

AP

oleObject299.bin

image347.wmf
(

)

å

å

+

-

=

=

ALE

ALE

ALE

ALE

P

LM

P

D

ALE

)

(L

E

Loss

ALE

Expected

ALE

oleObject300.bin

oleObject301.bin

image348.wmf
(

)

(

)

s

factor

L

E

L

E

S

S

_

*

=

oleObject302.bin

image349.wmf
(

)

(

)

c

factor

L

E

L

E

C

C

_

*

=

oleObject303.bin

image350.wmf
(

)

(

)

ap

factor

L

E

L

E

AP

AP

_

*

=

image36.wmf

J

=

oleObject304.bin

image351.wmf
(

)

(

)

ale

factor

L

E

L

E

ALE

ALE

_

*

=

oleObject305.bin

image352.wmf
(

)

(

)

(

)

(

)

(

)

ALE

AP

C

S

ijk

L

E

L

E

L

E

L

E

L

E

ss

ExpectedLo

+

+

+

=

=

oleObject306.bin

image353.wmf
(

)

(

)

å

=

=

K

ijk

ij

L

E

L

E

Loss

Aggregate

Expected

oleObject307.bin

image354.wmf
(

)

(

)

å

=

=

I

i

ij

j

AL

E

AL

E

1

oleObject308.bin

image355.emf
Start

Select company Ci

Select next residential policy P

i,j

Obtain construction type, zip code, county, region, property

value (V

i

), wind deductible (D), and limits for structure (LM

S

),

appurtenant (LM

APP

), contents (LM

C

), and additional living

expenses (LM

ALE

)

If D== 0, then D= all-peril deductible

Select vulnerability

matrices

a

Get damage ratios vectors (the middle point values of

Nintervals)X

S

, X

AP

, X

C

, X

ALE

. Individual damage ratios

are accessed as X

S

[i], X

AP

[i], X

C

[i], X

ALE

[i].

Based on Wo, get the corresponding probability-of-

damage vectors PD

S

, PD

AP

, PD

C

, and PD

ALE

from the

vulnerability matrices, whose corresponding wind

speed interval (Wi+/-2.5 mph) includes Wo(in case

of a tie, break the tie by picking the larger one)

c

DM

S

=

Σ

(DM

S

[i]), where DM

S

[i]=PD

S

[i]*X

S

[i]*V

i

DM

AP

=

Σ

(DM

AP

[i]), where DM

AP

[i]=PD

AP

[i]*X

AP

[i]*LM

AP

DM

C

=

Σ

(DM

C

[i]), where DM

C

[i]=PD

C

[i]*X

C

[i]*LM

C

SumDM=DM

S

+DM

AP

+DM

C

SumDM>0

D

S

=0

D

AP

=0

D

C

=0

D

S

=DM

S

*D/SumDM

D

AP

=DM

AP

*D/SumDM

D

C

=DM

C

*D/SumDM

f

Loop1

image37.wmf
)

(

0

s

v

image356.emf
b

County, Zipcode

HVHZ

Keys

WBDR

Year Built

Pre-

1960

Year Built

Built Year

1960-

1970

1971-

1980

1981-

1993

2/3 Mod.

Weak, 1/3

Medium

2/3Weak,1/

3Medium

1/2Weak,

1/2Mod.

Medium

Modified

Strong

Pre-

1960

1960-

1970

1971-

1980

1981-

1993

1/2Mod.

Weak, ½

Medium

Medium

1/3 Medium,

2/3Strong_OP

Strong_OP

Mod.

Weak

2/3 Weak,

1/3 Medium

1/3 Weak,

2/3

Medium

½ Medium, ½

Strong_OP

Select Applicable Weighted Vulnerability Matrices

c

1994-

2001

2002-

pres

2/3Weak,

1/3Mod.

Medium

1994-

2001

2002-

pres

Pre-

1960

1960-

1970

1971-

1980

1981-

1993

1994-

2001

2002-

pres

Inland

Strong_OP

Built Year

Pre-

1960

1960-

1970

1971-

1980

1981-

1993

1994-

2001

2002-

pres

2/3 Weak,

1/3 Medium

Mod.

Weak

½ Weak,

½ Medium

½ Medium,

½ Strong

Strong

oleObject309.bin
b

County, Zipcode

HVHZ

Keys

WBDR

Year Built

Pre-1960

Year Built

Built Year

1960-1970

1971-1980

1981-1993

2/3 Mod. Weak, 1/3 Medium

2/3Weak,1/3Medium

1/2Weak,
1/2Mod. Medium

Modified Strong

Pre-1960

1960-1970

1971-1980

1981-1993

1/2Mod. Weak, ½ Medium

Medium

1/3 Medium,
2/3Strong_OP

Strong_OP

Mod.
Weak

2/3 Weak,
1/3 Medium

1/3 Weak,
2/3 Medium

½ Medium, ½ Strong_OP

Select Applicable Weighted Vulnerability Matrices

c

1994-2001

2002-pres

2/3Weak,
1/3Mod. Medium

1994-2001

2002-pres

Pre-1960

1960-1970

1971-1980

1981-1993

1994-2001

2002-pres

Inland

Strong_OP

Built Year

Pre-1960

1960-1970

1971-1980

1981-1993

1994-2001

2002-pres

2/3 Weak,
1/3 Medium

Mod.
Weak

½ Weak,
½ Medium

½ Medium, ½ Strong

Strong

image357.emf
Determine Construction Type

Manufactured

Wood, Masonry, Others

Year <= 94

Select pre-94 manufactured matrix

for each type of coverage

Zone Type

Zone2 Zone3

Select manufactured matrix based on zone for each type of coverage

c

Yes

No

b

a

Determine region (north,

central, south, or keys)

image358.emf
f

For each damage

ratio interval

Get the county’s demand surge factors (f_s, f_ap,

f_c, f_ale) if demand surge is needed; otherwise,

f_s=f_ap=f_c=f_ale=1.0

L

S

[i]=DM

S

-D

S

L

AP

[i]=DM

AP

-D

AP

L

C

[i]=DM

C

-D

C

L

ALE

[i]=PD

ALE

*X

ALE

[i]*LM

ALE

Looped

through all

damage ratios?

DM

S

[i]<=D

S

DM

AP

[i]<=D

AP

DM

C

[i]<=D

C

L

S

[i]=0 L

AP

[i]=0 L

C

[i]=0

Yes

Yes

Yes

No

No

No

L

S

[i]>LM

S

L

AP

[i]>LM

AP

L

C

[i]>LM

C

L

ALE

[i]>LM

ALE

L

S

[i]=LM

S

-D

S

L

AP

[i]=LM

AP

L

C

[i]=LM

C

L

ALE

[i]=LM

ALE

Yes Yes Yes Yes

SumL

S

=SumL

S

+L

S

[i]

SumL

AP

=SumL

AP

+L

AP

[i]

SumL

C

=SumL

C

+L

C

[i]

SumL

ALE

=SumL

ALE

+L

ALE

[i]

No

No

No

No

No

SumL

S

=SumL

S

*f_s

SumL

AP

=SumL

AP

*f_ap

SumL

C

=SumL

C

*f_c

SumL

ALE

=SumL

ALE

*f_ale

g

If SumL

S

>LM

S

then SumL

S

=LM

S

If SumL

AP

>LM

AP

then SumL

AP

=LM

AP

If SumL

C

>LM

C

then SumL

C

=LM

C

If SumL

ALE

>LM

ALE

then SumL

ALE

=LM

ALE

Yes

Output

SumLS,SumLAP,

SumLC, SumL

ALE

,

SumL

SumL=SumL

S

+SumL

AP

+SumL

C

+SumL

ALE

image359.emf
g

Finished

company?

SumAEL=SumAEL+(SumL

S

+SumL

AP

+SumL

C

+SumL

ALE

) OutputSumAEL

Yes

Stop

REMARKS:

SumLis the expected loss of the property for a given wind speed

SumAEL aggregates all expected losses for one company

Loop1 No

image360.emf
New

Policy

Perform

part A

Perform

part B

Perform

part C

Perform

part D

Perform

part E

Perform

part F

The objective of this flowchart is to aid in the mapping of policies to existing vulnerability matrices(VM). The chart is divided

into independent lettered parts that are used to generate a name for the corresponding vulnerability matrix . Each lettered

part must be performed individually to classify a label for that particular parameter which will be used to obtain the VM’s

entire unique name:

For Instance, Part A determines the exterior wall of the policy and assigns the corresponding label to that wall type. The

label is then imputed into the vulnerability matrix name for the parameter “exterior wall” . So, say for instance the exterior

wall is timber-the corresponding label is “tbr” then the Vulnerability matrix parameter slot for exterior wall becomes “tbr” .

So:

VM_model_type_exteriorwall_region_subregion_strength_story_roofshape_roofcover_decking_R2W_S2S_underlayment_

garagedoor_doorprotection_openingprotection_shape_daterun.

Becomes:

VM_model_type_Tbr_region_subregion_strength_story_roofshape_roofcover_decking_R2W_S2S_underlayment_garaged

oor_doorprotection_openingprotection_shape_daterun.

then one proceeds to the next parts to determine the rest of the parameters. Once all the parameters are either assigned

or a weighting option has been defined then a name can be generated and compared to the existing library . Some lettered

parts will determine labels for multiple parameters for instance the R2W connection check will be used to define a strength

so both “strength” and “R2W” labels will be assigned (part B).

It is assumed that at a minimum, the policy will indicate the year built, the exterior wall and zip code information. From the

zip code, parameters in the name such as region and subregion will be known .

VM_ Type_ Model_

“exterior

wall”_

Region_ Subregion_“strength”_ “story”_ “roofshape”_ “roofcover”_

“deck

attachment”_

“R2W”_ “S2S”_ “underlayment”_

“Garagedoor”

_

“openingprotection”_

“building

shape”_

“daterun”.mat

Perform

part G

Perform

part H

Perform

part I

Perform

part J

Perform

part K

Perform

part L

Compile

Name

Daterun

Search

vulnerability

matrix

database for

the matrix

Assign the

corresponding

vulnerability

matrix to the

policy

Next

policy

Outline

Vulnerability matrix name generator

“doorprotection”_

A B C D E F

B G H I J K L

Perform

“Preliminary

information” lookup

PI PI PI

PI PI

Last

policy?

Y END

N

Perform

“Policy

Scan”

Choose

option

Does matrix

exist?

Y

KK KK

Record name of

nonexistent policy

N

oleObject310.bin
New Policy

Perform part A

Perform part B

Perform part C

Perform part D

Perform part E

Perform part F

The objective of this flowchart is to aid in the mapping of policies to existing vulnerability matrices(VM). The chart is divided into independent lettered parts that are used to generate a name for the corresponding vulnerability matrix. Each lettered part must be performed individually to classify a label for that particular parameter which will be used to obtain the VM’s entire unique name:

 For Instance, Part A determines the exterior wall of the policy and assigns the corresponding label to that wall type. The label is then imputed into the vulnerability matrix name for the parameter “exterior wall”. So, say for instance the exterior wall is timber- the corresponding label is “tbr” then the Vulnerability matrix parameter slot for exterior wall becomes “tbr”.
So: VM_model_type_exteriorwall_region_subregion_strength_story_roofshape_roofcover_decking_R2W_S2S_underlayment_garagedoor_doorprotection_openingprotection_shape_daterun.
Becomes:
VM_model_type_Tbr_region_subregion_strength_story_roofshape_roofcover_decking_R2W_S2S_underlayment_garagedoor_doorprotection_openingprotection_shape_daterun.

 then one proceeds to the next parts to determine the rest of the parameters. Once all the parameters are either assigned or a weighting option has been defined then a name can be generated and compared to the existing library. Some lettered parts will determine labels for multiple parameters for instance the R2W connection check will be used to define a strength so both “strength” and “R2W” labels will be assigned (part B).
It is assumed that at a minimum, the policy will indicate the year built, the exterior wall and zip code information. From the zip code, parameters in the name such as region and subregion will be known.

VM_

Type_

Model_

“exterior wall”_

Region_

Subregion_

“strength”_

“story”_

Does matrix exist?

“roofshape”_

“roofcover”_

“deck attachment”_

“R2W”_

“S2S”_

“underlayment”_

“Garagedoor”_

“openingprotection”_

“building shape”_

“daterun”.mat

KK

KK

Perform part G

Perform part H

Perform part I

Perform part J

Perform part K

Perform part L

Compile Name

Daterun

Search vulnerability matrix database for the matrix

Assign the corresponding vulnerability matrix to the policy

Next policy

Outline

Vulnerability matrix name generator

“doorprotection”_

A

B

C

D

E

F

B

G

H

I

J

K

L

Perform “Preliminary information” lookup

PI

PI

PI

PI

PI

Last policy?

Y

END

N

Perform “Policy Scan”

Choose option

Y

N

Record name of nonexistent policy

image361.emf
Policy Scan (PS)

START

Scan Policy For List of

Parameters With Information

Available

Year Built (YB)

Available?

Exterior Wall

(EW)

Available?

Roof to Wall

Connection

(R2W)

Available?

Number of

Stories

Available?

Roof Shape

Available?

Roof Cover

Available?

Y

Y

Y

Y

Y

N value

N

0

=0

Stud to sill

(S2S) Known?

Deck

Attachment

Known?

Shape Known?

Underlayment

Known?

Garage

Information

Known?

Y

Y

Y

Y

Y

Sum of All Unknown

Parameters For Which

statistics are Not

Available

N

N

N

N

N

M

0

=0

N

N

N

N

N

M value

M=M+1

M=M+1

M=M+1

M=M+1

M=M+1

next

next

next

next

N=N+1

N=N+1

N=N+1

N=N+1

N=N+1

next

next

next

next

next

next

Choose option

(next page)

Sum of All

Unknown

Parameters For

Which statistics

are Available

Door Protection

Known?

Opening

Protection

Known?

Y

N

N

N=N+1

N=N+1

next

next

Y

oleObject311.bin
Policy Scan (PS)

START
Scan Policy For List of Parameters With Information Available

Year Built (YB) Available?

Exterior Wall (EW) Available?

Roof to Wall Connection (R2W) Available?

Number of Stories Available?

Roof Shape Available?

Roof Cover Available?

Y

Y

Y

Y

Y

N0=0

N=N+1

Sum of All Unknown Parameters For Which statistics are Not Available

M0=0

N

N

N

Stud to sill (S2S) Known?

Deck Attachment Known?

Shape Known?

Door Protection Known?

Opening Protection Known?

Underlayment Known?

Garage Information Known?

Y

N value

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

N

M value

N=N+1

M=M+1

M=M+1

M=M+1

M=M+1

N=N+1

N=N+1

M=M+1

next

next

next

next

next

next

N=N+1

N=N+1

N=N+1

next

next

next

next

next

next

Choose option (next page)

Sum of All Unknown Parameters For Which statistics are Available

image362.emf
Preliminary information lookup (PI)

Lookup zipcode

Determine region

Determine sub

region from wind

map

User defines the

vulnerability

type

VM1 or VM2

Determine county

(for statistics)

Lookup model to

be used

(residential or

commercial: “res”

or “com”

respectively)

User

defines the

damage

type;

(bldg,int,ti

me,cont…)

Pre 1960? Year built Known?

1960-

1970?

Y

YB =

“___”

Random value

assigned based on

PDF

P(YB| county)

or AGE Weighted

matrices

1971-

1980?

1981-

1993?

N

1994-

2001?

2002-

present?

Y

Y

N

N

N

N

Y

Y

Y

Y

N

Lookup year built

Year built lookup

Next

Perform “Part A”

on next page

Scan Policy for

available

parameters

Choose option 1 or

option 2

is N+M >=

X+Y?

User defined

value:

X=_____

Y

Assign Weighted

matrix Based on

Weighting Table

End

M

value

N

value

User defined

value:

Y=_____

Number of Allowable

parameters for which

statistics are known

Number of Allowable

parameters for which

statistics are not known

Option 2

Option 1

Last

policy?

Y

Next

policy

Next

policy

N

N

YB =

“___”

YB =

“___”

YB =

“___”

YB =

“___”

YB =

“___”

Lookup Year

built (YB)

Lookup

Exterior wall

(EW)

Lookup county

Era

YB

available?

Y

N

Assign AGE

Weighted matrix

Insert year

built

oleObject22.bin

oleObject312.bin
Preliminary information lookup (PI)

Lookup zipcode

Determine region

Determine sub region from wind map

User defines the vulnerability type
VM1 or VM2

Determine county (for statistics)

Lookup model to be used (residential or commercial: “res” or “com” respectively)

User defines the damage type; (bldg,int,time,cont…)

Pre 1960?

Year built Known?

1960-1970?

Y

YB = “___”

Random value assigned based on PDF
P(YB| county)
 or AGE Weighted matrices

1971-1980?

1981-1993?

N

1994-2001?

2002-present?

YB = “___”

YB = “___”

YB = “___”

Lookup Year built (YB)

Lookup Exterior wall (EW)

Y

Y

N

N

N

N

Y

Y

Y

Y

N

Scan Policy for available parameters

Lookup county

YB available?

Era

Y

N

Assign AGE Weighted matrix

Lookup year built

Year built lookup

Next

Perform “Part A” on next page

Choose option 1 or option 2

is N+M >= X+Y?

User defined value:
X=_____

Y

Assign Weighted matrix Based on Weighting Table

End

M value

Last policy?

Y

N value

Next policy

User defined value:
Y=_____

Number of Allowable parameters for which statistics are known

Number of Allowable parameters for which statistics are not known

Option 2

Option 1

Next policy

N

N

YB = “___”

YB = “___”

Insert year built

image363.emf
Timber?

Exterior Wall

Information

Known?

Masonary?

PI

Y N

Y

extw =

“tbr”

strength =

“weak”?

Y

extw=

“MsryR”

N

extw=

“MsryU”

Y

Roof 2 Wall

connection

known? (R2W)

N

Strap?

Y

Clip?

Toenail?

Y

N

N

Y

Y

Strong

Medium

Weak

strength =

“strong”

strength=

“medium”

strength=

“weak”

Number of Stories

known?

Commercial

model?

N

Y

story= “1”,

“2”,or “3”

N

Random value

assigned based on

PDF

P(RS|YB)

Roof Shape Known? Y Gable?

Hip?

N

Y

Y

strength =

“strong”?

Y

rshp=

“GblB”

rshp=

“GblU”

rshp= “hip”

N

Other

N

Y

KK

KK

KK

R2W =

“stp”

R2W=

“clp”

R2W=

“tnl”

SA

Part B

Part A

Part C

Part D

Part E (next

page)

KK

Y

Y

Y

Default =

1

Assign per

PDF

Y

other? N

Use weighted

“other” matrices

Y

Random value

assigned

based on PDF

P(EW|YB)

N

N

Note: in databases where parameters are

not separated assign strength based on

YB and weighting table

Assign Weighted matrix based on

exterior wall

oleObject313.bin
Timber?

Exterior Wall Information Known?

Masonary?

PI

Y

N

Y

extw = “tbr”

strength = “weak”?

Y

extw= “MsryR”

N

KK

extw= “MsryU”

Y

Roof 2 Wall connection known? (R2W)

N

Strap?

SA

Y

Clip?

Toenail?

Y

N

N

Y

Y

Strong

Medium

Weak

strength = “strong”

strength= “medium”

strength= “weak”

KK

Y

Y

Y

N

R2W = “stp”

R2W= “clp”

R2W= “tnl”

Number of Stories known?

Commercial model?

N

Y

story= “1”, “2”,or “3”

N

KK

Random value assigned based on PDF
P(RS|YB)

Roof Shape Known?

Y

Gable?

Hip?

N

Y

Y

strength = “strong”?

Y

rshp= “GblB”

rshp= “GblU”

rshp= “hip”

N

Note: in databases where parameters are not separated assign strength based on YB and weighting table

Other

N

Y

Part C

Part D

Part B

Part A

Part E (next page)

KK

Default = 1

Assign per PDF

Y

other?

N

Use weighted “other” matrices

Y

Random value assigned based on PDF P(EW|YB)

N

Assign Weighted matrix based on exterior wall

image364.emf
Roof Cover

Known?

Y

shingle?

tile? Y

Y

Y

roofcover

= “shngR”

roofcover

= “shngU”

roofcover

= “tile”

Metal?

KK

Deck Attachment

known?

6d

8d12

8d6

N

N

Y

Y

Y

decking

= “6d”

decking

=

“8d12”

decking

= “8d6”

KK

SC_E

S2S known?

Strap?

Clip?

Toenail?

Y

S2S=

“stp”

S2S=

“clp”

S2S=

“tnl”

KK

Part A =

“masonary”?

S2S=

“NA”

Y

Y

N

Y

N

N

Y

N

underlayment known?

Regular?

Y

N

Default

value

Extra?

Joint seal

N

N

Y

Y

Y

roofmem

brane=

“reg”

KK

taping

N

roofmem

brane=

“reg”

Y

Part G

Part F

Part H

Part E

Part I (next

page)

Check R2W

connection in

Part A

SC_F

Random value

per PDF

P(RC|EW,YB)

N

Y

other Y

N

N

N

rated = ?

N

NOTE: additional membranes/

underlayment are mapped as

regular until further notice since

these have not been produced

yet as of flowchart V2.1.

subregion =

hvhz?

RS6 Y

decking

= “RS6”

N

roofcover

= “shngH”

Y

N

roofcover

= “metal”

N

Was “deck

attachment”

defined from Part

E?

Y

Y

N

plk

Y

decking

= “plk”

N

oleObject314.bin
S2S known?

rated = ?

Roof Cover Known?

Random value per PDF
P(RC|EW,YB)

NOTE: additional membranes/ underlayment are mapped as regular until further notice since these have not been produced yet as of flowchart V2.1.

Y

shingle?

tile?

N

N

Y

Y

N

Y

subregion = hvhz?

SC_E

Y

RS6

other

N

Y

roofcover= “shngR”

roofcover= “shngU”

roofcover = “tile”

Y

KK

decking= “RS6”

Metal?

N

roofcover= “shngH”

Y

N

roofcover = “metal”

Strap?

Deck Attachment known?

6d

N

SC_F

Was “deck attachment” defined from Part E?

Y

Y

8d12

8d6

plk

N

N

N

Y

Y

Y

Y

decking= “plk”

decking= “6d”

N

decking= “8d12”

decking= “8d6”

Part H

Part A = “masonary”?

S2S= “NA”

underlayment known?

Clip?

Toenail?

Y

Y

Y

S2S= “stp”

S2S= “clp”

S2S= “tnl”

Y

N

KK

Y

N

N

Check R2W connection in Part A

N

Regular?

Y

N

Default value

Extra?

Joint seal

N

N

Y

Y

Part F

KK

Y

roofmembrane= “reg”

KK

taping

N

roofmembrane= “reg”

Y

Part E

Part G

Part I (next page)

N

image365.emf
Part I

Part K

(next page)

Door Protection

known?

None?

Y or N

Check

part K

shuttered

N

Y

Y

doorprote

ction=

“none”

Y

KK

door

protection

= “shutt”

Part J

Assign

same as

Part K

Garage

Information

known?

Garage =

none

Strength =

“weak”?

Strength =

“medium”?

Y

Garage

= “grgU”

KK

Garage

= “grgS”

Y

Y

Y or N

N

else

N

Strength =

“strong”?

Y

Garage

= “grgU”

Garage

=

“none”

Model =

“com”

No

Yes

oleObject315.bin
Part K (next page)

Y

Garage= “grgU”

Garage= “none”

Model = “com”

No

Yes

Garage Information known?

Garage = none

Strength = “weak”?

Strength = “medium”?

Y

Garage= “grgU”

KK

Garage= “grgS”

Y

Y

Y or N

N

else

Part I

N

Strength = “strong”?

Door Protection known?

None?

Y or N

Check part K

shuttered

N

Y

Y

doorprotection= “none”

Y

KK

door protection = “shutt”

Part J

Assign same as Part K

image366.emf
Shape Known? Rectangular? Y

N

Default

value

Other?

N

Default Shape

Y

shape=

“rect”

Y

KK

Part L

Daterun

KK

Lookup daterun

listing

Opening

protection

known?

Standard Glass/

none

Opening

protection

= “none”

Shutters?

other?

Plywood?

Opening

protection

= “plySht”

KK

Y

Y

N

Part K

Y

Y

N

Mitigated

Glass?

N

Y= Assign equivalent as aluminum

Random Assign

according to pdf

P(OP|YB)

Part J

overide

Aluminum

Shutters?

N

N

Opening

protection

= “aluSht”

Y

Note: All metal shutters are

assigned Aluminum.

oleObject316.bin
Shape Known?

Rectangular?

Y

N

Default value

Other?

N

Default Shape

Y

shape= “rect”

Y

KK

Part L

Opening protection known?

Standard Glass/none

Opening protection= “none”

Shutters?

Note: All metal shutters are assigned Aluminum.

other?

Plywood?

Opening protection= “plySht”

KK

Y

N

Y

N

Part K

Y

Y

N

Mitigated Glass?

N

Y= Assign equivalent as aluminum

Random Assign according to pdf P(OP|YB)

N

Opening protection= “aluSht”

Y

Daterun

Lookup daterun listing

KK

Part J overide

Aluminum Shutters?

image367.emf
SA

START

If R2W is

unknown?

strength=

“strong”

strength=

“medium”

Strength=

“weak”

R2W=

“stp”

R2W=

“clp”

R2W=

“tnl”

Strength Assignment (SA)

Strong?

medium?

weak?

N

N

Y

Y

Y

Randomly Assign

strength based on

distributions presented

in “Weighting table”

WT

Note: only the corresponding first letter represents the strength. However, the

assignment of k and n will need to be saved to determine the decking and roof

cover parameters.

S

Mkn

Wkn

Define k value (weak and medium models)

medium?

weak?

N

Y

Mkn

Wkn

Lookup strength, YB and Roof

Cover

Is “Subregion” =

“hvhz”?

is 1971<YB<1994? Y Y

Y

YB<1960?

k=0 k=1

N

N

N

k

Does Roof Cover =

“metal”

Y

N

image38.wmf
max

)

(

g

g

V

s

v

oleObject317.bin
SA

Note: only the corresponding first letter represents the strength. However, the assignment of k and n will need to be saved to determine the decking and roof cover parameters.

S

Mkn

WT

Wkn

Define k value (weak and medium models)

Randomly Assign strength based on distributions presented in “Weighting table”

Strong?

Strength Assignment (SA)

medium?

weak?

N

N

START
If R2W is unknown?

Lookup strength, YB and Roof Cover

k=0

is 1971<YB<1994?

Y

Y

Y

Is “Subregion” = “hvhz”?

Y

YB<1960?

k=1

N

N

N

Y

Y

k

medium?

strength= “strong”

strength= “medium”

Strength= “weak”

R2W= “stp”

R2W= “clp”

R2W= “tnl”

weak?

N

Y

Mkn

Wkn

Does Roof Cover = “metal”

Y

N

image368.emf
Weighting Table

Lookup Year Built

(YB)

Lookup region/

subregion based

on zip code

Extract Weighting

parameters from

table above

WT

START

Reroofing (RR) determines the value of n

for the table above. This value

corresponds to roof replacement which

will change the parameters for “roof

cover” and deck attachment”

(Strength)kn = (Strength)deck attachment, shingle rating

Rating key: nr = no rated/unrated, r = rated

So

W10 = W8d6,nr

W00 = W6d,nr

W01 =W11= W8d6,r

M10 = M6d,nr

M00= M8d12,nr

M01 =M11= M8d6,r

S00 = S 8d6, r

S01 = S RS6, HVHZ rated double straps

S02 = S RS6, metal roof, single straps

RR

NOTE: Weighting Table has two purposes:

For option 1: Combine and weight matrices based on Era.

For option 2: assigns a strength randomly, so for example, pre 1960 in HVHZ with ½ W and ½ M, there is a

50% chance of assigning either weak or medium.

Pre-1960 1960-

1970

1971-

1980

1981-

1993

1994-

2001

2002-

pres.

HVHZ

2/3

W1n

1/3

M00

2/3 W0n

 1/3M0n

1/2W0n

1/2M1n

2/3

W0n

1/3

M1n

S01 S01

Keys

½

W1n

 ½

M0n

M0n M0n M0n

1/3

 M0n

,

2/3(S00 or

S02)

S00 or

S02

WBDR W1n 2/3W0n

1/3M0n

1/3

W0n

,

2/3

 M0n

1/3

 W0n

 2/3

 M00

½

M0n

½ (S00 or

S02)

S00 or

S02

Inland W1n 2/3W0n

1/3M0n

½

 W0n

,

 ½

 M0n

½

 W0n

 ½

 M0n

½

M0n

,

 ½ (S00 or

S02)

S00 or

S02

oleObject318.bin
Weighting Table

Lookup Year Built (YB)

Lookup region/subregion based on zip code

Extract Weighting parameters from table above

WT

START

Reroofing (RR) determines the value of n for the table above. This value corresponds to roof replacement which will change the parameters for “roof cover” and deck attachment”

(Strength)kn = (Strength)deck attachment, shingle rating
Rating key: nr = no rated/unrated, r = rated
So
W10 = W8d6,nr
W00 = W6d,nr
W01 =W11= W8d6,r
M10 = M6d,nr
M00= M8d12,nr
M01 =M11= M8d6,r
S00 = S 8d6, r
S01 = S RS6, HVHZ rated double straps
S02 = S RS6, metal roof, single straps

RR

NOTE: Weighting Table has two purposes:
For option 1: Combine and weight matrices based on Era.
For option 2: assigns a strength randomly, so for example, pre 1960 in HVHZ with ½ W and ½ M, there is a 50% chance of assigning either weak or medium.

image369.jpeg
ReRoofing
check
Start

‘Scenaria
analysis?

Stochastic
analysis

0 today's date

YH = year of huricane that
caused mof demage.
Userinput

where
204230
represerting
ol
replacement
every 30 years
onaverage.

T
T L+ (O

"deck attactment” e e
T

“deck ftactment”

v
— Tefed!

Gos Strengih >
Weak & k=17

HOTE:
varikie
retedis
urused for
il andl metsl
roof caver.

image370.emf
START

Strength Check

“part”

SC_E

Strength Check (SC)

SC_F

Strength Check Part E

RR

Strength Check Part F

RR = “else”?

Strong?

Medium?

Weak?

Y

N

N

Decking

= “8d6”

Decking

= “8d12”

Decking

= “6d”

Y

Y

Y

Use decking

defined in RR

RR = “else”? Strong?

Medium?

Weak?

N

N

Y

Y

Y

Y

Use rating defined

in RR

N

roofcover

= “shngR”

roofcover

= “shngU”

roofcover

= “shngU”

Decking

= “RS6”

Subregion = HVHZ?

OR

roofcover = metal?

No

Yes

Subregion =

HVHZ?

roofcover

= “shngH”

N

Y

N

Store value of

Deck attachment

oleObject319.bin
roofcover= “shngR”

START
Strength Check “part”

roofcover= “shngU”

RR = “else”?

roofcover= “shngU”

Strong?

SC_E

Strength Check (SC)

SC_F

Strength Check Part E

Strength Check Part F

RR

Use decking defined in RR

Store value of Deck attachment

Medium?

Weak?

N

N

Y

Y

Y

Y

Use rating defined in RR

N

RR = “else”?

Strong?

Decking = “8d6”

Medium?

Weak?

Y

N

N

Decking = “8d12”

Decking = “6d”

Y

Y

Y

Decking = “RS6”

Subregion = HVHZ?
OR
 roofcover = metal?

No

Yes

Subregion = HVHZ?

roofcover= “shngH”

N

Y

N

image371.emf
+reset()

+reconfigureNextDeductible()

+ToString(in format, in num_attr)

+readFromLine(in line, in line_num, in format, in format_num)

-map_str

-map_int

-map_dbl

-map_typ

-map_vec_dbl

-myId

-Id

-zipCode

-yearBuilt

-constType

-LMs

-LMc

-LMapp

+LMale

+HD

+D

+origD

+origHD

+struct_loss

+app_loss

+cont_loss

+ale_loss

+agg_struct_loss

+agg_app_loss

+agg_ale_loss

+struct_loss_noDS

-app_loss_noDS

-cont_loss_noDS

-ale_loss_noDS

-agg_struct_loss_noDS

-agg_app_loss_noDS

-agg_cont_loss_noDS

-agg_ale_loss_noDS

-struct_loss_noDeduc

-app_loss_noDeduc

-cont_loss_noDeduc

-ale_loss_noDeduc

-struct_loss_noDeduc_noDS

-app_loss_noDeduc_NoDS

-cont_loss_noDeduc_noDS

-ale_loss_noDeduc_noDS

-natureCoverage

-county

-region

-Vi

-first_runs

-units

-matIdS

-matIdAPP

-matIdC

-matIdALE

-countyId

-otherAttributes

-wind

-matColumn

-matIdS1-7

-matIdC1-7

-matIdALE1-7

-countyCode

-roof2Wall

-numStories

-roofShape

-roofCover

-deckAttachment

-stud2Sill

-underlayment

-garage

-doorProtection

-openingProtection

-buildingShape

-other_attr_v

-used_matrix

IPolicy

+SetToOne()

+operator<()

+operator==()

-name

-code

-countyId

-surge_factor_s

-surge_factor_c

-surge_factor_app

-surge_factor_ale

CountySurge

+LoadCountySurge(in file,useSurge)

+toString()

-CountySurge *arr

-size

CountySurgeVector

*

1

+BeValid(in toBeCheck)

-set<double> validZipcodeSet

ZipcodeChecker

+LoadStandard(in istream&)

-windProbFolder

-policyFile

-vulMatricesFolder

-otherInputFolder

-outputFolder

-outputHeader

-useCountySurge

-isDetailOutput

-isStochasticSet

-useWeightedMatrices

-fromFile

ParameterInfo

+Load()

+Load(in file)

+getAttribute(in index)

SILMInfo

-m_name

-IPolicy *m_Policies_arr

-validRecords

ICompany

+PrintData(in file, in num, in printDSNoDS)

+readFile(in file, in in_format, in in_attr_num)

-usedWeightedMatrices

-numExtraAttributes

SILM_ICompany

*

1

+populateMatrices(in matIdS, in matIdAPP, in matIdC, in matIdALE)

+findMatrixIndex(in matrixName)

+loadMatrixFromFile(in index)

+loadMatrixFromFile(in matrixFile, in index)

-MAX_MATRIX_X

-MAX_MATRIX_Y

-double (*VMs)[MAX_MATRIX_Y]

-double (*VMc)[MAX_MATRIX_Y]

-double (*VMapp)[MAX_MATRIX_Y]

-double (*VMale)[MAX_MATRIX_X]

-MAX_NUM

-double (*VM_all)[MAX_MATRIX_X][MAX_MATRIX_Y]

-map<string, int> allMatrices

-vector<string> mapMatricesIdToName

-vector<bool> vecLoadedMatrices

IMatrices

+SILM_IMatrices()

SILM_IMatrices

+PreProcess_IMatrices()

PreProcess_IMatrices

-vector<double> DamRat

DamageRatio

+WindSpeeds()

+toString()

+getDate()

+getYear()

+getName()

-numPol

-pair<int,double> *m_Pol_Wind_arr

-m_date

-m_name

WindSpeeds

+Windborne()

-map<double,double> windborneZips

Windborne

oleObject320.bin
+reset()
+reconfigureNextDeductible()
+ToString(in format, in num_attr)
+readFromLine(in line, in line_num, in format, in format_num)

-map_str
-map_int
-map_dbl
-map_typ
-map_vec_dbl
-myId
-Id
-zipCode
-yearBuilt
-constType
-LMs
-LMc
-LMapp
+LMale
+HD
+D
+origD
+origHD
+struct_loss
+app_loss
+cont_loss
+ale_loss
+agg_struct_loss
+agg_app_loss
+agg_ale_loss
+struct_loss_noDS
-app_loss_noDS
-cont_loss_noDS
-ale_loss_noDS
-agg_struct_loss_noDS
-agg_app_loss_noDS
-agg_cont_loss_noDS
-agg_ale_loss_noDS
-struct_loss_noDeduc
-app_loss_noDeduc
-cont_loss_noDeduc
-ale_loss_noDeduc
-struct_loss_noDeduc_noDS
-app_loss_noDeduc_NoDS
-cont_loss_noDeduc_noDS
-ale_loss_noDeduc_noDS
-natureCoverage
-county
-region
-Vi
-first_runs
-units
-matIdS
-matIdAPP
-matIdC
-matIdALE
-countyId
-otherAttributes
-wind
-matColumn
-matIdS1-7
-matIdC1-7
-matIdALE1-7
-countyCode
-roof2Wall
-numStories
-roofShape
-roofCover
-deckAttachment
-stud2Sill
-underlayment
-garage
-doorProtection
-openingProtection
-buildingShape
-other_attr_v
-used_matrix

IPolicy

+SetToOne()
+operator<()
+operator==()

-name
-code
-countyId
-surge_factor_s
-surge_factor_c
-surge_factor_app
-surge_factor_ale

CountySurge

+LoadCountySurge(in file,useSurge)
+toString()

-CountySurge *arr
-size

CountySurgeVector

*

1

+BeValid(in toBeCheck)

-set<double> validZipcodeSet

ZipcodeChecker

+LoadStandard(in istream&)

-windProbFolder
-policyFile
-vulMatricesFolder
-otherInputFolder
-outputFolder
-outputHeader
-useCountySurge
-isDetailOutput
-isStochasticSet
-useWeightedMatrices
-fromFile

ParameterInfo

+Load()
+Load(in file)
+getAttribute(in index)

SILMInfo

-m_name
-IPolicy *m_Policies_arr
-validRecords

ICompany

+PrintData(in file, in num, in printDSNoDS)
+readFile(in file, in in_format, in in_attr_num)

-usedWeightedMatrices
-numExtraAttributes

SILM_ICompany

*

1

+populateMatrices(in matIdS, in matIdAPP, in matIdC, in matIdALE)
+findMatrixIndex(in matrixName)
+loadMatrixFromFile(in index)
+loadMatrixFromFile(in matrixFile, in index)

-MAX_MATRIX_X
-MAX_MATRIX_Y
-double (*VMs)[MAX_MATRIX_Y]
-double (*VMc)[MAX_MATRIX_Y]
-double (*VMapp)[MAX_MATRIX_Y]
-double (*VMale)[MAX_MATRIX_X]
-MAX_NUM
-double (*VM_all)[MAX_MATRIX_X][MAX_MATRIX_Y]
-map<string, int> allMatrices
-vector<string> mapMatricesIdToName
-vector<bool> vecLoadedMatrices

IMatrices

+SILM_IMatrices()

SILM_IMatrices

+PreProcess_IMatrices()

PreProcess_IMatrices

-vector<double> DamRat

DamageRatio

+WindSpeeds()
+toString()
+getDate()
+getYear()
+getName()

-numPol
-pair<int,double> *m_Pol_Wind_arr
-m_date
-m_name

WindSpeeds

+Windborne()

-map<double,double> windborneZips

Windborne

image372.emf
WSCoutput

(windspeeds)

PreProcessChecker

WindBorne Windborne instance

IMatrices

Matrices

DamageRatio

ICompany

Policies

Damage

Matrices

Output

CompanyProcess

WindSpeeds

Windspeed

Data

For each

storm

Process Policy Data

Damage

Ratios

WindBorne

Debris

IPolicy

Individual policies

SILM

Policy

Calculations

Expected

loss

Matrices

All policies

CompanyProcessDS

Expected

Loss NoDS

Expected

Loss with DS

Output

Expected Loss

With DS for

All policies

Damage ratios

oleObject321.bin
WSCoutput
(windspeeds)

PreProcessChecker

WindBorne

Windborne instance

IMatrices

Matrices

DamageRatio

SILM

ICompany

Policy
Calculations

Policies

Damage Matrices

Output

Expected
loss

CompanyProcess

WindSpeeds

Windspeed
Data
For each
storm

Matrices

Process Policy Data

Damage Ratios

WindBorne Debris

IPolicy

Individual policies

All policies

CompanyProcessDS

Expected
Loss NoDS

Expected
Loss with DS

Output

Expected Loss
With DS for
All policies

Damage ratios

oleObject23.bin

image373.wmf
ijnw

ijk

ijknw

X

V

DM

´

=

oleObject322.bin

image374.wmf
ijnw

c

ijkw

meanC

LM

meanC

´

=

oleObject323.bin

image375.wmf
ijnw

AP

ijkw

meanAP

LM

meanAP

´

=

oleObject324.bin

image376.wmf
ijnw

ALE

ijkw

meanALE

LM

meanALE

´

=

oleObject325.bin

image377.wmf
s

D

image39.wmf
max

g

V

Rf

f

=

oleObject326.bin

image378.wmf
c

D

oleObject327.bin

image379.wmf
AP

D

oleObject328.bin

image380.wmf
ALE

D

oleObject329.bin

image381.wmf
(

)

[

]

D

AP

C

DM

DM

D

S

S

s

´

+

+

=

oleObject330.bin

image382.wmf
(

)

[

]

D

AP

C

DM

C

D

s

c

´

+

+

=

oleObject24.bin

oleObject331.bin

image383.wmf
(

)

[

]

D

AP

C

DM

AP

D

s

AP

´

+

+

=

oleObject332.bin

image384.wmf
0

=

ALE

D

oleObject333.bin

image385.wmf
(

)

å

å

+

-

=

S

S

s

s

i

P

LM

P

D

DM

)

(L

E

s

oleObject334.bin

image386.wmf
(

)

å

å

+

-

=

c

c

c

c

P

LM

P

D

C

)

(L

E

c

oleObject335.bin

image387.wmf
(

)

å

å

+

-

=

AP

AP

AP

AP

P

LM

P

D

AP

)

(L

E

AP

image40.wmf

v

(

s

,

f

)

=

v

v

g

=

oleObject336.bin

image388.wmf
(

)

å

å

+

-

=

ALE

ALE

ALE

ALE

P

LM

P

D

ALE

)

(L

E

ALE

oleObject337.bin

image389.wmf
(

)

(

)

s

factor

L

E

L

E

S

S

_

*

=

oleObject338.bin

image390.wmf
(

)

(

)

c

factor

L

E

L

E

C

C

_

*

=

oleObject339.bin

image391.wmf
(

)

(

)

ap

factor

L

E

L

E

AP

AP

_

*

=

oleObject340.bin

image392.wmf
(

)

(

)

ale

factor

L

E

L

E

ALE

ALE

_

*

=

image41.wmf
=

=

g

v

u

s

u

)

,

(

f

oleObject341.bin

image393.wmf
(

)

ijk

L

E

oleObject342.bin

image394.wmf
(

)

(

)

(

)

(

)

(

)

ALE

AP

C

S

ijk

L

E

L

E

L

E

L

E

L

E

+

+

+

=

oleObject343.bin

oleObject344.bin

image395.wmf
Start

Read in from the standard input the folder that contains the

set of matrices and the weight

_

info

.

txt file that must contain

the following information

:

<

Number of lines

>

<

region

1

>,<

pre

94

_

zone

2

weight

>,<

pre

94

_

zone

3

weight

>

…

<

regionN

>,<

pre

94

_

zone

2

weight

>,<

pre

94

_

zone

3

weight

>

For each matrix in the

matrices

-

input folder

Is matrix a pre

1994

mobile matrix

?

Copy matrix to the

output folder

.

Obtain the matrix’s corresponding

zone

2

and zone

3

matrix names

,

as

well as

,

the names of the two new

combined matrices

.

Read in from disk

,

the

current matrix and its zone

2

and zone

3

matrices

For each row in matrix

,

zone

2

,

and

zone

3

matrices

,

load the rows’s

floating

-

point numbers in the vectors

:

-

pre

_

vector

-

zone

2

_

vector

-

zone

3

_

vector

Have the three

vectors the same

size

?

Output the error

.

The vector’s

sizes is less

than

40

?

Output the error

.

For each number in the vectors pre

_

vector

,

zone

2

_

vector

,

and zone

3

_

vector

Be d the current number from pre

_

vector

,

d

2

the number from

zone

2

_

vector

,

and d

3

the number from zone

3

_

vector

.

If the region’s pre

94

-

zone

2

weight factor is greater than zero

,

output

to the new combined zone

2

matrix

:

 d

*

region

_

pre

94

Weight

+

d

2

* (

1

–

 region

_

pre

94

Weight

)

If the region’s pre

94

-

zone

3

weight factor is greater than zero

,

output

to the new combined zone

3

matrix

:

 d

*

region

_

pre

94

Weight

+

d

3

* (

1

–

 region

_

pre

94

Weight

)

Obtain the region of the

current matrix

.

Have been

processed all

numbes from the

vectors

?

No

No

Yes

No

Yes

Yes

No

Have been

processed all rows

from the matrices

?

Yes

No

Have been processed

all the matrices form the

matrices

-

input folder

?

Yes

No

End

Yes

oleObject345.bin
Start

Read in from the standard input the folder that contains the set of matrices and the weight_info.txt file that must contain the following information:
<Number of lines>
<region1>,<pre94_zone2 weight>,<pre94_zone3 weight>
…
<regionN>,<pre94_zone2 weight>,<pre94_zone3 weight>

For each matrix in the matrices-input folder

Is matrix a pre 1994 mobile matrix?

Copy matrix to the output folder.

Obtain the matrix’s corresponding zone2 and zone3 matrix names, as well as, the names of the two new combined matrices.

Read in from disk, the current matrix and its zone2 and zone3 matrices

For each row in matrix, zone2, and zone3 matrices, load the rows’s floating-point numbers in the vectors:
- pre_vector
- zone2_vector
-zone3_vector

Have the three vectors the same size?

Output the error.

The vector’s sizes is less than 40?

Output the error.

For each number in the vectors pre_vector, zone2_vector, and zone3_vector

Be d the current number from pre_vector, d2 the number from zone2_vector, and d3 the number from zone3_vector.

If the region’s pre94-zone2 weight factor is greater than zero, output to the new combined zone2 matrix:
 d * region_pre94Weight + d2 * (1 – region_pre94Weight)

If the region’s pre94-zone3 weight factor is greater than zero, output to the new combined zone3 matrix:
 d * region_pre94Weight + d3 * (1 – region_pre94Weight)

Obtain the region of the current matrix.

Have been processed all numbes from the vectors?

No

Have been processed all rows from the matrices?

No

Yes

No

Yes

Yes

No

Yes

No

Have been processed all the matrices form the matrices-input folder?

Yes

No

End

Yes

image396.emf
Start

North ?

P1 = 0.0207

P2 = 0.000

Central ?

P1 = 0.0207

P2 = 0.0116

South ?

P1 = 0.0207

P2 = 0.0367

Keys ?

P1 = 0.0350

P2 = 0.0500

Be:

Loss = Loss(North)+Loss(South)+Loss(Central)+Loss(Keys)

Loss = Loss / 1000000000

Factor_structure = 0.9803+P1*ln(Loss)+P2

Factor_content = (Factor_structure –1.0)*0.3 + 1.0

Factor_app = Factor_structure

Factor_ale = 1.5*Factor_structure –0.5

For each region

(North,Central,South, and Keys)

If one of the demand surge factors is less

than 1.0, then this factor is set up to be 1.0

All regions

processed ?

End

Yes

No

oleObject25.bin

oleObject346.bin
Start

For each region (North,Central,South, and Keys)

North ?

P1 = 0.0207
P2 = 0.000

Central ?

P1 = 0.0207
P2 = 0.0116

South ?

P1 = 0.0207
P2 = 0.0367

Keys ?

P1 = 0.0350
P2 = 0.0500

Be:
Loss = Loss(North)+Loss(South)+Loss(Central)+Loss(Keys)
Loss = Loss / 1000000000

Factor_structure = 0.9803+P1*ln(Loss)+P2
Factor_content = (Factor_structure – 1.0)*0.3 + 1.0
Factor_app = Factor_structure
Factor_ale = 1.5*Factor_structure – 0.5

If one of the demand surge factors is less than 1.0, then this factor is set up to be 1.0

All regions processed ?

End

Yes

No

image397.emf
Start

Load in the following information:

1-demand surge factors for each county. This information is loaded

from the file county-surge.csv; however, if the demand surge factors

are disabled, then all demand surge factors are set to one.

2-Company’s exposure file.

3-Matrices files

4-Storms’ files

5-Name of the regions and the name and adjustment factors for the

special counties of the Florida Panhandle region. This information is

loaded from the file “region-names.txt”

Run SILM – without applying demand surge factors – on the

current storm and obtain the total loss (statewide loss)

Using the loss obtained above, calculate the

demand surge factors for the regions: North,

Central, South, and Keys.

For each county

Set the following:

1-county.factor_i = region_k.factor_i

Such that county belongs to region_k (South,Central,North, or Keys)

For i = Structure, Contents, App, and Ale

Be county-demand-factors a vector

that will hold the demand surge

factors for each county

All counties

processed ?

Insert county into the county-demand-factors vector

Run SILM applying the demand surge factors in the

county-demand-factors vector.

End

No

Yes

Is a special county

in the Panhandle

region?

If county.factor_i > 1.0 then

county.factor_i = county.factor_i * county.adjustment_factor_i

For any i = Structure, Contents, App, or Ale.

Yes

No

oleObject347.bin
Start

Load in the following information:
1- demand surge factors for each county. This information is loaded from the file county-surge.csv; however, if the demand surge factors are disabled, then all demand surge factors are set to one.
2- Company’s exposure file.
3- Matrices files
4- Storms’ files
5- Name of the regions and the name and adjustment factors for the special counties of the Florida Panhandle region. This information is loaded from the file “region-names.txt”

Run SILM – without applying demand surge factors – on the current storm and obtain the total loss (statewide loss)

Using the loss obtained above, calculate the demand surge factors for the regions: North, Central, South, and Keys.

For each county

Set the following:
1- county.factor_i = region_k.factor_i
Such that county belongs to region_k (South,Central,North, or Keys)
For i = Structure, Contents, App, and Ale

Be county-demand-factors a vector that will hold the demand surge factors for each county

All counties processed ?

Insert county into the county-demand-factors vector

Run SILM applying the demand surge factors in the county-demand-factors vector.

End

If county.factor_i > 1.0 then
county.factor_i = county.factor_i * county.adjustment_factor_i
For any i = Structure, Contents, App, or Ale.

No

Yes

Is a special county in the Panhandle region?

Yes

No

image398.emf
Start

CheckOne.m

For each matrix in

the directory

Sum all probabilities

for each wind speed

Have all

matrices been

processed?

End

No

Output summary

of matrices that do

not add up to 1

Yes

oleObject348.bin
Start

CheckOne.m

For each matrix in the directory

Sum all probabilities for each wind speed

Have all matrices been processed?

End

Yes

No

Output summary of matrices that do not add up to 1

image399.emf
Start

List.m

For each matrix in

the directory

Multiply damage ratio

times corresponding

probability and sum each

column to get column id

Round each

column id to four

decimal places

and output to file

Have all

matrices been

processed?

End

Yes

No

oleObject349.bin
Start

List.m

For each matrix in the directory

Multiply damage ratio times corresponding probability and sum each column to get column id

Round each column id to four decimal places and output to file

Have all matrices been processed?

End

Yes

No

image400.emf
Start

Option 1

For each matrix in

the directory

Multiply damage ratio

times corresponding

probability and sum each

column to get column id

Round each

column id to four

decimal places

and output to file

Have all

matrices been

processed?

End

Yes

No

oleObject350.bin
Start

Option 1

For each matrix in the directory

Multiply damage ratio times corresponding probability and sum each column to get column id

Round each column id to four decimal places and output to file

Have all matrices been processed?

End

Yes

No

image401.emf
Start

Option 2

For each matrix in

the directory

Sum all probabilities

for each wind speed

Truncate each

sum to nine

decimal places

And output to file

Have all

matrices been

processed?

End

No

Output summary

of matrices that do

not add up to 1

Yes

image42.wmf
max

g

t

V

c

c

=

oleObject351.bin
Start

Option 2

For each matrix in the directory

Sum all probabilities for each wind speed

Truncate each sum to nine decimal places
And output to file

Have all matrices been processed?

End

Yes

No

Output summary of matrices that do not add up to 1

image402.emf
Start

Option 3

For each line

in File1

Read matrix

name and

values and store

in memory

Have all lines in

File1 been

processed?

End

No

For each line

in File2

Read matrix

name and values

and store in

memory

Have all lines in

File2 been

processed?

Are matrices

and values the

same in both

files?

Output result to file

Are matrices

names the

same in both

file?

Output differences

in values to file

Check matrices

and values that

are in File2 and

not in File1 and

output to file

Does File1

have more

matrices than

File2?

Check matrices

that are in File1

and not in File2

and output to file

Check matrices

and values that

are in File1 and

not in File2 and

output to file

Check matrices

that are in File2

and not in File1

and output to file

Yes

No

Yes

Yes

No

Yes

No

Yes

No

oleObject352.bin
Start

Option 3

For each line in File1

Read matrix name and values and store in memory

For each line in File2

Have all lines in File1 been processed?

End

Read matrix name and values and store in memory

Have all lines in File2 been processed?

No

Are matrices and values the same in both files?

Output result to file

Are matrices names the same in both file?

Output differences in values to file

Check matrices and values that are in File2 and not in File1 and output to file

Does File1 have more matrices than File2?

Check matrices that are in File1 and not in File2 and output to file

Check matrices and values that are in File1 and not in File2 and output to file

Check matrices that are in File2 and not in File1 and output to file

Yes

No

Yes

Yes

No

Yes

No

Yes

No

image403.wmf
V

EDR

DM

S

S

´

=

oleObject353.bin

image404.wmf
C

C

EDR

LM

C

´

=

oleObject354.bin

image405.wmf
AP

AP

EDR

LM

Damage

AP

mean

´

=

oleObject355.bin

image406.wmf
TRE

TRE

EDR

LM

TRE

´

=

oleObject26.bin

oleObject356.bin

image407.jpeg
Interior Damage.

(rounded to 2 decimals) THe Damage
o% o
% 1%
P I
I)
% %
% E
o ™
™ 8%
% o
o 10%
10% 1%
1% 1%
1% 15%
1% 16%
1% 18%
15% 19%
16% 1%
1% 2%
18% 20%
19% 26%
20% 2%
2% 20%
2% 3%
2% 3%
20% 5%
5% %
26% 9%
2% %
2% %
20% as
0% s
31% s0%
3% 5%
3% sa%
0% st
5% so%
36% 1%
% 6%
8% 6%
9% 6%
a0 %
% 0%
% 76%
% 9%
aa 2%
as 8%
6% 7%
s 0%
s o3%
as 96%
so% o9%

51% or higher 100%

oleObject357.bin

oleObject358.bin

image408.wmf
(

)

[

]

D

AP

C

DM

AP

D

s

AP

´

+

+

=

oleObject359.bin

image409.wmf
0

=

TRE

D

oleObject360.bin

image410.wmf
s

D

oleObject361.bin

image43.wmf

g

(

s

)

=

2

v

o

(

s

)

s

-

1

+

f

image411.wmf
S

S

S

factor

L

L

´

=

oleObject362.bin

image412.wmf
C

C

C

factor

L

L

´

=

oleObject363.bin

image413.wmf
AP

AP

AP

factor

L

L

´

=

oleObject364.bin

image414.wmf
TRE

TRE

TRE

factor

L

L

´

=

oleObject365.bin

image415.wmf
TRE

AP

C

S

L

L

L

L

L

Loss

Expected

+

+

+

=

=

oleObject366.bin

image44.wmf
f

s

v

v

s

d

+

+

=

-

1

0

0

)

(

&

image416.emf
Glossary

a

C

: # of corner units per story

a

M

: # of middle units per story

a,b,c,d: linear regression coefficients of impinging rainfall as a

function of 3 sec gust at 10m

APV : Appurtenant Value [$]

AWI : Average water ingressed [inches of rain]

A

W

, A

D

, A

S

: Size of individual windows, doors, sliders. (sqf)

α

MR

: Contents coeff. as proportion of Interior Dam. (Mid-

Rise)

α

LR

: Contents coeff. as proportion of Interior Dam. (Low-

Rise)

b

MR

: ALE coeff. as proportion of Interior Dam. (Mid-Rise

codo unit policy)

bs: Average breach area

B

i

C

: Breach curve for openings i=W,S, or D (windows-sliders-

doors) -corner units (ft

2

as a fct of wind speed)

B

i

M

: Breach curve for openings i=W,S, or D (windows-sliders-

doors) -middle units (ft

2

as a fct of wind speed)

BaseArea: total area of story in sqft

Breaches: breaching square footage per story

Breach

T

C

: total breach size of corner units. (includes defects)

Breach

T

M

: total breach size of middle units. (includes defects)

BV : Bldg. Value [$]

BV

AB

: Apt. Bldg. Value [$]

BV

CB

: Condo Bldg. Value [$]

C

i

: unit replacement cost for openings i=W,S, or D (windows-

sliders-doors)

CCT : Closed Corridor Type

CV : Contents Value [$]

CDO(s): cost of damage to the openings at story s [$]

D : Deductible

D

AP

: Appurtenant deductible

D

B

: Building deductible

D

C

: Contents deductible

DefectsAll: area of all the defects for a given unit

d

W

, d

D

, d

S

: defects area for windows, door and slider (sqf)

EEDR : Expected Exterior Damage Ratio [%]

EDR

S

: Exterior Damage Ratio vector per Story [%]

EDR

j

B

, EDR

j

C

: Expected Dam. Ratio Bldg and Contents resp.

EDV

j

B

: Expected Damage Value of Risk j –Building [$]

EDV

j

C

: Expected Damage Value of Risk j –Contents [$]

EDV

j

AP

: Expected Damage Value of Risk j –Appurtenant [$]

EDV

B

: Overall Expected Damage Value –Building [$]

EDV

C

: Overall Expected Damage Value –Contents [$]

EDV

AP

: Overall Expected Damage Value –Appurtenant [$]

EDV

T

: Total Expected Damage Value [$]

EIDR(s) : Expected Interior Damage Ratio per story s [%]

EDV

j

B

(s): Expected Story Damage Value of Risk j –Building

[$]

EDV

j

C

(s): Expected Story Damage Value of Risk j–Contents

[$]

EUDV

j

B

(s): Expected Condo Unit Damage Value , at story s –

Building [$]

EUDV

j

C/ALE

(s): Expected Condo Unit Story Damage Value, at

story s –Contents [$] or ALE [$]

EIDR : Expected Interior Damage Ratio for entire building [%]

f

sim

: Simultaneity factor that accounts for the walls that

actually have rain intrusion due to wind angle.

f

run

: Runoff factor that accounts for the runoff water on

the facades

i: Policy Counter / Other counter

IDR(k) : Interior Damage Ratio vector [%]

IDR

C

U

: Interior Damage Ratio of a corner unit [%]

IDR

M

U

: Interior Damage Ratio of a middle unit [%]

IDR

VERT

: Interior Damage Ratio due to vert. propagation

[%]

IDR

U

: Interior Damage Ratio [%]

IR : Impinging rain on bldg façade [in/hr]

IRW: Impact Resistant Window

j: Risk counter

k: story index

k

E

AB

, k

E

CB

: Ratio of Exterior Value to total Value for Apt

bldgs and Condo Bldgs.

k

I

AB

, k

I

CB

: Ratio of Interior Value to total Value for Apt

bldgs and Condo Bldgs.

LIF : average Local intensity factor

LM

B

: Building policy limit.

LM

C

: Contents policy limit.

LM

AP

: Appurtenant policy limit.

OCT : Open Corridor Type

r(story,i) : impinging accumulated rainfall [in] per story

for i = 1 time t

initial

to t

breach

; i=2 t

breach

to t

end

r

= percolation factor

s = story number

S = total number of stories

S

W

, S

D

, S

S

: Complement of the vulnerability function for

MHRB, i.e. 1 –Vuln Function, for computing water

intrusion due to defects.

T

ID

= threshold water (inches) to complete interior

damage.

TECDO:

Total expected cost of external damage to

openings [$]

U

S

: Units per Story

UBV = Condo unit value (structure)

UCV = Condo unit value (contents)

UALE = Condo unit value (additional living expenses)

UW: Unprotected Window

V

CONT

: Vuln. Curve Contents

V

i

C

: Vulnerability curve for openings of corner units; i=

W,D,or S (window, door, or slider). Give the number or

fraction of opening damaged as a function of wind speed.

V

i

M

: Vulnerability curve for openings of middle units; i=

W,D,or S (window, door, or slider).

V

I

: Adopted Unit’s Interior Vulnerability Curve

V

INT

: Vuln. Curve Interior

W

O

(s): Wind speed profile per story s

z

s

= mean height of story s. For s=3, z

s

is assumed to be

10 m.

oleObject367.bin

image417.emf
Impact Resisting

Opening (IR)?

YES

NO or Unknown

Adopt IR

(for W, S, D)

Windows Type

Adopt No Shutters

Standard Openings

(for W, S, D)

Opening Type

b

Shutters?

No

Unknown

Year Built ≥ bb

NO

Adopt Weighted Approach

20% standard openings

with shutters on W and S

(and no shutters on D);

80% standard openings

without shutters (for W, S,

D)

Weight the costs

accordingly

YES

HVHZ?

bb=2002

bb=1994

N

o

Y

e

s

Adopt metal shutters with

standard glass for W and S

and standard D with no

shutters

yes

oleObject368.bin
Impact Resisting Opening (IR)?

YES

NO or Unknown

Adopt IR
(for W, S, D)

Windows Type

Adopt No Shutters Standard Openings
(for W, S, D)

Opening Type

b

Shutters?

No

Unknown

Year Built ≥ bb

NO

Adopt Weighted Approach
20% standard openings with shutters on W and S (and no shutters on D); 80% standard openings without shutters (for W, S, D)
Weight the costs accordingly

image418.wmf
S

,

,

,

j

i

i

)

(

,

(

V

C

(s)

C

Â

Î

=

å

å

=

=

M

C

j

S

D

W

i

s

j

z

w

s

a

DO

oleObject369.bin

image419.wmf
å

=

=

Stories

#

1

s

CDO(s)

T

ECDO

oleObject370.bin

image420.emf
Breaches Area (sqf) per story and unit type

Openings Breach Area

c

Component Breaches Curves (all in sqf as a fct of wind speed)

B

W,D,S

C,M

→ [Windows, Sliders, Entry Doors]

ÎÂ

Wind interv. x 3

Load corresponding

B

W,D,S

C

and B

W,D,S

M

INPUT

·

Shutters or IRG/No Shutters or No-IRG

·

Sliders/No sliders

·

Height position (1-3 / 4-7 / 8+)

·

d

W

= 0.0026 ; d

D

= 0.0258 ; d

S

= 0.0237 (sqf each)

·

A

W

= 20 sqf; A

D

= 20.1; A

S

= 33.5; (sqf)

 

 

M O O

M

D O

M

S O

M

W

C O O

C

D O

C

S O

C

W

(s) W ,) (W B) (W B) (W B M) Breach(s,

(s) W ,) (W B) (W B) (W B C) Breach(s,

a f

a f

   

   

















 

W

M C,

W

M C,

W

A

B

Windows # S

















 

D

M C,

D

,

D

A

B

1 S

M C

















 

S

M C,

S M C,

S

A

B

1 S

 

 

M s O O

M

D D O

M

S S O

M

W W

C s O O

C

D D O

C

S S O

C

W

) (z W ,) (W S d) (W S d) (W S M) Defects(s,

) (z W ,) (W S d) (W S d) (W S C) Defects(s,

a d f

a d f

W

      

      

So the total breach for wind pressure and debris plus defects is

 

 

M) Defects(s, M) Breach(s, (s) Breach

C) Defects(s, C) Breach(s, (s) Breach

d d d Windows # Defectsall

d d d Windows # Defectsall

M

T

C

T

S D W

M M

S D W

C C

 

 

    

    

M

C

a

a

IF

Building

Closed

Building

Open

Building = Open

CO: #Windows

C

= 7

MO: #Windows

M

=4

Building = Closed

CC: #Windows

C

= 6

MC: #Windows

M

= 3

f

IF

w/sliders

0 d) (W B

S O

C

S

 

0 d) (W B

S O

M

S

 

No sliders

IF

Building = Open

CO: #Windows

C

= 8

MO: #Windows

M

= 5

Building = Closed

CC: #Windows

C

= 7

MC: #Windows

M

= 4

0 d) (W B

D O

C

D

 

0 d) (W B

D O

M

D

 

0 d) (W B

D O

C

D

 

0 d) (W B

D O

M

D

 

oleObject371.bin
Breaches Area (sqf) per story and unit type

Openings Breach Area

c

Component Breaches Curves (all in sqf as a fct of wind speed)

BW,D,SC,M → [Windows, Sliders, Entry Doors] Î Â Wind interv. x 3

Load corresponding
BW,D,SC and BW,D,SM

INPUT
Shutters or IRG/No Shutters or No-IRG
Sliders/No sliders
Height position (1-3 / 4-7 / 8+)
dW = 0.0026 ; dD = 0.0258 ; dS = 0.0237 (sqf each)
AW = 20 sqf; AD = 20.1; AS = 33.5; (sqf)

So the total breach for wind pressure and debris plus defects is

IF

Building
Closed

Building = Open

CO: #WindowsC = 7
MO: #WindowsM = 4

oleObject27.bin

image421.emf
d

Wind Driven Rain Accumulated (inches)

IF W

o

(s=3) >183 mph

alpha = 22.3 inch

beta = 19.23 inch

3) (s W

Wo(s)

alpha RAF f f (s,1)

o

sim run



    

r

Input

·

W

O

(s)

(

3 sec-gust in mph

)Î Â

#Stories x 1

·

RAF

Î Â

2 x 1

·

f

sim

= 0.5

·

f

run

= 1.4

alpha = 1.178E-09*W

o

(s=3)

5

-4.094E-07*W

o

(

s=3

)

4

+ 3.693E-05*W

o

(s=3)

3

+ 4.625E-

04*W

o

(s=3)

2

-1.355E-02*W

o

(s=3) + 1.364E-01

3) (s W

Wo(s)

beta RAF f f (s,2)

o

sim run



    

r

beta = -6.533E-06*W

o

(s=3)

3

+ 1.863E-03*W

o

(s=3)

2

–1.706E-02*W

o

(s=3)

oleObject372.bin
d

Wind Driven Rain Accumulated (inches)

IF Wo(s=3) > 183 mph
alpha = 22.3 inch
beta = 19.23 inch

 beta = -6.533E-06*Wo(s=3)3 + 1.863E-03*Wo(s=3)2 – 1.706E-02*Wo(s=3)

Input
WO (s) (3 sec-gust in mph) Î Â#Stories x 1
RAF Î Â2 x 1
fsim = 0.5
frun = 1.4

image422.emf
Calculate Avg Water Ingressed AWI(s) per Story

AWI(s)

→

[Corners ; Middles]

ÎÂ

2

x #Stories

[inches]

(sqf)) UnitArea UnitArea (1.1

 (s) Breach r(s,2) DefectsAll r(s,1)

AWI(s)

M C

(C)

T

C

C

M C

a a

 

  



[inches]

) UnitArea UnitArea (1.1

 (s) Breach r(s,2) DefectsAll r(s,1)

AWI(s)

M C

(M)

T

M

M

M C

a a

 

  



oleObject373.bin
Calculate Avg Water Ingressed AWI(s) per Story

AWI(s) → [Corners ; Middles] Î Â2 x #Stories

image423.emf
Estimate Vertical water

leakage per story

Input

·

Corner and middle units

a

C

, a

M

·

stories

·

AWI(k)→ [cor.,mid.]

·

Interior Damage

Threshold T

ID

= 1 in

· r

= 0.1

Aggregate Water ingressed in corners

AWI(k)

C

& middles AWI(k)

M

for each Story k

e

Propagation Engine

Compute Total water ingressed in the

building

[inches] AWI(k) AWI(k) AWI(k)

M C

 





k

EIDR(k)

S

1

EIDR

Convert to Expected Interior Damage

Ratio























1 EIDR(k)

AWI(k)

T

1

 EIDR(k)

T AWI(k)

T AWI(k)

ID

ID

ID

AWI(s) 1) s (AWI AWI(s)

    

s = (S-1) to 1

s = 1?

No

YES

S = # of stories

oleObject374.bin
Estimate Vertical water
leakage per story

Input
Corner and middle units aC , aM
stories
AWI(k)→[cor.,mid.]
Interior Damage Threshold TID = 1 in
r = 0.1

Aggregate Water ingressed in corners AWI(k)C & middles AWI(k)M
for each Story k

e

Propagation Engine

Compute Total water ingressed in the building

Convert to Expected Interior Damage Ratio

S = # of stories

s = (S-1) to 1

s = 1?

No

YES

image424.wmf
II

Apartment

Bldg

?

YES

Story Expected Loss for Risk

j

Bldg

.

Expected Loss for Risk

j

NO

Aggregation

S

CV

×

×

=

EIDR(s)

α

EDV(s)

MR

C

j

S

BV

s

CDO

×

×

+

=

EIDR(s)

K

)

(

EDV(s)

I

B

j

å

=

S

B

j

s

1

B

j

)

(

EDV

EDV

Estimate Interior cost

coefficient

(

K

I

)

g

K

I

=

K

I

AB

K

I

=

K

I

CB

å

=

S

C

j

s

1

C

j

)

(

EDV

EDV

oleObject375.bin
II

Apartment Bldg?

YES

Story Expected Loss for Risk j

image425.wmf

EDR

LM

AP

mean

AP

AP

´

=

oleObject376.bin

image45.wmf

s

(

s

,

f

)

=

v

(

s

,

f

)

-

v

o

(

s

)

=

image426.wmf
(

)

[

]

D

AP

D

C

B

B

s

´

+

+

=

EDV

EDV

EDV

oleObject377.bin

image427.wmf
(

)

[

]

D

AP

D

C

B

C

c

´

+

+

=

EDV

EDV

EDV

oleObject378.bin

image428.wmf
(

)

[

]

D

AP

AP

D

C

B

AP

´

+

+

=

EDV

EDV

oleObject379.bin

oleObject380.bin

oleObject381.bin

oleObject382.bin

oleObject383.bin

image46.wmf
0

)

)(

sin

(

)

(

)

(

1

1

=

-

+

+

+

-

+

+

-

-

c

w

c

u

s

g

u

v

s

u

u

o

s

f

a

s

s

¶

s

¶

f

image429.jpeg
nnnnnnnn

image430.emf
Get new policy i

Get Zip Code, # Stories, Bldg. Area, etc.

and all Actuarial values

Get New

Company

WIND

Policy?

NO

YES

Stories

≥

4?

YES

NO

Other restriction

applies?

NO

3

YES

No

Determine # of Apartment per story

Units = n

available?

YES

NO

Stories #

Units #

U

S



Plan Layout Definition

I

Condo Assn or

Bldg Owner?

YES

Struct_Type =

Building?

YES

NO

Discrimination Rules

YES

NO

Pick max Wind Speed profile → W

O

(s)

ÎÂ

Stories x 1

Area Apt. Avg

Area Bldg Total

Units #



3

Struct_Type =

Appurtenant?

NO

Other Risk in

Policy?

4

Yes

4

Get risk j

Send to Low-Rise

Module

5

Define floor layout with Units/Story to determine

) (units middle # and) (units corner #

M C

a a

a

Get New

Hurricane

2

1

oleObject384.bin
Get new policy i

Get Zip Code, # Stories, Bldg. Area, etc.
and all Actuarial values

Get New Company

WIND
Policy?

NO

YES

Stories ≥ 4?

YES

NO

Other restriction applies?

NO

3

YES

No

Determine # of Apartment per story

Units = n
available?

YES

NO

 Plan Layout Definition

I

Condo Assn or Bldg Owner?

YES

Struct_Type =
Building?

YES

NO

Discrimination Rules

YES

NO

Pick max Wind Speed profile → WO(s) Î Â# Stories x 1

3

Struct_Type =
Appurtenant?

NO

Other Risk in Policy?

4

Yes

4

Get risk j

Send to Low-Rise Module

5

Define floor layout with Units/Story to determine

a

Get New Hurricane

2

1

image431.emf
Condo Unit Expected Loss

Compute the cost of damage to the openings at

each story as a function of wind speed at story

height, and the story opening vulnerability

curves

S

, , ,

j

i i

)) (, (V C (s) C

  

 

  M C j S D W i

s j

z w s a DO

1) Pick Openings Vulnerability Curves V

C

W,D,S

and V

M

W,D,S

ÎÂ

1

x

41

(Â

S x Wind intervals

)

2) Pick Damaged Openings (Breaches) Curves V

C

O

and V

M

O

ÎÂ

3

x

41

(Â

SxWind intervals

)

I

Total expected cost of external damage

to openings







Stories #

1 s

CDO(s) TECDO

Calculate breach area per

story from B

M

W,D,S

and

B

C

W,D,S

Breach

T

(story)

ÎÂ

1x#Stories

[sqf/story]

Estimate Impinging Rain

(r

i

)

r

i

(story,[1,2]) = f(W

O

)

ÎÂ

#Stories x 2

Calculate Avg Water Ingressed AWI(s) per Story

AWI(s)

→

[Corners ; Middles]

ÎÂ

2

x #Stories

Expected Internal Damage

EIDR

II

Exterior Damage Module

Propagation Engine

Interior Damage Module

INPUT

§Year Built; Sliders or not

§Policy limits:

LM

B

||LM

C

Water Intrusion Module

The Exterior damage Vulnerability Curves

V

C,M

W,D,S

will be chosen by:

·

Plan Layout Type: Exterior / Interior Corridor

·

Window Types: Impact resisting windows/

Unprotected windows / Shutters

·

Location in height : account for debris damage

Apartment

Bldg?

YES

Story Expected Loss for Risk j

Bldg. Expected Loss for Risk j

NO

Aggregation

Constants

§ Op. Unit Repl. Costs C

i

,

§ Unit Area: [C,M] =

(1,125; 1,125) sqf

BV or UBV = LM

B

CV or UCV = LM

C

UALE = LM

ALE

a

Plan Layout Type

: a

M

& a

C

?

To Propagation

Engine & Interior

Damage Module

S

CV

   EIDR(s) α EDV(s)

MR

C

j

Mid-High Rise Module

d

c

S

BV

   

EIDR(s) K) s (CDO EDV(s)

I

B

j







S

s

s

B

j

1

B

j

) (

EDV

 EDV

e

Rain Admittance Factor

(RAF)

RAF = 1.0 for last story, else

RAF = 0.6

[inches]

(sqf)) UnitArea UnitArea (1.1

 (s) Breach r(s,2) DefectsAll r(s,1)

AWI(s)

M C

(C)

T

C

C

M C

a a

 

  



[inches]

) UnitArea UnitArea (1.1

 (s) Breach r(s,2) DefectsAll r(s,1)

AWI(s)

M C

(M)

T

M

M

M C

a a

 

  



f

Estimate Interior cost

coefficient (K

I

)

g

b

Window Type?

K

I

=K

I

AB

K

I

=K

I

CB

UBV s EIDR  ) (EUDV(s)B

j

UCV s EIDR

MR

  ) (EUDV(s)C

j



UALE s EIDR

MR

 )(EUDV(s)ALE

j



Go to PR

actuarial

Condo unit

policy?

No

Yes







S

s

s

C

j

1

C

j

) (

EDV

 EDV

oleObject385.bin
The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

Compute the cost of damage to the openings at each story as a function of wind speed at story height, and the story opening vulnerability curves

image432.emf
s < 4?

NO

YES

s < 8?

NO

Adopt LDI

B

C,M

W,D,S

(s),

V

C,M

W,D,S

(s)

Adopt MDI

B

C,M

W,D,S

(s),

V

C,M

W,D,S

(s)

Vulnerability

Type

Adopt HDI

B

C,M

W,D,S

(s),

V

C,M

W,D,S

(s)

Vulnerability Type

f

YES

LDI = Low Debris Impact

MDI= Medium Debris Impact

HDI = High Debris Impact

Interior Cost Coefficient

Input:

·

of stories S

·

Plan Layout Type: a

M

& a

C

·

Unit Area: [C,M] = (1,125; 1,125) sqf

g

a

Area of Building:

Area = 1.10(a

C

*1,125+ a

M

* 1125)*S

S<8?

No

K

I

AB

= -0.00454*S + 1.5463E-07*Area + 0.6606

≤

0.70

K

I

CB

= -0.00468*S +

1.5419E-07

*Area + 0.3842

≤

0.45

K

I

AB

= -0.009925*S + 3.644E-07*Area + 0.7347

≤

0.75

K

I

CB

= -0.01215*S + 4.783E-07*Area + 0.4415

≤

0.50

Yes

K

I

AB

= K

I

AB

* 0.92

K

I

CB

= K

I

CB

* 0.71

Open Layout?

Yes

Openings Unit Replacement Costs:

·

C

W-IR

= $780

·

C

W-Standard

= $430

·

C

W-StandardShutter

= $700

·

C

S-IR

= $1530

·

C

S-Standard

=$935

·

C

S-StandardShutter

=$1300

·

C

D-IR

= $1650

·

C

D-Standard

= $900

Note: if the openings are weighted, weight the costs accordingly

oleObject386.bin
s < 4?

NO

YES

LDI = Low Debris Impact
MDI= Medium Debris Impact
HDI = High Debris Impact

 s < 8?

NO

Adopt LDI
BC,MW,D,S(s), VC,MW,D,S(s)

Adopt MDI
BC,MW,D,S(s), VC,MW,D,S(s)

Vulnerability Type

Adopt HDI
BC,MW,D,S(s), VC,MW,D,S(s)

Vulnerability Type

f

YES

Interior Cost Coefficient

Input:
of stories S
Plan Layout Type: aM & aC
Unit Area: [C,M] = (1,125; 1,125) sqf

image433.emf
Input:

Region: HVHZ, WBDR or NA

Number of Stories: NStories

ZipCode

Wind Speed Profile W

O

at Zip Code

Insurance Limits

Low-Rise Module

5

II

Input

Vulnerability curves for

Building (B) and Contents (C),

(for a given construction type

and, Stories, based on a given

mix of construction features

and Wbdr or hvhz).

Based on Wo, get the mean

damage values EDR

B

& EDR

C

,

whose corresponding wind

speed intervals Wi (+/-2.5

mph) includes Wo (in case of a

tie, break the tie by picking the

larger one)

V

V

V

T EDR EDV

C EDR EDV

B EDR EDV

T

j

T

j

C

j

C

j

B

j

B

j

 

 

 

T

C

B

LM T

LM C

LM B







V

V

V

Risk is

Appurtenant?

No Yes

C

AP

LM C

LM A





V

PV

V

PV

C EDR EDV

A EDR EDV

C

j

C

j

B

j

AP

j

 

 

Use Mapping Flowchart for existing

Vulnerability Curves

-Commercial Low-Rise (CLR)

To assign Building and Contents Curves

Compute Contents and Time Element

Vuln. Curve (VCONT, VTime) as a

function of interior Vuln. Curve (VINT)

V

CONT

= a

LR

V

INT

V

Time

= b

LR

V

INT

Determine the Overall Expected Damage Ratio

by selecting the damage with the wind speed in

the corresponding Vuln. Curve

 

) (W Vuln.Curve f EDR

O



oleObject387.bin
Input:
Region: HVHZ, WBDR or NA
Number of Stories: NStories
ZipCode
Wind Speed Profile WO at Zip Code
Insurance Limits

Low-Rise Module

5

II

Input
Vulnerability curves for Building (B) and Contents (C), (for a given construction type and, Stories, based on a given mix of construction features and Wbdr or hvhz).
Based on Wo, get the mean damage values EDRB & EDRC, whose corresponding wind speed intervals Wi (+/- 2.5 mph) includes Wo (in case of a tie, break the tie by picking the larger one)

Risk is
Appurtenant?

No

Yes

Use Mapping Flowchart for existing Vulnerability Curves
- Commercial Low-Rise (CLR)
To assign Building and Contents Curves

Compute Contents and Time Element Vuln. Curve (VCONT, VTime) as a function of interior Vuln. Curve (VINT)
VCONT = aLRVINT
VTime = bLRVINT

image434.emf
Calculate and prorate Deductible

More than one risk

in the policy?

Yes

Go to

Actuarial

Module

4

II

AP

j

AP AP

T

j

T T

C

j

C C

B

j

B B

EDV EDV EDV

EDV EDV EDV

EDV EDV EDV

EDV EDV EDV

 

 

 

 

T

AP

AP

T

C

C

T

B

B

AP T C B T

EDV

EDV

D D ;

EDV

EDV

D D ;

EDV

EDV

D D

EDV EDV EDV EDV EDV

     

   

Aggregation of Damage Values

3

Last Policy? No

Yes

2

Last Company? No

Yes

1

oleObject28.bin

oleObject388.bin
Calculate and prorate Deductible

More than one risk
in the policy?

Yes

Go to Actuarial Module

4

II

Aggregation of Damage Values

3

Last Policy?

No

Yes

2

Last Company?

No

Yes

1

image435.emf
Impact Resisting

Opening (IR)?

YES

NO or Unknown

Adopt IR

(for W, S, D)

Windows Type

Adopt No Shutters

Standard Openings

(for W, S, D)

Opening Type

b

Plan Layout

a

Input:

·

Stories

·

Zip Code Location

Open

Layout?

YES

a

C

= 2

a

M

= U

S

-a

C

Choose Layout Type

Wherea

C

: # of corner units

a

M

: # of middle units

U

S

: Total # of units

NO

a

C

= 4

a

M

= U

S

-a

C

Closed Open Closed Open

4-6 43% 57% 87% 13%

7-9 54% 46% 65% 35%

>9 84% 16% 96% 4%

Stories

Coastal (Zip Codes) Inland (Zip Codes)

U

S

=<2?

No

U

S

=<4?

No

a

C

= U

S

a

M

= 0

Yes

Yes

Shutters?

No

Unknown

Year Built ≥ bb

NO

Adopt Weighted Approach

20% standard openings

with shutters on W and S

(and no shutters on D);

80% standard openings

without shutters (for W, S,

D)

Weight the costs

accordingly

YES

HVHZ?

bb=2002

bb=1994

N

o

Y

e

s

Adopt metal shutters with

standard glass for W and S

and standard D with no

shutters

yes

If U

s

is unknown,

assume Us=10

oleObject389.bin
Impact Resisting Opening (IR)?

YES

NO or Unknown

Adopt IR
(for W, S, D)

Windows Type

Adopt No Shutters Standard Openings
(for W, S, D)

Opening Type

b

Plan Layout

a

Input:
Stories
Zip Code Location

Open Layout?

YES

aC = 2
aM = US - aC

Choose Layout Type

Where aC : # of corner units
 aM : # of middle units
 US : Total # of units

NO

aC = 4
aM = US - aC

US =<2?

No

US =<4?

No

aC = US
aM = 0

Yes

Yes

Shutters?

No

Unknown

Year Built ≥ bb

NO

Adopt Weighted Approach
20% standard openings with shutters on W and S (and no shutters on D); 80% standard openings without shutters (for W, S, D)
Weight the costs accordingly

image436.emf
Breaches Area (sqf) per story and unit type

Openings Breach Area

c

Component Breaches Curves (all in sqf as a fct of wind speed)

B

W,D,S

C,M

→ [Windows, Sliders, Entry Doors]

ÎÂ

Wind interv. x 3

Load corresponding

B

W,D,S

C

and B

W,D,S

M

INPUT

·

Shutters or IRG/No Shutters or No-IRG

·

Sliders/No sliders

·

Height position (1-3 / 4-7 / 8+)

·

d

W

= 0.0026 ; d

D

= 0.0258 ; d

S

= 0.0237 (sqf each)

·

A

W

= 20 sqf; A

D

= 20.1; A

S

= 33.5; (sqf)

 

 

M O O

M

D O

M

S O

M

W

C O O

C

D O

C

S O

C

W

(s) W ,) (W B) (W B) (W B M) Breach(s,

(s) W ,) (W B) (W B) (W B C) Breach(s,

a f

a f

   

   

















 

W

M C,

W

M C,

W

A

B

Windows # S

















 

D

M C,

D

,

D

A

B

1 S

M C

















 

S

M C,

S M C,

S

A

B

1 S

 

 

M s O O

M

D D O

M

S S O

M

W W

C s O O

C

D D O

C

S S O

C

W

) (z W ,) (W S d) (W S d) (W S M) Defects(s,

) (z W ,) (W S d) (W S d) (W S C) Defects(s,

a d f

a d f

W

      

      

So the total breach for wind pressure and debris plus defects is

 

 

M) Defects(s, M) Breach(s, (s) Breach

C) Defects(s, C) Breach(s, (s) Breach

d d d Windows # Defectsall

d d d Windows # Defectsall

M

T

C

T

S D W

M M

S D W

C C

 

 

    

    

M

C

a

a

IF

Building

Closed

Building

Open

Building = Open

CO: #Windows

C

= 7

MO: #Windows

M

=4

Building = Closed

CC: #Windows

C

= 6

MC: #Windows

M

= 3

f

IF

w/sliders

0 d) (W B

S O

C

S

 

0 d) (W B

S O

M

S

 

No sliders

IF

Building = Open

CO: #Windows

C

= 8

MO: #Windows

M

= 5

Building = Closed

CC: #Windows

C

= 7

MC: #Windows

M

= 4

0 d) (W B

D O

C

D

 

0 d) (W B

D O

M

D

 

0 d) (W B

D O

C

D

 

0 d) (W B

D O

M

D

 

oleObject390.bin
Breaches Area (sqf) per story and unit type

Openings Breach Area

c

Component Breaches Curves (all in sqf as a fct of wind speed)

BW,D,SC,M → [Windows, Sliders, Entry Doors] Î Â Wind interv. x 3

Load corresponding
BW,D,SC and BW,D,SM

INPUT
Shutters or IRG/No Shutters or No-IRG
Sliders/No sliders
Height position (1-3 / 4-7 / 8+)
dW = 0.0026 ; dD = 0.0258 ; dS = 0.0237 (sqf each)
AW = 20 sqf; AD = 20.1; AS = 33.5; (sqf)

So the total breach for wind pressure and debris plus defects is

IF

Building
Closed

Building = Open

CO: #WindowsC = 7
MO: #WindowsM = 4

image437.emf
d

Wind Driven Rain Accumulated (inches)

IF W

o

(s=3) >183 mph

alpha = 22.3 inch

beta = 19.23 inch

3) (s W

Wo(s)

alpha RAF f f (s,1)

o

sim run



    

r

Input

·

W

O

(s)

(

3 sec-gust in mph

)Î Â

#Stories x 1

·

RAF

Î Â

2 x 1

·

f

sim

= 0.5

·

f

run

= 1.4

alpha = 1.178E-09*W

o

(s=3)

5

-4.094E-07*W

o

(

s=3

)

4

+ 3.693E-05*W

o

(s=3)

3

+ 4.625E-

04*W

o

(s=3)

2

-1.355E-02*W

o

(s=3) + 1.364E-01

3) (s W

Wo(s)

beta RAF f f (s,2)

o

sim run



    

r

beta = -6.533E-06*W

o

(s=3)

3

+ 1.863E-03*W

o

(s=3)

2

–1.706E-02*W

o

(s=3)

oleObject391.bin
d

Wind Driven Rain Accumulated (inches)

IF Wo(s=3) > 183 mph
alpha = 22.3 inch
beta = 19.23 inch

 beta = -6.533E-06*Wo(s=3)3 + 1.863E-03*Wo(s=3)2 – 1.706E-02*Wo(s=3)

Input
WO (s) (3 sec-gust in mph) Î Â#Stories x 1
RAF Î Â2 x 1
fsim = 0.5
frun = 1.4

image438.emf
Estimate Vertical water

leakage per story

Input

·

Corner and middle units

a

C

, a

M

·

stories

·

AWI(k)→ [cor.,mid.]

·

Interior Damage

Threshold T

ID

= 1 in

· r

= 0.1

Aggregate Water ingressed in corners

AWI(k)

C

& middles AWI(k)

M

for each Story k

e

Propagation Engine

Compute Total water ingressed in the

building

[inches] AWI(k) AWI(k) AWI(k)

M C

 





k

EIDR(k)

S

1

EIDR

Convert to Expected Interior Damage

Ratio























1 EIDR(k)

AWI(k)

T

1

 EIDR(k)

T AWI(k)

T AWI(k)

ID

ID

ID

AWI(s) 1) s (AWI AWI(s)

    

s = (S-1) to 1

s = 1?

No

YES

S = # of stories

oleObject392.bin
Estimate Vertical water
leakage per story

Input
Corner and middle units aC , aM
stories
AWI(k)→[cor.,mid.]
Interior Damage Threshold TID = 1 in
r = 0.1

Aggregate Water ingressed in corners AWI(k)C & middles AWI(k)M
for each Story k

e

Propagation Engine

Compute Total water ingressed in the building

Convert to Expected Interior Damage Ratio

S = # of stories

s = (S-1) to 1

s = 1?

No

YES

image439.emf
Input:

W

O

: wind vector

Stories: #Stories

YES

Add a “0” as first element of W

O

W

O

= [0 W

O

]

Initialize counter

cont = 1

Loop over W

O

for i= 1 : #elements of W

O

-1

Select elements iand i+ 1 of W

O

w

O

= W

O

(i)

w

1

= W

O

(i+1)

a = (w

1

–w

0

) / 3

Interpolate betweem elements of W

O

W

i

(cont) = w

O

W

i

(cont+1) = w

O

+ a

W

i

(cont+2) = w

O

+ 2a

W

i

(cont+3) = w

1

Update counter

cont = cont + 3

Is

i= (#elements in

W

O

–1)?

end

NO

Interpolate on W

O

Interpolate on W

O

Define Wind on each story

vector by selecting the W

i

elements from 1 to #stories

W

S

= Wi (2 : stories+1)

Each element of W

S

has the

wind speed applied at each

story of the building

image47.wmf

u

¶

s

s

+

s

-

1

(

v

o

+

s

)

¶

f

s

+

u

(

d

+

s

-

1

s

)

+

a

(

v

o

+

s

+

c

cos

f

)(

w

-

c

)

=

0

oleObject393.bin
Input:
WO: wind vector
Stories: #Stories

YES

Add a “0” as first element of WO
WO = [0 WO]

Initialize counter
cont = 1

Loop over WO
for i = 1 : #elements of WO - 1

Select elements i and i + 1 of WO
wO = WO(i)
w1 = WO(i+1)
a = (w1 – w0) / 3

Interpolate betweem elements of WO

Wi (cont) = wO
Wi (cont+1) = wO + a
Wi (cont+2) = wO + 2a
Wi (cont+3) = w1

Update counter
cont = cont + 3

Is
i = (#elements in WO – 1)?

end

NO

Interpolate on WO

Interpolate on WO

Define Wind on each story vector by selecting the Wi elements from 1 to #stories
WS = Wi (2 : stories+1)

Each element of WS has the wind speed applied at each story of the building

image440.emf
Glossary

a

C

: # of corner units per story

a

M

: # of middle units per story

a,b,c,d: linear regression coefficients of impinging rainfall as a

function of 3 sec gust at 10m

APV : Appurtenant Value [$]

AWI : Average water ingressed [inches of rain]

A

W

, A

D

, A

S

: Size of individual windows, doors, sliders. (sqf)

α

MR

: Contents coeff. as proportion of Interior Dam. (Mid-

Rise)

α

LR

,

b

LR

: Contents and time element coverage coeff. as

proportion of Interior Dam. (Low-Rise)

b

MR

: ALE coeff. as proportion of Interior Dam. (Mid-Rise

condo unit policy)

bs: Average breach area

B

i

C

: Breach curve for openings i=W,S, or D (windows-sliders-

doors) -corner units (ft

2

as a fct of wind speed)

B

i

M

: Breach curve for openings i=W,S, or D (windows-sliders-

doors) -middle units (ft

2

as a fct of wind speed)

BaseArea: total area of story in sqft

Breaches: breaching square footage per story

Breach

T

C

: total breach size of corner units. (includes defects)

Breach

T

M

: total breach size of middle units. (includes defects)

BV : Bldg. Value [$]

BV

AB

: Apt. Bldg. Value [$]

BV

CB

: Condo Bldg. Value [$]

C

i

: unit replacement cost for openings i=W,S, or D (windows-

sliders-doors)

CCT : Closed Corridor Type

CV : Contents Value [$]

CDO(s): cost of damage to the openings at story s [$]

D : Deductible

D

AP

: Appurtenant deductible

D

B

: Building deductible

D

C

: Contents deductible

DefectsAll: area of all the defects for a given unit

d

W

, d

D

, d

S

: defects area for windows, door and slider (sqf)

EEDR : Expected Exterior Damage Ratio [%]

EDR

S

: Exterior Damage Ratio vector per Story [%]

EDR

j

B,C,T

: Expected Dam. Ratio Bldg, Contents, Time resp.

EDV

j

B

: Expected Damage Value of Risk j –Building [$]

EDV

j

C

: Expected Damage Value of Risk j –Contents [$]

EDV

j

AP

: Expected Damage Value of Risk j –Appurtenant [$]

EDV

B

: Overall Expected Damage Value –Building [$]

EDV

C

: Overall Expected Damage Value –Contents [$]

EDV

T

: Overall Expected Damage Value –Time Element [$]

EDV

AP

: Overall Expected Damage Value –Appurtenant [$]

EDV

T

: Total Expected Damage Value [$]

EIDR(s) : Expected Interior Damage Ratio per story s [%]

EDV

j

B

(s): Expected Story Damage Value of Risk j –Building

[$]

EDV

j

C

(s): Expected Story Damage Value of Risk j–Contents

[$]

EUDV

j

B

(s): Expected Condo Unit Damage Value , at story s –

Building [$]

EUDV

j

C/ALE

(s): Expected Condo Unit Story Damage Value, at

story s –Contents [$] or ALE [$]

EIDR : Expected Interior Damage Ratio for entire building [%]

f

sim

: Simultaneity factor that accounts for the walls that

actually have rain intrusion due to wind angle.

f

run

: Runoff factor that accounts for the runoff water on

the facades

i: Policy Counter / Other counter

IDR(k) : Interior Damage Ratio vector [%]

IDR

C

U

: Interior Damage Ratio of a corner unit [%]

IDR

M

U

: Interior Damage Ratio of a middle unit [%]

IDR

VERT

: Interior Damage Ratio due to vert. propagation

[%]

IDR

U

: Interior Damage Ratio [%]

IR : Impinging rain on bldg façade [in/hr]

IRW: Impact Resistant Window

j: Risk counter

k: story index

k

E

AB

, k

E

CB

: Ratio of Exterior Value to total Value for Apt

bldgs and Condo Bldgs.

k

I

AB

, k

I

CB

: Ratio of Interior Value to total Value for Apt

bldgs and Condo Bldgs.

LIF : average Local intensity factor

LM

B

: Building policy limit.

LM

C

: Contents policy limit.

LM

T

: Time element coverage policy limit.

LM

AP

: Appurtenant policy limit.

OCT : Open Corridor Type

r(story,i) : impinging accumulated rainfall [in] per story

for i = 1 time t

initial

to t

breach

; i=2 t

breach

to t

end

r

= percolation factor

s = story number

S = total number of stories

S

W

, S

D

, S

S

: Complement of the vulnerability function for

MHRB, i.e. 1 –Vuln Function, for computing water

intrusion due to defects.

T

ID

= threshold water (inches) to complete interior

damage.

TECDO:

Total expected cost of external damage to

openings [$]

TV [$]: Time element coverage value

U

S

: Units per Story

UBV = Condo unit value (structure)

UCV = Condo unit value (contents)

UALE = Condo unit value (additional living expenses)

UW: Unprotected Window

V

CONT

: Vuln. Curve Contents

V

TIME

: Vuln. Curve Time Element Coverage

V

i

C

: Vulnerability curve for openings of corner units; i=

W,D,or S (window, door, or slider). Give the number or

fraction of opening damaged as a function of wind speed.

V

i

M

: Vulnerability curve for openings of middle units; i=

W,D,or S (window, door, or slider).

V

I

: Adopted Unit’s Interior Vulnerability Curve

V

INT

: Vuln. Curve Interior

W

O

(s): Wind speed profile per story s

z

s

= mean height of story s. For s=3, z

s

is assumed to be

10 m.

oleObject394.bin

image441.emf
New

Policy

Perform

part A

Perform

part B

Perform

part C

Perform

part D

Perform

part E

Perform

part F

Perform

part G

Perform

part H

Perform

part I

Perform

part J

Perform

part K

Perform

part L

Compile

Name

Daterun

Search

vulnerability curve

database for the

matrix

Assign the

corresponding

vulnerability curve

to the policy

Next policy

Outline

Perform

“Preliminary

information”

lookup

Last

policy?

Y END

N

Perform

“Policy

Scan”

Does

curve

exist?

Y

Record name of

nonexistent policy

N

Select

Model

Com

Weighting

Assignment

Or

Or

oleObject395.bin
New Policy

Perform part A

Perform part B

Perform part C

Perform part D

Perform part E

Perform part F

Does curve exist?

Perform part G

Perform part H

Perform part I

Perform part J

Perform part K

Perform part L

Compile Name

Daterun

Search vulnerability curve database for the matrix

Assign the corresponding vulnerability curve to the policy

Next policy

Outline

Perform “Preliminary information” lookup

Weighting Assignment

Last policy?

Y

END

N

Perform “Policy Scan”

Select Model Com

Y

N

Record name of nonexistent policy

Or

Or

image442.emf
VC_ Type_ Model_

“exterior

wall”_

ALL_ Subregion_

“STRENG

TH”_

“story”_ “roofshape”_ “roofcover”_

“DECKING”_ “R2W”_ “S2S”_ “MEMBRANE”_ “GARAGE”_ “openingprotection”_

“rect”_ “daterun”.mat

Weighted Vulnerability matrix name generator CLR

“doorprotection”_

WA WA WA

PI PI

PI PI PI

KK

WK

“era”_

WA WA

WA

Notes: blocks in green represent

parameter names that remain

unchanged.

PI

“ALL”_

PI

county region

oleObject396.bin
VC_

Type_

Model_

“exterior wall”_

ALL_

Subregion_

“STRENGTH”_

“story”_

“roofshape”_

“roofcover”_

“DECKING”_

“R2W”_

“S2S”_

“MEMBRANE”_

“GARAGE”_

“openingprotection”_

“rect”_

“daterun”.mat

“ALL”_

 Weighted Vulnerability matrix name generator CLR

“doorprotection”_

WA

“era”_

WA

WA

WA

WA

WA

Notes: blocks in green represent parameter names that remain unchanged.

PI

PI

PI

PI

PI

PI

PI

WK

KK

county

region

image443.emf
Preliminary information lookup Commercial low rise (PIC)

Lookup zipcode

Determine region

(For commercial,

Region = ALL)

Determine sub

region from wind

map

User defines the

vulnerability

type

VM

Or VC

Determine county

(For commercial

insert “ALL”)

Lookup model to

be used

(residential or

commercial: “res”

or “com”

respectively)

User

defines the

damage

type;

(bldg,int,ti

me,cont…)

Pre 1960? lookup Year Built

1960-

1970?

YB =

“___”

1971-

1980?

1981-

1993?

N

1994-

2001?

2002-

present?

Y

Y

N

N

N

N

Y

Y

Y

Y

Lookup year built

Year built lookup

Perform “Part A”

Scan Policy for

available

parameters

is M >=Y?

End

M

value

User defined

value:

Y=_____

Number of Allowable

parameters for which

statistics are not known

1

Last

policy?

Next

policy

N

YB =

“___”

YB =

“___”

YB =

“___”

YB =

“___”

YB =

“___”

Era

Insert year

built

YB =1?

N

Choose

Option

N

Y

Y EXW =1?

Era =

“Pre60”

Era = “60-

70”

Era = “71-

80”

Era = “81-

93”

Era = “94-

01”

Era =

“Pos01”

Era

N

Y

WA

if [RC, OP, RS] = [0 0 0]

[1 0 0]

[0 1 0]

[0 0 1]

[1 1 0]

[1 0 1]

[0 1 1]

if [RC, OP, RS] = [1 1 1]

Elseif

WAC

WAC

WAC:

Weighting

Assignment

Check

WAC=Y?

?

Y

WAC

= Y

WAC

= N

Y

Randomly assign

exterior wall based

on statistics

Assign AGE

Weighted

Curve

Randomly

assign YB

based on

Statistics

2

Assign

parameters

and use un

weighted

curves

c

oleObject397.bin
Preliminary information lookup Commercial low rise (PIC)

Lookup zipcode

Determine region
(For commercial,
Region = ALL)

Determine sub region from wind map

User defines the vulnerability type
VM
Or VC

Determine county
(For commercial insert “ALL”)

Lookup model to be used (residential or commercial: “res” or “com” respectively)

User defines the damage type; (bldg,int,time,cont…)

Pre 1960?

lookup Year Built

1960-1970?

YB = “___”

1971-1980?

1981-1993?

N

1994-2001?

2002-present?

YB = “___”

YB = “___”

YB = “___”

N

WA

Y

Y

N

N

N

N

Y

Y

Y

Y

Scan Policy for available parameters

Y

?

if [RC, OP, RS] = [0 0 0]
 [1 0 0]
 [0 1 0]
 [0 0 1]
 [1 1 0]
 [1 0 1]
 [0 1 1]

if [RC, OP, RS] = [1 1 1]

Era

Elseif

WAC

N

Y

Y

EXW =1?

Era = “Pre60”

Era = “60-70”

Era = “71-80”

Era = “81-93”

Era = “94-01”

Era = “Pos01”

Lookup year built

Year built lookup

Era

Perform “Part A”

YB =1?

is M >=Y?

N

Choose Option

WAC

WAC: Weighting Assignment Check

End

1

M value

WAC=Y?

Last policy?

Y

Next policy

User defined value:
Y=_____

Number of Allowable parameters for which statistics are not known

WAC= Y

WAC= N

Y

N

YB = “___”

YB = “___”

Insert year built

Randomly assign exterior wall based on statistics

Assign AGE Weighted Curve

Randomly assign YB based on Statistics

2

Assign parameters and use un weighted curves

c

image444.emf
Exterior

wall =

Timber?

Exterior

wall =

Masonry?

N WA

extw =

“Tbr”

extw=

“Msry”

WK

Y Y

other? N

extw=

“other”

Y

Weighting Assignment (WA)

Check Era

Exterior wall

WK

Roof Cover

RS =1? Y or N

Roofshape=

“ROOFSHAPE”

WK

Roof Shape

RC =1?

Roofcover=

“ROOFCOVER”

Y or N

OP =1? Y of N

Opening

Protection=

“OPEN”

Opening Protection & Door Protection

DoorProtection

= “DOOR”

Check number of

stories

Use 50%timber

and 50%masonry,

Save file as “other”

WK

Y of N

oleObject29.bin

oleObject398.bin
OP =1?

Exterior wall = Timber?

Exterior wall =
Masonry?

N

extw = “Tbr”

WA

extw= “Msry”

WK

Y

Y

other?

N

extw= “other”

Y

Use 50%timber and 50%masonry,
Save file as “other”

Weighting Assignment (WA)

Check Era

Exterior wall

WK

Y of N

Roofshape= “ROOFSHAPE”

Roofcover= “ROOFCOVER”

WK

Y or N

Roof Cover

RS =1?

Y or N

WK

Roof Shape

RC =1?

Y of N

Opening Protection= “OPEN”

Opening Protection & Door Protection

DoorProtection= “DOOR”

Check number of stories

image445.emf
+reset()

+reconfigureNextDeductible()

+ToString(in format, in num_attr)

+readFromLine(in line, in line_num, in format, in format_num)

-map_str

-map_int

-map_dbl

-map_typ

-map_vec_dbl

-myId

-Id

-zipCode

-yearBuilt

-constType

-LMs

-LMc

-LMapp

+LMtre

+HD

+D

+origD

+origHD

+struct_loss

+app_loss

+cont_loss

+tre_loss

+agg_struct_loss

+agg_app_loss

+agg_tre_loss

+struct_loss_noDS

-app_loss_noDS

-cont_loss_noDS

-tre_loss_noDS

-agg_struct_loss_noDS

-agg_app_loss_noDS

-agg_cont_loss_noDS

-agg_tre_loss_noDS

-struct_loss_noDeduc

-app_loss_noDeduc

-cont_loss_noDeduc

-tre_loss_noDeduc

-struct_loss_noDeduc_noDS

-app_loss_noDeduc_NoDS

-cont_loss_noDeduc_noDS

-tre_loss_noDeduc_noDS

-natureCoverage

-county

-region

-Vi

-first_runs

-units

-matIdS

-matIdAPP

-matIdC

-matIdTRE

-countyId

-otherAttributes

-wind

-matColumn

-matIdS1-7

-matIdC1-7

-matIdALE1-7

-countyCode

-roof2Wall

-numStories

-roofShape

-roofCover

-deckAttachment

-stud2Sill

-underlayment

-garage

-doorProtection

-openingProtection

-buildingShape

-other_attr_v

-used_matrix

IPolicy

+SetToOne()

+operator<()

+operator==()

-name

-code

-countyId

-surge_factor_s

-surge_factor_c

-surge_factor_app

-surge_factor_tre

CountySurge

+LoadCountySurge(in file,useSurge)

+toString()

-CountySurge *arr

-size

CountySurgeVector

*

1

+BeValid(in toBeCheck)

-set<double> validZipcodeSet

ZipcodeChecker

+LoadStandard(in istream&)

-windProbFolder

-policyFile

-vulMatricesFolder

-otherInputFolder

-outputFolder

-outputHeader

-useCountySurge

-isDetailOutput

-isStochasticSet

-useWeightedMatrices

-fromFile

ParameterInfo

+Load()

+Load(in file)

+getAttribute(in index)

SILMInfo

-m_name

-IPolicy *m_Policies_arr

-validRecords

ICompany

+PrintData(in file, in num, in printDSNoDS)

+readFile(in file, in in_format, in in_attr_num)

-usedWeightedMatrices

-numExtraAttributes

SILM_ICompany

*

1

+populateMatrices(in matIdS, in matIdAPP, in matIdC, in matIdALE)

+findMatrixIndex(in matrixName)

+loadMatrixFromFile(in index)

+loadMatrixFromFile(in matrixFile, in index)

-MAX_MATRIX_X

-MAX_MATRIX_Y

-double (*VMs)[MAX_MATRIX_Y]

-double (*VMc)[MAX_MATRIX_Y]

-double (*VMapp)[MAX_MATRIX_Y]

-double (*VMtre)[MAX_MATRIX_X]

-MAX_NUM

-double (*VM_all)[MAX_MATRIX_X][MAX_MATRIX_Y]

-map<string, int> allMatrices

-vector<string> mapMatricesIdToName

-vector<bool> vecLoadedMatrices

IMatrices

+SILM_IMatrices()

SILM_IMatrices

+PreProcess_IMatrices()

PreProcess_IMatrices

-vector<double> DamRat

DamageRatio

+WindSpeeds()

+toString()

+getDate()

+getYear()

+getName()

-numPol

-pair<int,double> *m_Pol_Wind_arr

-m_date

-m_name

WindSpeeds

+Windborne()

-map<double,double> windborneZips

Windborne

oleObject399.bin
+reset()
+reconfigureNextDeductible()
+ToString(in format, in num_attr)
+readFromLine(in line, in line_num, in format, in format_num)

-map_str
-map_int
-map_dbl
-map_typ
-map_vec_dbl
-myId
-Id
-zipCode
-yearBuilt
-constType
-LMs
-LMc
-LMapp
+LMtre
+HD
+D
+origD
+origHD
+struct_loss
+app_loss
+cont_loss
+tre_loss
+agg_struct_loss
+agg_app_loss
+agg_tre_loss
+struct_loss_noDS
-app_loss_noDS
-cont_loss_noDS
-tre_loss_noDS
-agg_struct_loss_noDS
-agg_app_loss_noDS
-agg_cont_loss_noDS
-agg_tre_loss_noDS
-struct_loss_noDeduc
-app_loss_noDeduc
-cont_loss_noDeduc
-tre_loss_noDeduc
-struct_loss_noDeduc_noDS
-app_loss_noDeduc_NoDS
-cont_loss_noDeduc_noDS
-tre_loss_noDeduc_noDS
-natureCoverage
-county
-region
-Vi
-first_runs
-units
-matIdS
-matIdAPP
-matIdC
-matIdTRE
-countyId
-otherAttributes
-wind
-matColumn
-matIdS1-7
-matIdC1-7
-matIdALE1-7
-countyCode
-roof2Wall
-numStories
-roofShape
-roofCover
-deckAttachment
-stud2Sill
-underlayment
-garage
-doorProtection
-openingProtection
-buildingShape
-other_attr_v
-used_matrix

IPolicy

+SetToOne()
+operator<()
+operator==()

-name
-code
-countyId
-surge_factor_s
-surge_factor_c
-surge_factor_app
-surge_factor_tre

CountySurge

+LoadCountySurge(in file,useSurge)
+toString()

-CountySurge *arr
-size

CountySurgeVector

*

1

+BeValid(in toBeCheck)

-set<double> validZipcodeSet

ZipcodeChecker

+LoadStandard(in istream&)

-windProbFolder
-policyFile
-vulMatricesFolder
-otherInputFolder
-outputFolder
-outputHeader
-useCountySurge
-isDetailOutput
-isStochasticSet
-useWeightedMatrices
-fromFile

ParameterInfo

+Load()
+Load(in file)
+getAttribute(in index)

SILMInfo

-m_name
-IPolicy *m_Policies_arr
-validRecords

ICompany

+PrintData(in file, in num, in printDSNoDS)
+readFile(in file, in in_format, in in_attr_num)

-usedWeightedMatrices
-numExtraAttributes

SILM_ICompany

*

1

+populateMatrices(in matIdS, in matIdAPP, in matIdC, in matIdALE)
+findMatrixIndex(in matrixName)
+loadMatrixFromFile(in index)
+loadMatrixFromFile(in matrixFile, in index)

-MAX_MATRIX_X
-MAX_MATRIX_Y
-double (*VMs)[MAX_MATRIX_Y]
-double (*VMc)[MAX_MATRIX_Y]
-double (*VMapp)[MAX_MATRIX_Y]
-double (*VMtre)[MAX_MATRIX_X]
-MAX_NUM
-double (*VM_all)[MAX_MATRIX_X][MAX_MATRIX_Y]
-map<string, int> allMatrices
-vector<string> mapMatricesIdToName
-vector<bool> vecLoadedMatrices

IMatrices

+SILM_IMatrices()

SILM_IMatrices

+PreProcess_IMatrices()

PreProcess_IMatrices

-vector<double> DamRat

DamageRatio

+WindSpeeds()
+toString()
+getDate()
+getYear()
+getName()

-numPol
-pair<int,double> *m_Pol_Wind_arr
-m_date
-m_name

WindSpeeds

+Windborne()

-map<double,double> windborneZips

Windborne

image446.emf
+ILM()

-m_error_output

-IPolicy *m_current

-CountySurgeVector &countySurgeV

-m_DMs_v

-m_C_v

-m_AP_v

-m_TRE_v

-m_Ds

-m_Dc

-m_Dapp

-m_Dtre

-m_DMs_ave

-m_DMc_ave

-m_DMap_ave

-m_DMtre_ave

-m_SumLs

-m_SumLc

-m_SumLapp

-m_SumLtre

-m_SumEL

-m_SumDM

-m_SumLs_noDS

-m_SumLc_noDS

-m_SumLapp_noDS

-m_SumLtre_noDS

-m_SumEL_noDS

-ICompany *companyHolder

-IMatrices *matrices

-Damage Ratio *p_damRat

-m_Ls_v

-m_Lc_v

-m_Lap_v

-m_Ltre_v

-m_X_v

-m_Pd_v

-m_Pdc_v

-m_Pdap_v

-m_Pdtre_v

-m_SumAEL

-m_SumAELs

-m_SumAELc

-m_SumAELtre

-m_SumAEL_noDS

-m_SumAELs_noDS

-m_SumAELc_noDS

-m_SumAELapp_noDS

-m_SumAELtre_noDS

-m_treMap

-m_TreIterator

ILM

+SILM()

+companyProcess(in ICompany*, in IMatrices*)

+policyProcess(in IPolicy&, in IMatrices*, in wind_storm)

+companyProcessDS(in ICompany*, in CountySurgeVector&)

+policyProcessDS(in IPolicy&, in CountySurgeVector&)

+loadMatrices(in IPolicy&, in IMatrices*)

-WindSpeeds *winds

-SILMInfo ¶meters

-wind

-windColumn

SILM

IPolicy

1

1

ICompany

1

1

CountySurgeVector

1

1

DamageRatio

1

1

IMatrices

1

1

WindSpeeds

1

1

SILMInfo

1

1

+obtainMatrices(in IPolicy*)

+checkPolicy(in IPolicy*)

+init()

+init_maps()

+getWeightedMatrix(in IPolicy&, in matrix)

+getUnWeightedMatrix(in IPolicy&, in matrix)

+getMatrixMobileHome(in IPolicy&, in matrix)

-map<string,string> strMap

-vector<YearStr> *v_eras

-vector<double>*v_half

-vector<double>*v_third

-vector<double>*v_one

-map<string,vector<double>*> weightMapProb

-vector<string>*v_weak_medium

-vector<string>*v_medium

-vector<string>*v_strong

-vector<string>*v_medium_strong

-vector<string>*v_weak

-map<string,vector<string>*> weightMapValues

-Windborne*windborne

-Zone *zone

-IMatrices *matrices

-validZipDataFile

-SILMInfo ¶

-validRecords

-ZipcodeChecker *m_zipchecker

PreProcessChecker

1

1

Zone

1

1

Windborne

1

1

1

1

+Initialize()

+InitOutputFile()

+Process()

+ProcessFromTo()

+ReadFromTo()

+PerformSILM(in windName, in windFile)

+newSILM(in windName, in windFile)

+ApplyDS()

+PrintStormLoss(in windName, in stormFile)

+FinishedProcessingStorms()

+CreateOutputFileName()

-eventNumber

-sumLoss

-StormDFactors *dsObj

-parameters

-companyHolder

-DamageRatio *p_damRat

-IMatrices *matrices

-CountySurgeVector countiesSurgesV

-outputFile

-out_sum

-SILM *silmObj

-init_storm

-final_storm

-years_simulation

-storm_date

-storm_name

SILMExecutor

1

1

1

1

1

1

1

*

oleObject400.bin
Static Structure

+ILM()

-m_error_output
-IPolicy *m_current
-CountySurgeVector &countySurgeV
-m_DMs_v
-m_C_v
-m_AP_v
-m_TRE_v
-m_Ds
-m_Dc
-m_Dapp
-m_Dtre
-m_DMs_ave
-m_DMc_ave
-m_DMap_ave
-m_DMtre_ave
-m_SumLs
-m_SumLc
-m_SumLapp
-m_SumLtre
-m_SumEL
-m_SumDM
-m_SumLs_noDS
-m_SumLc_noDS
-m_SumLapp_noDS
-m_SumLtre_noDS
-m_SumEL_noDS
-ICompany *companyHolder
-IMatrices *matrices
-Damage Ratio *p_damRat
-m_Ls_v
-m_Lc_v
-m_Lap_v
-m_Ltre_v
-m_X_v
-m_Pd_v
-m_Pdc_v
-m_Pdap_v
-m_Pdtre_v
-m_SumAEL
-m_SumAELs
-m_SumAELc
-m_SumAELtre
-m_SumAEL_noDS
-m_SumAELs_noDS
-m_SumAELc_noDS
-m_SumAELapp_noDS
-m_SumAELtre_noDS
-m_treMap
-m_TreIterator

ILM

+SILM()
+companyProcess(in ICompany*, in IMatrices*)
+policyProcess(in IPolicy&, in IMatrices*, in wind_storm)
+companyProcessDS(in ICompany*, in CountySurgeVector&)
+policyProcessDS(in IPolicy&, in CountySurgeVector&)
+loadMatrices(in IPolicy&, in IMatrices*)

-WindSpeeds *winds
-SILMInfo ¶meters
-wind
-windColumn

SILM

IPolicy

1

1

ICompany

1

1

CountySurgeVector

1

1

DamageRatio

1

1

IMatrices

1

1

WindSpeeds

1

1

SILMInfo

1

1

+obtainMatrices(in IPolicy*)
+checkPolicy(in IPolicy*)
+init()
+init_maps()
+getWeightedMatrix(in IPolicy&, in matrix)
+getUnWeightedMatrix(in IPolicy&, in matrix)
+getMatrixMobileHome(in IPolicy&, in matrix)

-map<string,string> strMap
-vector<YearStr> *v_eras
-vector<double>*v_half
-vector<double>*v_third
-vector<double>*v_one
-map<string,vector<double>*> weightMapProb
-vector<string>*v_weak_medium
-vector<string>*v_medium
-vector<string>*v_strong
-vector<string>*v_medium_strong
-vector<string>*v_weak
-map<string,vector<string>*> weightMapValues
-Windborne*windborne
-Zone *zone
-IMatrices *matrices
-validZipDataFile
-SILMInfo ¶
-validRecords
-ZipcodeChecker *m_zipchecker

PreProcessChecker

1

1

Zone

1

1

Windborne

1

1

1

1

+Initialize()
+InitOutputFile()
+Process()
+ProcessFromTo()
+ReadFromTo()
+PerformSILM(in windName, in windFile)
+newSILM(in windName, in windFile)
+ApplyDS()
+PrintStormLoss(in windName, in stormFile)
+FinishedProcessingStorms()
+CreateOutputFileName()

-eventNumber
-sumLoss
-StormDFactors *dsObj
-parameters
-companyHolder
-DamageRatio *p_damRat
-IMatrices *matrices
-CountySurgeVector countiesSurgesV
-outputFile
-out_sum
-SILM *silmObj
-init_storm
-final_storm
-years_simulation
-storm_date
-storm_name

SILMExecutor

1

1

1

1

1

1

1

*

image447.emf
+PreProcessChecker(in ParaInfoHigh¶)

+checkZipcode(in zip)

+checkYearBuilt(in year)

+planLayout(in RiskHigh&risk)

+getWindowType(in RiskHigh &risk)

-VulnerabilityCurveSet *vCurveSet

-validRecords

-ZipcodeChecker *m_zipchecker

PreProcessChecker

+load()

+load(in numReq)

+toString()

ParaInfoHigh

+ZipcodeChecker(in folder)

+isValid(in zipcode)

-set<double> validZipcodeSet

ZipcodeChecker

1

1

1

1

+VulnerabilityCurveSet(in rows_num, in cols_num)

+VulnerabilityCurveSet(in folder, in rows_num, in cols_num)

+existVCurve(in name)

+getVCurve(in name)

+getVCurve(in index)

+getVCurveIndex(in name)

+getNumRows()

+getNumCols()

+loadNamingFile()

+toString()

-map<string,int> allVCurves

-vector<Matrix> mapIdToMatrix

-numRows

-numCols

VulnerabilityCurveSet

1

1

+RiskHigh()

+seTypeOfRisk(in typeRisk)

+setNumCornerUnits(in corner)

+setNumMiddleUnits(in middle)

+setNumUnits(in units)

+setIRW(in str)

+setMatIdCorner(in id)

+setMatIdMiddle(in id)

+setMatIdCornerWindow(in id)

+setMatIdCornerSlider(in id)

+setMatIdCornerEntry(in id)

+setMatIdMiddleWindow(in id)

+setMatIdMiddleSlider(in id)

+setMatIdMiddleEntry(in id)

+setMatIdIR(in id)

+setLayout(in str)

+getTypeOfRisk()

+getNumCornerUnits()

+getNumMiddleUnits()

+getNumUnits()

+getIRW()

+getMatIdCorner()

+getMatIdMiddle()

+getMatIdCornerWindow()

+getMatIdCornerSlider()

+getMatIdCornerEntry()

+getMtIdMiddleWindow()

+getMatIdMiddleSlider()

+getMatIdMiddleEntry()

+getMatIdIR()

+getLayout()

+toString()

-typeOfRisk

-numCornerUnits

-numMiddleUnits

-numUnits

-iRW

-matIdCorner

-matIdMiddle

-matIdCornerWindow

-matIdCornerSlider

-matIdCornerEntry

-matIdMiddleWindow

-matIdMiddleSlider

-matIdMiddleEntry

-matIdIR

-layout

RiskHigh

1

1

+loadStandard()

+getPolicyFile()

+getVCSetFolder()

+getWindFolder()

+getAdditionalInputFolder()

+getOutputFolder()

+haveToOutputRiskLevelLoss()

+haveToOUtputPerStormk()

+haveToUseDemandSurge()

+getParaFile()

+getNumberOfRecords()

+getTotalAttributes()

+getAttribute(in index)

-policyFIle

-vcSetFolder

-windFolder

-additionalInputFolder

-outputFolder

-outputPerStorm

-outputRiskLevelLoss

-useDemandSurge

-paraFile

-numberOfRecords

-totalAttributes

-map<int,string> *attributeIndex

ParaInfo

+Matrix(in vm_X, in vm_Y)

+Matrix(in Matrix &hrs)

+multiply(in Matrix &other)

+operator+(in Matrix &rhs)

+operator=(in Matrix &hrs)

+scalarMultiply(in scaler)

+setCell(in i, in j, in value)

+getCell(in i, in j)

+getSize_X()

+getSize_Y()

+getColumn(in colIndex)

+toString()

+transpose()

-double **VM

-size_X

-size_Y

Matrix

1

*

oleObject401.bin
+PreProcessChecker(in ParaInfoHigh¶)
+checkZipcode(in zip)
+checkYearBuilt(in year)
+planLayout(in RiskHigh&risk)
+getWindowType(in RiskHigh &risk)

-VulnerabilityCurveSet *vCurveSet
-validRecords
-ZipcodeChecker *m_zipchecker

PreProcessChecker

Static Structure

+load()
+load(in numReq)
+toString()

ParaInfoHigh

+ZipcodeChecker(in folder)
+isValid(in zipcode)

-set<double> validZipcodeSet

ZipcodeChecker

1

1

1

1

+VulnerabilityCurveSet(in rows_num, in cols_num)
+VulnerabilityCurveSet(in folder, in rows_num, in cols_num)
+existVCurve(in name)
+getVCurve(in name)
+getVCurve(in index)
+getVCurveIndex(in name)
+getNumRows()
+getNumCols()
+loadNamingFile()
+toString()

-map<string,int> allVCurves
-vector<Matrix> mapIdToMatrix
-numRows
-numCols

VulnerabilityCurveSet

1

1

+RiskHigh()
+seTypeOfRisk(in typeRisk)
+setNumCornerUnits(in corner)
+setNumMiddleUnits(in middle)
+setNumUnits(in units)
+setIRW(in str)
+setMatIdCorner(in id)
+setMatIdMiddle(in id)
+setMatIdCornerWindow(in id)
+setMatIdCornerSlider(in id)
+setMatIdCornerEntry(in id)
+setMatIdMiddleWindow(in id)
+setMatIdMiddleSlider(in id)
+setMatIdMiddleEntry(in id)
+setMatIdIR(in id)
+setLayout(in str)
+getTypeOfRisk()
+getNumCornerUnits()
+getNumMiddleUnits()
+getNumUnits()
+getIRW()
+getMatIdCorner()
+getMatIdMiddle()
+getMatIdCornerWindow()
+getMatIdCornerSlider()
+getMatIdCornerEntry()
+getMtIdMiddleWindow()
+getMatIdMiddleSlider()
+getMatIdMiddleEntry()
+getMatIdIR()
+getLayout()
+toString()

-typeOfRisk
-numCornerUnits
-numMiddleUnits
-numUnits
-iRW
-matIdCorner
-matIdMiddle
-matIdCornerWindow
-matIdCornerSlider
-matIdCornerEntry
-matIdMiddleWindow
-matIdMiddleSlider
-matIdMiddleEntry
-matIdIR
-layout

RiskHigh

1

1

+Matrix(in vm_X, in vm_Y)
+Matrix(in Matrix &hrs)
+multiply(in Matrix &other)
+operator+(in Matrix &rhs)
+operator=(in Matrix &hrs)
+scalarMultiply(in scaler)
+setCell(in i, in j, in value)
+getCell(in i, in j)
+getSize_X()
+getSize_Y()
+getColumn(in colIndex)
+toString()
+transpose()

-double **VM
-size_X
-size_Y

Matrix

1

*

+loadStandard()
+getPolicyFile()
+getVCSetFolder()
+getWindFolder()
+getAdditionalInputFolder()
+getOutputFolder()
+haveToOutputRiskLevelLoss()
+haveToOUtputPerStormk()
+haveToUseDemandSurge()
+getParaFile()
+getNumberOfRecords()
+getTotalAttributes()
+getAttribute(in index)

-policyFIle
-vcSetFolder
-windFolder
-additionalInputFolder
-outputFolder
-outputPerStorm
-outputRiskLevelLoss
-useDemandSurge
-paraFile
-numberOfRecords
-totalAttributes
-map<int,string> *attributeIndex

ParaInfo

image448.emf
+CILMManager(in int lowHigh)

+process()

+processHigh()

+PrintStormLoss(in ParaInfoHigh ¶meters)

+PrintStormHeader()

-lowHighCheck

-eventNumber

-stormLoss

-size

-StormDFactors *storms

CRILMManager

ParaInfoHigh

1

1

+DamageRatio(in parentFolder)

-vector<double> DamRat

DamageRatio

1

1

+CompanyHigh(in ParaInfoHIgh&)

-map<string,PolicyHigh*> *allPolicies

CompanyHigh

1

1

VulnerabilityCurveSet

1

1

+WindSpeedFile(in folder, in file)

+setStormName(in sName)

+getStormName()

+getStormDate()

+getStormYear()

+existId(in id)

+getWSFile(in id)

+getStoryInterpWinds(in id)

+toString()

-stormName

-stormDate

-numId

-map<int,Matrix>*wsFile

-map<int,Matrix> *storyInterpWInds

WindSpeedFile

1

*

+CRILMHigh(in ParaInfoHigh&, in CompanyHigh*, in VulnerabilityCurveSet *, in WindSpeedFIle*, in DamageRatio*)

+companyProcess()

+companyProcessDS(in CountySurgeVector&)

+policyProcess(in string &policy, in PolicyHigh &pol)

+policyProcessDS(in string &policy, in PolicyHigh &pol, in CountySurgeVector &)

+riskProcess(in RiskHigh &)

+riskProcessDS(in RiskHigh&, in CountySurgeVector&)

+selectWindProfile(in id, in numStories)

+planLayout(in RiskHigh&)

+getWindowType(in RiskHigh&)

+generateStoryCurve(in RiskHigh&, in Matrix&, in Matrix&)

+generateEDR(in Matrix &windProfile, in Matrix &storyCurve)

+calculateEEDR()

+generateIR(in Matrix &windProfile, in Matrix &rI1, in Matrix &rI2)

+generateBreach(in numCornerMiddleUnits, in Matrix &windProfile, in Matrix &vcWindow,

in Matrix &vcSlider, in Matrix &vcEntry, in RiskHigh&, in cornerFlag, in &defectsAll)

+calculateAWI(in Matrix &rI1, in Matrix &rI2, in Matrix &breach, in aC, in aM, in cornerFlag, in defectsAllCM)

+calculateEIDR(in RiskHigh&, in aWICorner, in aWIMiddle)

+aggregationTypeOfRisk(in RiskHigh&)

+calculateAppEDV(in RiskHigh&, in windProfile, in appMat)

+printPolicyOutput()

+printRiskOutput()

-eEDR

-eIDR

-kEAB

-kECB

-ALPHA

-eDR

-parameters

-currentCompany

-currentRisk

-damRat

-vector<double> m_X_v

CRILMHigh

1

1

+PolicyHIgh()

+toString()

-vector<RiskHigh> *allRisks

PolicyHigh

1

*

*

1

Matrix

*

1

1

*

*

1

1

1

1

1

CountySurgeVector

1

1

1

1

RiskHigh

1

1

1

oleObject402.bin
Static Structure

+CILMManager(in int lowHigh)
+process()
+processHigh()
+PrintStormLoss(in ParaInfoHigh ¶meters)
+PrintStormHeader()

-lowHighCheck
-eventNumber
-stormLoss
-size
-StormDFactors *storms

CRILMManager

ParaInfoHigh

1

1

+DamageRatio(in parentFolder)

-vector<double> DamRat

DamageRatio

1

1

+CompanyHigh(in ParaInfoHIgh&)

-map<string,PolicyHigh*> *allPolicies

CompanyHigh

1

1

VulnerabilityCurveSet

1

1

+WindSpeedFile(in folder, in file)
+setStormName(in sName)
+getStormName()
+getStormDate()
+getStormYear()
+existId(in id)
+getWSFile(in id)
+getStoryInterpWinds(in id)
+toString()

-stormName
-stormDate
-numId
-map<int,Matrix>*wsFile
-map<int,Matrix> *storyInterpWInds

WindSpeedFile

1

*

+CRILMHigh(in ParaInfoHigh&, in CompanyHigh*, in VulnerabilityCurveSet *, in WindSpeedFIle*, in DamageRatio*)
+companyProcess()
+companyProcessDS(in CountySurgeVector&)
+policyProcess(in string &policy, in PolicyHigh &pol)
+policyProcessDS(in string &policy, in PolicyHigh &pol, in CountySurgeVector &)
+riskProcess(in RiskHigh &)
+riskProcessDS(in RiskHigh&, in CountySurgeVector&)
+selectWindProfile(in id, in numStories)
+planLayout(in RiskHigh&)
+getWindowType(in RiskHigh&)
+generateStoryCurve(in RiskHigh&, in Matrix&, in Matrix&)
+generateEDR(in Matrix &windProfile, in Matrix &storyCurve)
+calculateEEDR()
+generateIR(in Matrix &windProfile, in Matrix &rI1, in Matrix &rI2)
+generateBreach(in numCornerMiddleUnits, in Matrix &windProfile, in Matrix &vcWindow,
	in Matrix &vcSlider, in Matrix &vcEntry, in RiskHigh&, in cornerFlag, in &defectsAll)
+calculateAWI(in Matrix &rI1, in Matrix &rI2, in Matrix &breach, in aC, in aM, in cornerFlag, in defectsAllCM)
+calculateEIDR(in RiskHigh&, in aWICorner, in aWIMiddle)
+aggregationTypeOfRisk(in RiskHigh&)
+calculateAppEDV(in RiskHigh&, in windProfile, in appMat)
+printPolicyOutput()
+printRiskOutput()

-eEDR
-eIDR
-kEAB
-kECB
-ALPHA
-eDR
-parameters
-currentCompany
-currentRisk
-damRat
-vector<double> m_X_v

CRILMHigh

1

*

1

1

+PolicyHIgh()
+toString()

-vector<RiskHigh> *allRisks

PolicyHigh

1

*

*

1

Matrix

*

1

*

1

1

1

1

1

CountySurgeVector

1

1

1

1

RiskHigh

1

1

1

oleObject403.bin
WSCoutput
(windspeeds)

PreProcessChecker

WindBorne

Windborne instance

IMatrices

Matrices

DamageRatio

SILM

ICompany

Policy
Calculations

Policies

Damage Matrices

Output

Expected
loss

CompanyProcess

WindSpeeds

Windspeed
Data
For each
storm

Matrices

Process Policy Data

Damage Ratios

WindBorne Debris

IPolicy

Individual policies

All policies

CompanyProcessDS

Expected
Loss NoDS

Expected
Loss with DS

Output

Expected Loss
With DS for
All policies

Damage ratios

image48.wmf

w

=

(

u

+

c

sin

f

)

2

+

(

v

o

+

s

+

c

cos

f

)

2

image449.emf
PreProcessChecker

Valid

zipcodes

ZicpodeChecker

Yes/no

Vulnerability

Curves

Vulnerability

Curve Set

Vulnerability

curves

Policy Data

zipcode

CRILMHigh

CompanyHigh

All policy information

Output

Processed policy data

WindSpeedFile

Wind Speed

Data

Wind speed data

for each storm

companyProcess

companyProcessDS

Expected loss

Expected loss

with DS

policies

Expected loss

Output

Expected loss

with DS for all

policies

Vulnerability

curves

Damage

Ratios

DamageRatio

Damage ratios

oleObject404.bin
PreProcessChecker

Valid zipcodes

ZicpodeChecker

Yes/no

Vulnerability
Curves

Vulnerability
Curve Set

Vulnerability
curves

Policy Data

zipcode

CRILMHigh

CompanyHigh

All policy information

Output

Processed policy data

WindSpeedFile

Wind Speed Data

Wind speed data
for each storm

companyProcess

companyProcessDS

Expected loss

Expected loss
with DS

policies

Expected loss

Output

Expected loss
with DS for all
policies

Vulnerability
curves

Damage Ratios

DamageRatio

Damage ratios

oleObject405.bin

oleObject406.bin

oleObject407.bin

oleObject408.bin

oleObject409.bin

oleObject410.bin

oleObject411.bin

image450.wmf
TRE

D

oleObject30.bin

oleObject412.bin

oleObject413.bin

oleObject414.bin

oleObject415.bin

oleObject416.bin

oleObject417.bin

image451.wmf
s

factor

L

L

S

S

_

*

=

oleObject418.bin

image452.wmf
c

factor

L

L

C

C

_

*

=

image49.wmf
0

)

(

1

=

+

+

-

-

uw

s

g

u

u

a

s

s

&

oleObject419.bin

image453.wmf
ap

factor

L

L

AP

AP

_

*

=

oleObject420.bin

image454.wmf
tre

factor

L

L

TRE

TRE

_

*

=

oleObject421.bin

image455.wmf
L

oleObject422.bin

image456.wmf
TRE

AP

C

S

L

L

L

L

L

Loss

Expected

+

+

+

=

=

oleObject423.bin

image457.wmf

AP

mean

 LM

AP

mean

AP

´

=

oleObject31.bin

oleObject424.bin

oleObject425.bin

oleObject426.bin

image458.wmf
(

)

[

]

D

AP

AP

D

C

B

AP

´

+

+

=

EDV

EDV

oleObject427.bin

oleObject428.bin

oleObject429.bin

oleObject430.bin

oleObject431.bin

oleObject432.bin

image50.wmf
0

)

(

)

(

0

1

=

+

+

+

+

-

w

v

d

s

u

s

a

s

s

&

image459.wmf
AP

C

S

L

L

L

L

ss

ExpectedLo

+

+

=

=

oleObject433.bin

image460.wmf

W

s_per_times

event_date

event_time

windspeed_meter_ss

roughness_cor_wind_mile_hh

roughness_cor_wind_meter_ss

wind_direction_deg

Zip_ws_per_time

Storm_id

Zipcode

wsts

Newstormfix

fix_id

when_t

at_time

event_id

for_event

oroduced_id

produced_by

fixobj

Fix

latitude_deg

longitude

_deg

max_windspeed_mps

min_pressure_mb

height_m

stage

Holland_b_rmax

fix_id

rmax

crossing

holland

Ws_per_time

event_date

event_time

windspeed_meter_ss

roughness_cor_wind_mile_hh

roughness_cor_wind_meter_ss

wind_direction_deg

N

ewfix

latitude_deg

longitude_deg

max_windspeed_mps

min_pressure_mb

height_m

stage

rmax

crossing

Multi_dacadal_constant_list

INDEX

mu_id

 mu_Low_year

 mu_Hi_year

 mu_type

Oscilation_constant_list

INDEX

os_id

 os_year

 description

 mu_type

Roughness

PK

zip

FK

 z01

 z02

 z03

 z04

 z05

 z06

 z07

 z08

Zip_ws_per_times

PK

storm_id

 zipcode

FK

 zipcode

storm_id

 wsts

of

of

of

REF

REF

REF

1 0..1

1

0..1

1 0..1

Yr_hurri_threat_firstfix

PK

eid

 name

 when_t

 juliandate

timr

 latitude

 longitude

 maxwindspeed

 minpressure

Zipcodelist

PK

zipcode

 centr_lon

g_deg

 centr_lati_deg

 1

 1

 1

 1

 1

of

0..m

m 1

of

of

REF

Stormfix

when_t

fix_id

fixobj

at_time

for_event

event_id

produced_id

pr

oduced_by

Atmosevent

key_id

stm_nbr

when_t

name

type

basin

ATCF_name

Platform_type

key_id

type

description

Platform_type_list

PK

key_id

 type

 description

Stormfix_list

PK

when_t

PK

 at_time

PK, FK2

event_id

Un

 fix_id

for_event

FK1

produced_id

 produced_by

fixobj

Atmosevent_list

PK

key_id

Un

 stm_nbr

 when_t

 name

FK

type

basin

Un

ATCF_name

Landfall_type

category_no

state_code

Landfall_type_arr

category_no

state_code

Storm_category

PK

description

Un

 category_no

Landfall_state

PK

na

me

Un

 state_code

Landfall

FK

storm_id

landfall_obj

oleObject434.bin

[image: image1]

Newfix

latitude_deg

longitude_deg

max_windspeed_mps

min_pressure_mb

height_m

stage

rmax

crossing

when_t

fix_id

fixobj

at_time

for_event

event_id

produced_id

produced_by

Stormfix

key_id

stm_nbr

when_t

name

type

basin

ATCF_name

Atmosevent

key_id

type

description

Platform_type

PK key_id

 type

 description	

Platform_type_list

PK when_t

PK at_time

PK, FK2 event_id Un	 fix_id

 for_event

FK1 produced_id

 produced_by

	 fixobj

Stormfix_list

PK key_id

Un stm_nbr

 when_t	

 name

FK type

 basin

Un ATCF_name

Atmosevent_list

category_no

state_code

Landfall_type

category_no

state_code

Landfall_type_arr

PK description

 Un category_no

Storm_category

PK name

 Un state_code

Landfall_state

INDEX os_id

 os_year

 description

 mu_type

INDEX mu_id

 mu_Low_year

 mu_Hi_year

 mu_type

Oscilation_constant_list

Multi_dacadal_constant_list

event_date

event_time

windspeed_meter_ss

roughness_cor_wind_mile_hh

roughness_cor_wind_meter_ss

wind_direction_deg

Ws_per_times

Storm_id

Zipcode

wsts

Zip_ws_per_time

event_date

event_time

windspeed_meter_ss

roughness_cor_wind_mile_hh

roughness_cor_wind_meter_ss

wind_direction_deg

Ws_per_time

fix_id

rmax

crossing

holland

Holland_b_rmax

latitude_deg

longitude_deg

max_windspeed_mps

min_pressure_mb

height_m

stage

Fix

fix_id

when_t

at_time

event_id

for_event

oroduced_id

produced_by

fixobj

Newstormfix

 1

 1

 1

of

FK storm_id

 landfall_obj

Landfall

0..m

1 0..1

m 1

REF

of

REF

of

of

PK zip

FK

 z01

 z02

 z03

 z04

 z05

 z06

 z07

 z08

Roughness

PK storm_id

 zipcode

 FK zipcode

 storm_id

 wsts

Zip_ws_per_times

of

of

REF

REF

1 0..1

1 0..1

PK eid

 name

 when_t

 juliandate

 timr

 latitude

 longitude

 maxwindspeed

 minpressure

Yr_hurri_threat_firstfix

PK zipcode

 centr_long_deg

 centr_lati_deg

Zipcodelist

 1

 1

image461.emf

 NEWFIX latitude_deg longitude_deg max_windspeed_mps min_pressure_mb height_m stage rmax crossing

oleObject435.bin

[image: image1]

latitude_deg

longitude_deg

max_windspeed_mps

min_pressure_mb

height_m

stage

rmax

crossing

NEWFIX

image462.emf

 STORMFIX fix_id when_t at_time fixtype event_id for_event produced_id produced_by fixobj

oleObject436.bin

[image: image1]

fix_id

when_t

at_time

fixtype

event_id

for_event

produced_id

produced_by

fixobj

STORMFIX

image463.emf

 ATMOSEVENT key_id stm_nbr when_t name type basin ATCF_name

oleObject32.bin

oleObject437.bin

key_id

stm_nbr

when_t

name

type

basin

ATCF_name

ATMOSEVENT

image464.emf

 PLATFORM_TYPE key_id type description

oleObject438.bin

[image: image1]

key_id

type

description

PLATFORM_TYPE

image465.emf

 LANDFALL_TYPE category_no state_code

oleObject439.bin

[image: image1]

category_no

state_code

LANDFALL_TYPE

image466.emf

 LANDFALL_TYPE_ARR category_no state_code

oleObject440.bin

[image: image1]

category_no

state_code

LANDFALL_TYPE_ARR

image467.emf

 NEWSTORMFIX fix_id when_t at_time event_id for_event produced_id produced_by fixobj

oleObject441.bin

fix_id

when_t

at_time

event_id

for_event

produced_id

produced_by

fixobj

NEWSTORMFIX

image468.emf

 FIX latitude_deg longitude_deg max_windspeed_mps min_pressure_mb height_m stage

image51.wmf
s

+

=

0

v

v

oleObject442.bin

[image: image1]

latitude_deg

longitude_deg

max_windspeed_mps

min_pressure_mb

height_m

stage

FIX

image469.emf

 HOLLAND_B_RMAX fix_id rmax crossing holland

oleObject443.bin

[image: image1]

fix_id

rmax

crossing

holland

HOLLAND_B_RMAX

image470.emf

 WS_PER_TIME event_date event_time windspeed_meter_ss roughness_cor_wind_mile_hh roughness_cor_wind_meter_ss wind_direction_deg

oleObject444.bin

[image: image1]

event_date

event_time

windspeed_meter_ss

roughness_cor_wind_mile_hh

roughness_cor_wind_meter_ss

wind_direction_deg

WS_PER_TIME

image471.emf

 WS_PER_TIME S event_date event_time windspeed_meter_ss roughness_cor_wind_mile_hh roughness_cor_wind_meter_ss wind_direction_deg

oleObject445.bin

[image: image1]

event_date

event_time

windspeed_meter_ss

roughness_cor_wind_mile_hh

roughness_cor_wind_meter_ss

wind_direction_deg

WS_PER_TIMES

image472.emf

 ZIP_WS_PER_TIME storm_id zipcode wsts

oleObject446.bin

[image: image1]

storm_id

zipcode

wsts

ZIP_WS_PER_TIME

image473.emf

Platform_type_list

PK key_id type description

oleObject33.bin

oleObject447.bin

[image: image1]

PK key_id

 type

 description	

Platform_type_list

image474.emf

Stormfix_l ist

PK when_t PK at_time PK, FK2 event_id Un fix_id for_event FK1 produced_id produced_by fixobj

oleObject448.bin

[image: image1]

PK when_t

PK at_time

PK, FK2 event_id Un	 fix_id

 for_event

FK1 produced_id

 produced_by

	 fixobj

Stormfix_list

image475.emf

Atmosevent_list

PK key_id Un stm_nbr when_t name FK type basin Un ATCF_name

oleObject449.bin

[image: image1]

PK key_id

Un stm_nbr

 when_t	

 name

FK type

 basin

Un ATCF_name

Atmosevent_list

image476.emf

Storm_category

PK description Un category_no

oleObject450.bin

[image: image1]

PK description

Un category_no

Storm_category

image477.emf

Landfall

FK storm_id landfall_obj

oleObject451.bin

[image: image1]

FK storm_id

 landfall_obj

Landfall

image478.emf

Landfall_state

PK name Un state_code

image52.wmf
)

(

s

u

oleObject452.bin

[image: image1]

PK name

Un state_code

Landfall_state

image479.emf

Multi_Dacadal_Constant_List

INDEX mu_id mu_L ow_year mu_Hi_year mu_type

oleObject453.bin

[image: image1]

INDEX mu_id

 mu_Low_year

 mu_Hi_year

 mu_type

Multi_Dacadal_Constant_List

image480.emf

Oscilation_Constant_List

INDEX os_id os_year description

oleObject454.bin

[image: image1]

INDEX os_id

 os_year

 description

Oscilation_Constant_List

image481.emf

Zipcodelist

PK zipcode centr_lati_deg centr_long_deg

oleObject455.bin

[image: image1]

PK zipcode

 centr_lati_deg

 centr_long_deg

Zipcodelist

image482.emf

Z ip_ws_per_times

PK storm_id zipcode FK zipcode wsts

oleObject456.bin

[image: image1]

PK storm_id

 zipcode

FK zipcode

 wsts

Zip_ws_per_times

image483.emf

Y r_hurri _threat_firstfix

PK eid name when_t juliandate time latitude longitude maxwindspeed minpressure

oleObject34.bin

oleObject457.bin

[image: image1]

PK eid

 name

 when_t

 juliandate

 time

 latitude

 longitude

 maxwindspeed

 minpressure

Yr_hurri_threat_firstfix

image484.emf

A tmosevent_hurri_threat_list

PK stm_nbr when_t name type basin atcf_name key_id

oleObject458.bin

[image: image1]

PK stm_nbr

 when_t

 name

 type

 basin

 atcf_name

 key_id

Atmosevent_hurri_threat_list

image485.emf

: ROUGHNESS

PK zip FK z01 z02 z03 z04 z05 z06 z07

oleObject459.bin

[image: image1]

PK zip

 FK

 z01

 z02

 z03

 z04

 z05

 z06

 z07

 z08

: ROUGHNESS

image486.emf
year_built_conversion

PK year_built_code

value

catfund2007

PK id

type_of_business

line_of_business

construction_type

deductible_group

county_code

zipcode

total_insured_risks

total_insured_risks_building

total_insured_risks_appurtenant

total_insured_risks_contents

total_insured_risks_ale

year_built_code

bceg_code

florida_building_code_indicator

structure_opening_protection

roof_shape

roof_wall_connection

roof_deck_attachment

hlpm2007data_aggregated_0deduc

PK,FK1 polci_id

zipcode

year_built

const_type

prop_value

lms

lmapp

lmale

deduc

hurr_deduc

coverage

county

region

num_units

type_of_business

county_code_2_county_name_2_region

PK county_code

county

region

year_built_prior_probs

PK county_code

county

probs

construction_type_conversion

PK construction_code

construction_type

fphlm_const_type

year_built_prior_probs_value

PK id

era

value

flzip2008

PK zip

lat

lon

hlpm2007com_updated_1

PK,FK2 policy_id

zipcode

FK1 year_built_code

year_built

FK4 construction_code

const_type

prop_value

lms

lmapp

lmc

lmale

deductible_group

deduc

hurr_deduc

coverage

FK3 county_code

county

region

num_units

type_of_business

roof_wall_connection

roof2wall

num_stories

roof_shape_code

roof_shape

roof_cover

roof_deck_code

deck_attachment

stud2sill

underlayment

garage

door_protection

opening_protection_code

opening_protection

building_shape

hlpm2007com_updated_1_expanded

PK,FK1 policy_id

zipcode

year_built_code

year_built

construction_code

const_type

prop_value

lms

lmapp

lmc

lmale

deductible_group

deduc

hurr_deduc

coverage

FK3 county_code

county

region

num_units

type_of_business

roof_wall_connection

roof2wall

num_stories

roof_shape_code

roof_shape

roof_cover

roof_deck_code

deck_attachment

stud2sill

underlayment

garage

door_protection

opening_protection_code

opening_protection

building_shape

subregion

era

hlpm2007data_aggregated_0deduc_geo

PK polci_id

FK1 zipcode

year_built

const_type

prop_value

lms

lmapp

lmale

deduc

hurr_deduc

coverage

county

region

num_units

type_of_business

lat

lon

oleObject460.bin
Table

image487.emf
year_built_conversion

PK year_built_code

value

oleObject461.bin
Table

image488.emf
county_code_2_county_name_2_region

PK county_code

county

region

image53.wmf
)

(

s

s

oleObject462.bin
Table

image489.emf
flzip2008

PK zip

lat

lon

oleObject463.bin
Table

image490.emf
construction_type_conversion

PK construction_code

construction_type

fphlm_const_type

oleObject464.bin
Table

image491.emf
year_built_prior_probs

PK county_code

county

probs

oleObject465.bin
Table

image492.emf
year_built_prior_probs_value

PK id

era

value

oleObject466.bin
Table

image493.emf
catfund2007

PK id

type_of_business

line_of_business

construction_type

deductible_group

county_code

zipcode

total_insured_risks

total_insured_risks_building

total_insured_risks_appurtenant

total_insured_risks_contents

total_insured_risks_ale

year_built_code

bceg_code

florida_building_code_indicator

structure_opening_protection

roof_shape

roof_wall_connection

roof_deck_attachment

oleObject35.bin

oleObject467.bin
Table

image494.emf
hlpm2007com_updated_1

PK,FK2 policy_id

zipcode

FK1 year_built_code

year_built

FK4 construction_code

const_type

prop_value

lms

lmapp

lmc

lmale

deductible_group

deduc

hurr_deduc

coverage

FK3 county_code

county

region

num_units

type_of_business

roof_wall_connection

roof2wall

num_stories

roof_shape_code

roof_shape

roof_cover

roof_deck_code

deck_attachment

stud2sill

underlayment

garage

door_protection

opening_protection_code

opening_protection

building_shape

oleObject468.bin
Table

image495.emf
hlpm2007com_updated_1_expanded

PK,FK1 policy_id

zipcode

year_built_code

year_built

construction_code

const_type

prop_value

lms

lmapp

lmc

lmale

deductible_group

deduc

hurr_deduc

coverage

FK3 county_code

county

region

num_units

type_of_business

roof_wall_connection

roof2wall

num_stories

roof_shape_code

roof_shape

roof_cover

roof_deck_code

deck_attachment

stud2sill

underlayment

garage

door_protection

opening_protection_code

opening_protection

building_shape

subregion

era

oleObject469.bin
Table

image496.emf
hlpm2007data_aggregated_0deduc

PK,FK1 polci_id

zipcode

year_built

const_type

prop_value

lms

lmapp

lmale

deduc

hurr_deduc

coverage

county

region

num_units

type_of_business

oleObject470.bin
Table

image497.emf
hlpm2007data_aggregated_0deduc_geo

PK polci_id

FK1 zipcode

year_built

const_type

prop_value

lms

lmapp

lmale

deduc

hurr_deduc

coverage

county

region

num_units

type_of_business

lat

lon

oleObject471.bin
Table

image498.emf
year_built_conversion

PK year_built_code

value

catfund2007com

PK id

type_of_business

line_of_business

construction_type

deductible_group

county_code

zipcode

total_insured_risks

total_insured_risks_building

total_insured_risks_appurtenant

total_insured_risks_contents

total_insured_risks_ale

year_built_code

bceg_code

florida_building_code_indicator

structure_opening_protection

roof_shape

roof_wall_connection

roof_deck_attachment

county_code_2_county_name_2_region

PK county_code

county

region

construction_type_conversion

PK construction_code

construction_type

fphlm_const_type

year_built_prior_probs_value

PK id

era

value

hlpm2007com_updated_1

PK,FK3 policy_id

zipcode

FK1 year_built_code

year_built

FK4 construction_code

const_type

prop_value

lms

lmapp

lmc

lmale

deductible_group

deduc

hurr_deduc

FK2 county_code

county

region

num_units

type_of_business

roof_wall_connection

roof2wall

num_stories

FK5 roof_shape_code

roof_shape

roof_cover

roof_deck_code

deck_attachment

stud2sill

underlayment

garage

door_protection

FK6 opening_protection_code

opening_protection

building_shape

roof_shape_conversion

PK roof_shape_code

value

opening_protection_conversion

PK opening_protection_code

value

num_stories_probs_com_value

PK id

stories

value

hlpm2007com_updated_1_expanded

PK,FK1,FK5 policy_id

zipcode

year_built_code

year_built

construction_code

const_type

prop_value

lms

lmapp

lmc

lmale

deductible_group

deduc

hurr_deduc

FK2,FK3 county_code

county

region

num_units

type_of_business

roof_wall_connection

roof2wall

num_stories

roof_shape_code

roof_shape

roof_cover

roof_deck_code

deck_attachment

stud2sill

underlayment

garage

door_protection

opening_protection_code

opening_protection

building_shape

subregion

era

layout

year_built_probs_com

PK county_code

county

probs

num_stories_probs_com

PK county_code

county

probs

hlpm2007com_aggregated_0deduc_lr

PK policy_id

zipcode

year_built

const_type

prob_value

lms

lmapp

lmc

deduc

hurr_deduc

county

regioin

num_units

num_stories

roof_shape

roof_cover

opening_protection

num_units_orig

hlpm2007com_aggregated_0deduc_mhr

PK policy_id

loc

zipcode

year_built

prop_value

lms

lmapp

lmc

deduc

hurr_deduc

county

region

num_units

FK1 num_stories

opening_protection

irw

type_of_risk

layout

num_units_orig

hlpm2007com_aggregated_0deduc_lr_geo

PK,FK1 policy_id

FK2 zipcode

year_built

const_type

prob_value

lms

lmapp

lmc

deduc

hurr_deduc

county

region

num_units

num_stories

roof_shape

roof_cover

opening_protection

num_units_orig

lat

lon

hlpm2007com_aggregated_0deduc_mhr_geo

PK,FK1 policy_id

loc

FK2,FK3 zipcode

year_built

prob_value

lms

lmapp

lmc

deduc

hurr_deduc

county

region

num_units

num_stories

opening_protection

irw

type_of_risk

layout

num_units_orig

lat

lon

num_units_conversion_com_mhr

PK num_stories

value

coastal_2008

PK zipcode

flzip2008

PK zip

lat

lon

image54.wmf
s

+

=

g

v

v

oleObject472.bin
Table

image499.emf
year_built_conversion

PK year_built_code

value

oleObject473.bin
Table

image500.emf
county_code_2_county_name_2_region

PK county_code

county

region

oleObject474.bin
Table

image501.emf
flzip2008

PK zip

lat

lon

oleObject475.bin
Table

image502.emf
construction_type_conversion

PK construction_code

construction_type

fphlm_const_type

oleObject476.bin
Table

image503.emf
roof_shape_conversion

PK roof_shape_code

value

